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Asymmetric Fano resonance analysis in indirectly coupled microresonators
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We reveal that there exists an indirect interaction between two single-mode microcavities which have no direct
coupling. This indirect interaction is mediated by coupling the two microcavities to a common waveguide, and
it plays a key role in obtaining the asymmetric Fano line shape of the transport spectrum of the coupled cavity
system. Finally, we show that this sharp Fano line shape can contribute to highly sensitive sensing, which is
immune to most environmental variations.
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As a ubiquitous phenomenon, Fano resonance [1] was
first proposed to study the autoionizing states of atoms. The
shape of this resonance is distinctly asymmetric, different from
conventional symmetric Lorentzian resonance curves. Since its
discovery, it has been observed in different systems, including
plasmonic nanoparticles, photonic crystals, plasmonic nanos-
tructures, and electromagnetic metamaterials (for a review,
see [2]). This asymmetric resonance profile essentially results
from the interference between a continuum and an embedded
discrete level.

Recently, optical microresonator structures with high-
quality factors have attracted increasing interest for fundamen-
tal physics and device applications [3]. As many of these struc-
tures involve coupling of one or several cavities to a waveguide,
such coupling systems naturally exhibit Fano resonances. The
sharp Fano resonances in these systems, sometimes behaving
like coupled-resonator-induced transparency, were first intro-
duced in Refs. [4,5]. Since then, different waveguide-cavity
structures have been studied theoretically and experimentally.
For instance, the Lorentzian line shape can be dramatically
deformed by coupling two individual microcavities [6–8],
inserting two partially reflecting elements in the light path
[9–11], utilizing a multimode waveguide as the external
coupler to a single-mode microcavity [12], and involving at
least two resonant modes in a single microcavity [13,14].
In general, coupled-resonator structures have two typical
geometries: directly [6] and indirectly [7] coupled resonators.
It is evident that the direct coupling structure can exhibit Fano
resonances. However, in an indirect coupling structure, the
interaction mechanism to produce Fano resonance has yet not
been revealed, to the best of our knowledge, although the
scattering matrix or transfer matrix is convenient to calculate
the transport in this structure [5]. In this paper, we theoretically
study a system consisting of two single-mode microcavities
which have no direct coupling but are side coupled to a
common waveguide (see Fig. 1). We reveal that there does exist
indirect interaction between them. This indirect interaction
plays the center role in obtaining the asymmetric Fano line
shape of the system.
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Under the rotating-wave approximation, the Hamiltonian
of the system can be written as (h̄ = 1) [15]

H =
∑
j=1,2

{
ωjc

†
j cj +

∑
p=±

∫ +∞

−∞
ωa

†
j,p(ω)aj,p(ω) dω

+ i
∑
p=±

∫ +∞

−∞
dωκj (ω)[a†

j,p(ω)cj − c
†
j aj,p(ω)]

}
, (1)

where the first two terms represent the free Hamiltonians of
the cavity and on-site waveguide modes, respectively, and the
last term describes the coupling between them. Here cj (c†j ) is
the annihilation (creation) operator associated with the mode
of the jth cavity, with resonant frequency ωj . aj,p(ω) [a†

j,p(ω)]
denotes the annihilation (creation) operator for the waveguide
mode coupled to the jth cavity, with the commutation relation
[aj,p(ω),a†

j,p(ω′)] = δ(ω − ω′), and the subscript p = ± rep-
resents two propagating directions of waveguide modes. The
coefficient κj (ω) describes the coupling between the jth cavity
and the on-site waveguide modes. The Heisenberg equations
of motion for the cavity and waveguide modes are

dcj

dt
= −iωj cj −

∑
p=±

∫ +∞

−∞
dωκj (ω)aj,p(ω), (2)

daj,p(ω)

dt
= −iωaj,p(ω) + κj (ω)cj . (3)

Now, by integrating Eq. (3), we can obtain the operator of
the waveguide mode,

aj,p(ω) = e−iω(t−t0)Aj,p(ω) + κj (ω)
∫ t

t0

e−iω(t−t ′)cj (t ′) dt ′,

(4)

where Aj,p(ω) denotes the value of aj,p(ω) at t = t0. With
Eq. (4), substituting aj,p(ω) in Eq. (2), and by taking the intrin-
sic decay rate γ0,j of the jth cavity mode into account (which
can be obtained by following the established procedures of the
Weisskopf-Wigner approximation [15]), we achieve

dcj

dt
= −iωj cj − γ0,j

2
cj −

∑
p=±

∫ +∞

−∞
dωκj (ω)

×
(

e−iω(t−t0)Aj,p(ω) + κj (ω)
∫ t

t0

e−iω(t−t ′)cj (t ′) dt ′
)

.

(5)
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FIG. 1. (Color online) Schematic structure of two single-mode
standing-wave microcavities side coupled to a common waveguide.
The two cavities are separated by a long enough distance L. The
parameters are defined in the text.

