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Perturbative correction to the ground-state properties of one-dimensional strongly
interacting bosons in a harmonic trap
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We calculate the first-order perturbation correction to the ground-state energy and chemical potential of a
harmonically trapped boson gas with contact interactions about the infinite repulsion Tonks-Girardeau limit.
With c denoting the interaction strength, we find that, for a large number of particles N , the 1/c correction to the
ground-state energy increases as N5/2, in contrast to the unperturbed Tonks-Girardeau value that is proportional
to N 2. We describe a thermodynamic scaling limit for the trapping frequency that yields an extensive ground-state
energy and reproduces the zero temperature thermodynamics obtained by a local-density approximation.
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I. INTRODUCTION

The realization of quasi-one-dimensional ultracold boson
gases with tunable interaction parameters [1–3] and the
succeeding advances in atom chip trap technology [4–7] have
renewed interest in theoretical models of one-dimensional
bosons with short-range interactions. Of particular relevance
to workers in this field is the Lieb-Liniger model [8] in which
contact interactions are described by Dirac delta functions.
The suitability of this model in describing the low-temperature
properties of these quasi-one-dimensional bosonic systems
has been further strengthened by Olshanii’s analysis of the
low-energy scattering of atoms under tight transverse harmonic
confinement: The longitudinal s-wave scattering amplitudes
are indeed reproduced by a one-dimensional pseudopotential
proportional to a Dirac delta function [9]. The resulting demon-
stration that the magnitude of this effective delta interaction
can be explicitly calculated from the three-dimensional atomic
scattering length and the dimensions of the confining external
trap [10] further strengthens the link between theoretical one-
dimensional models and quasi-one-dimensional experiments.

Still, the free Lieb-Liniger model is quite an idealization for
actual experiments because the atoms are generally longitudi-
nally confined by an external potential, and thus much effort
has been devoted to studying the effects of confinement of
interacting bosons [9,11,12]. Introducing an external harmonic
potential to the free Lieb-Liniger model of spinless bosons
leads to the many-particle Schrödinger eigenvalue equation

Ēb�b =
[

N∑
i=1

− h̄2

2m

∂2

∂x2
i

+ mω2x2
i

2

]
�b

− h̄2

ma

∑
i<j

δ(xj − xi)�
b, (1)

where m is the mass of each of the N atoms, ω is the
angular frequency of the trap, and a is the one-dimensional
scattering length. The superscript “b” refers to the bosonic
nature of the labeled quantities. Measuring energy in units
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of h̄ω and length in oscillator units � = √
h̄/(mω) gives the

dimensionless eigenvalue equation

Eb�b =
[
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−1
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x2

i + c
∑
i<j

δ(xj − xi)

]
�b, (2)

where we have introduced the dimensionless interaction
strength c = −�/a. We consider here the repulsive case c > 0
(negative scattering length) to be specific. In the absence of a
harmonic potential, the corresponding eigenvalue equation is
solvable by the Bethe ansatz and, consequently, much is known
about the ground-state and elementary excitations of this
system [8], as well as the properties of the various correlation
functions at zero and finite temperatures [13]. However, for
the important case of harmonic confinement, an exact solution
to this problem for general values of the interaction strength
c is lacking. The sole exceptions are the two-particle case
that is separable in relative and central coordinates [14], and
the Tonks-Girardeau (TG) limit of infinite repulsion c → +∞
in which the exact N -particle wave functions are absolute
values of Slater determinants [15]. These results, especially
the latter, are prototypical examples of the fermion-boson
duality derived by Girardeau [16] and later generalized by
Cheon and Shigehara [17] for one-dimensional systems of
particles having contact interactions. For finite values of the
interaction parameter c, expressions for the atomic density
and collective oscillation frequencies have been calculated
using local-density approximations [9,11,18–20] and time-
dependent density functional theory [20,21], while formal
expressions for the self-consistent Hartree-Fock equations
for the single-particle density matrix have been obtained for
general trapping potentials [12]. The analogous problem of a
system of confined interacting fermions has also been treated
by similar methods [22].

In this work, we will use the mentioned fermion-boson
relationship to develop perturbative 1/c corrections to the
ground-state energy and chemical potential of a harmonically
confined interacting boson gas about the Tonks-Girardeau
solution. The details of the specific fermion-boson mapping
we employ here that utilizes a nonlocal pseudopotential [12]
are given in Sec. II. In Sec. III we present our perturbation
calculations for the general case of an N -particle system
obtaining a closed-form analytical result that is calculable
for any N . We analyze few-body cases and discuss the
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thermodynamic limit N → ∞ of our solution in Sec. IV. We
summarize our results and give concluding remarks in Sec. V.