Since
∫ +∞
−∞ dωe−iω(t−t ′) = 2πδ(t − t ′) and

∫ t

t0
cj (t ′)δ(t−

t ′) dt = cj (t)/2, with the first Markov approximation κj (ω) =
(γ1,j /2π )1/2, Eq. (5) can be simplified as

dcj

dt
= −iωj cj − γ0,j + 2γ1,j

2
cj − √

γ1,j

∑
p=±

a(j )
p,in(t), (6)

where a
(j )
p,in(t) describes the input field of the jth cavity mode,

with the form

a(j )
p,in(t) = 1√

2π

∫ +∞

−∞
Aj,p(ω)e−iω(t−t0)dω. (7)

With the input-output formula of the cavity, we have

a
(j )
p,out(t) = a

(j )
p,in(t) + √

γ1,j cj , (8a)

a
(2)
+,in(t) = eiθa

(1)
+,out(t), (8b)

a
(2)
−,out(t) = e−iθ a

(1)
−,in(t), (8c)

with the propagating phase factor θ = k(ω)L, where k(ω) is the
waveguide’s dispersion and L denotes the waveguide distance
between the coupling regions of the two microcavities. Thus,
by assuming that there is no input from the right port, that is,
a

(2)
−,in(t) = 0, Eq. (6) can be rewritten as

dc1

dt
= −iω1c1 − γ0,1 + 2γ1,1

2
c1 − eiθ√γ1,1γ1,2c2

−√
γ1,1a

(1)
+,in(t), (9a)

dc2

dt
= −iω2c2 − γ0,2 + 2γ1,2

2
c2 − eiθ√γ1,1γ1,2c1

−√
γ1,2e

iθa
(1)
+,in(t). (9b)

Equations (9a) and (9b) are the most important results of this
paper. It is not difficult to find that there does exist indirect
interaction between the two microcavities, with the effective
coupling parameter eiθ√γ1,1γ1,2. This interaction is similar
to the strong coupling of two distant dipoles mediated by a
common nanofiber [16] or a cavity mode [17].

We are interested in the transport property in the fre-
quency domain of the indirectly coupled microcavities. To
facilitate the discussion, we also suppose that each cavity
has the same dissipation, that is, γ0,j = γ0 and γ1,j = γ1.
From Eqs. (8a)–(8c), we achieve the whole transmission and
reflection amplitudes,

a
(2)
+,out = eiθ

(
a

(1)
+,in + √

γ1c1
) + √

γ1c2, (10a)

a
(1)
−,out = eiθ√γ1c2 + √

γ1c1, (10b)

respectively, where cj (ω) can be obtained by neglecting all the
fluctuations, setting dcj/dt = 0, and taking the expectation
value with respect to the steady state of Eqs. (9a) and (9b). In
addition, it should be noted that the transmission and reflection
are coincident with the results obtained by the transmission
matrix [9].

Now we further investigate the line shape of the reflection
spectrum defined by R ≡ |r|2 ≡ |a(1)

−,out/a
(1)
+,in|2. Under the

resonant condition (ω1 = ω2 ≡ ω0), we have the reflection
coefficient

r = eiθ (−r1 + r2), (11a)

r1 = −γ1(1 + cos θ )

i(�ω − γ1 sin θ ) − γ1(1 + cos θ ) − γ 0/2
, (11b)

r2 = −γ1(1 − cos θ )

i(�ω + γ1 sin θ ) − γ1(1 − cos θ ) − γ 0/2
, (11c)

where �ω ≡ ω − ω0. In Eqs. (11), the total reflection
coefficient has been intentionally written in the form of
the interference of two new resonances with frequencies
ω

′
1,2 = ω0 ± γ1 sin θ , and γ1(1 ± cos θ ) describes the modified

waveguide coupling strengths, respectively. These two new
resonances can also be defined from Eqs. (9) as the strong
indirect interaction between the original two modes should
result in two new orthogonal resonant modes. It is not difficult
to find that the reflection spectrum strongly depends on the
propagating phase factor θ . Three cases are considered in the
following.

(i) When θ = mπ with m being an integral number,
the two new resonances are degenerate (ω

′
1,2 = ω0). In this

case, either r1 or r2 vanishes, and the total reflection R =
|2γ1/(i�ω − 2γ1 − γ 0/2)|2. Thus the reflection spectrum has
a symmetric Lorentz line shape but with a broadened linewidth
4γ1 + γ 0, as shown in Fig. 2.

(ii) When θ = mπ + π/2, we have cos θ = 0 and
sin θ = ±1. In this case, the total reflection can be expressed
as R = |∑p=±γ1/[i(�ω + pγ1) − γ1 − γ 0/2]|2. Thus, the

FIG. 2. (Color online) Total reflection spectra R(ω − ω0) of two
indirectly coupled microcavities. The solid, dash-dotted, dashed, and
dotted curves correspond to the cases of the propagation phase factors
θ = mπ , mπ + π/8, mπ + π/4, and mπ + π/2, respectively. Here
the two cavities are identical with γ1 = 20γ0.
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reflection is the sum of the two new resonances with the
detuning 2γ1 and the identical decay rates.

(iii) When θ �= mπ/2, for example, θ = π/4, these two
resonances possess distinct waveguide coupling strengths
γ1(1 ± cos θ ). For example, (1 + cos θ ) � (1 − cos θ ) for a
certain θ . Thus, the mode with strong coupling represents a
continuum while the mode with weak coupling plays the role
of a discrete level. As a result, the Fano resonance line shape
is produced by involving interference between the continuum
and the discrete level, similar to the Fano-Anderson model.
On the other hand, the two new resonances are also analogous
to the bright and dark states in the atomic system. The mode
with reflection coefficient r1 approximately plays the role of
a bright state (almost all light can be efficiently coupled to
the bright-state mode and transported to the reflection), while
the mode with reflection coefficient r2 represents a dark state
(the coupling to the dark-state mode is much weaker).

To further expose the essence of the asymmetric line shape,
we turn to studying the phase angles of reflection amplitudes
r1,2. Thus, Eq. (11a) is rewritten as

r = eiθ (−|r1|eiϕ1 + |r2|eiϕ2 ). (12)

Thus the total reflection rate reads

R = |r1|2 + |r2|2 − 2|r1||r2| cos(ϕ1 − ϕ2). (13)

In Eq. (13), the first two terms represent the reflections
of the two new resonances, and the last term denotes the
interference between them. Figure 3(a) displays the phases ϕ1,2

depending on the detuning �ω. It can be found that the phase
difference ϕ2 − ϕ1 appears as a sharp change in the vicinity
of �ω = (γ1 + γ0/2) tanθ . The total reflection also changes
sharply in this region. This phenomenon is similar to the
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FIG. 3. (Color online) (a) Changes of phase ϕ1 (dotted), ϕ2

(dashed), and ϕ1 − ϕ2 (solid) depending on the detuning ω − ω0.
(b) The spectra of |r1|2 + |r2|2, −2|r1||r2| cos(ϕ2 − ϕ1), and R. For
both cases, the two microcavities are identical with γ1 = 20γ0 and
θ = mπ + π/4.

phase changes of discrete and continuum states in analyzing
electron scattering [1]. Figure 3(b) plots the first two terms
|r1|2 + |r2|2, the interference term −2|r1||r2| cos(ϕ2 − ϕ1), and
the total reflection rate R. It is not difficult to find that
the profile of |r1|2 + |r2|2 is the sum of reflections of the
two new resonances, while the interference term behaves
asymmetrically. As a result, the total reflection spectrum R

is asymmetric.
The sharp asymmetric line shape can improve the optical

switching characteristics [9] and provide greatly enhanced
slope sensitivity of biosensors [8,10,11], because the slope
between zero and the unity reflection (or transmission) is
greatly enhanced compared with that of a single resonator. In
this kind of biosensor, the measurement is typically based on
the shift of sharp Fano resonance. Thus, some environmental
variations such as thermal fluctuations will insert the detection
signal. As an alternative method, a measurement system could
be constructed such that only one cavity is used as a sensing
head, while the other plays the role of feedback. In this case,
both cavities respond synchronously to the environmental
variations because they are located in a microscale volume.
As a result, the reflection spectrum of the coupled system
has a shift (i.e., shifted spectrum), but no distortion of the
line shape occurs [Fig. 4(a), from solid to dashed curves].
When target biomolecules interact with the sensing cavity,
the reflection spectrum undergoes a distortion [Fig. 4(a), from
solid to dotted curves]. Therefore, we can remove the effect of
the environmental variations if we define this kind of spectrum
aberrance as the sensing signal.

Finally, we show how to define the detection signal in such
a distorted spectrum induced by binding biomolecules. To this
end, we note that the Fano resonance dip has a remarkable
change with the detuning ω12 between the two microcavities. In
a realistic biosensing, ω12 only responds to the binding of target
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FIG. 4. (Color online) (a) Typical reflection spectra of the present
Fano resonance. Solid, dashed, and dotted curves correspond to
original, shifted (ω1,2 shift simultaneously from ω0), and distorted
cases (only ω1 shifts from ω0 and ω2 = ω0 remain unchanged),
respectively. (b) The reflection rate of the Fano resonance dip
depending on the detuning ω1,2 between the two microcavities. Here,
the two cavities have an initial detuning of 0.3γ1. For both cases,
γ1 = 20γ0 and θ = mπ + π/16.
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biomolecules. Thus, the change of Fano resonance dip can be
regarded as the detection signal. As shown in Fig. 4(b), the
reflection rate of the Fano resonance dip responds linearly to
the detuning ω12. It should be noted here that we have assumed
an initial bias detuning 0.3γ1 between the two microcavities
for a better linearity.

In summary, we have investigated two single-mode mi-
crocavities side coupled to a common waveguide, and we
obtained the indirect interaction strength between the two
microcavities even when they are not directly coupled. This
indirect interaction is mediated by the common waveguide,
and the interaction parameter is dependent on the coupling
strengths κ1,j and the propagating phase θ . This indirect

interaction plays a key role in obtaining the asymmetric Fano
line shape of the transport spectrum of the coupled system.
Finally, we show that this sharp Fano line shape can be useful
for highly sensitive sensing, and particularly, the sensing is
immune to most environmental variations.
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