II. FERMION-BOSON MAPPING

In one dimension it has been demonstrated that a bosonic
model with pairwise contact interactions of strength c can be
mapped into a fermionic model with pairwise interactions of
strength 1/c [17]. Specifically, given a fermionic wave function
�f that satisfies the eigenvalue equation

[
N∑

i=1

−1

2

∂2

∂x2
i

+ 1

2
x2

i + V̂ f

]
�f = Ef�f, (3)

an appropriate choice of a pseudopotential operator V̂ f allows
us to make the following correspondence between the bosonic
wave function �b and its fermionic counterpart �f :

�b = A�f(x1, . . . ,xN ), (4)

where A ≡ ∏
i<j sgn(xj − xi) is a function that is completely

antisymmetric under any transposition xi ↔ xj . Since the
complex squares of the wave functions �b and �f are identical,
the energy eigenvalues Eb and Ef are equal. For our specific
problem, a suitable fermionic pseudopotential operator has
matrix elements in the coordinate representation given by [12]

〈ϕf|V̂ f|φf〉 = −4

c

∑
i<j

∫
lim

rij →0

[
∂ϕf∗

∂rij

∂φf

∂rij

]
dRij , (5)

where rij = xj − xi and Rij = 1
2 (xj + xi) are relative and

central coordinates, respectively, and ϕf(x1, . . . ,xN ) and
φf(x1, . . . ,xN ) are the coordinate space wave functions corre-
sponding to the fermionic state kets |ϕf〉 and |φf〉, respectively.

In the infinite repulsion limit, the bosonic eigenvalue
equation (2) is solved by the absolute value of the ground-state
Slater determinant [15]:

�b
TG = 1√

N !
| det ψn(xm)| ≡ A�f

TG, (6)

where �f
TG is the fermionic ground-state wave function, {xm}

are the coordinates of the atoms, and {ψn} are the N low-
est energy single-particle harmonic oscillator eigenfunctions
ψn(x) = π−1/4(2nn!)−1/2Hn(x)e−x2/2. The Hn(x) appearing
here are the usual Hermite polynomials. The corresponding
energy of this TG ground state (in units of h̄ω) is

Eb
TG = 1

2N2. (7)

For a finite and large repulsion strength we may therefore
use the quantity 1/c 	 1 as a perturbation parameter for the
fermionic problem (3) so that ordinary first-order perturbation
theory gives the desired correction:

Eb
0 = Ef

0 = 1
2N2 + 〈

�f
TG

∣∣V̂ f
∣∣�f

TG

〉 + O(1/c2). (8)

III. GROUND-STATE ENERGY CORRECTION

In this section we work mainly in the fermionic sector and
omit the superscripts “f” for brevity. Here, our objective is to
explicitly evaluate the leading correction δE ≡ 〈�TG|V̂ |�TG〉
to the ground-state energy E0. Since �TG is a Slater deter-
minant and the fermionic interaction operator V̂ is a sum of
two-body operators v̂ having matrix elements

vklmn = −4

c

∫
lim
r→0

{
∂[ψk(x1)ψl(x2)]∗

∂r

∂[ψm(x1)ψn(x2)]

∂r

}
dR,

(9)

we may calculate the perturbation δE using the Slater-Condon
rule δE = ∑

k<l(vklkl − vkllk) [23]. Prior to calculating the
derivatives appearing inside the integral (9), we must be careful
to write the coordinates x1 = R + 1

2 r and x2 = R − 1
2 r in

terms of the relative and central coordinates r and R. The
symmetry of the integrand allows us to write and define
vklkl = −vkllk ≡ ṽkl , where

ṽkl = −4

c

∫
lim
r→0

{
∂[ψk(x1)ψl(x2)]

∂r

}2

dR. (10)

Thus, the leading correction becomes δE = 2
∑

k<l ṽkl and is
always negative, as expected. After some manipulation, we
obtain a finite series expression for the energy correction that
may be evaluated for any number N of atoms:

δE = 1

c

√
2

π3
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�
(
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2
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�(l + 1)
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(
k − 1

2

)
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× 3F2

[
3
2 , − k, − l

3
2 − k, 3

2 − l
; 1

]
. (11)

IV. FEW-PARTICLE RESULTS AND
THERMODYNAMIC LIMIT

The special case of N = 2 particles is separable in relative
and central coordinates and the resulting eigenvalue problem
for the ground-state energy is exactly solvable. Upon imposing
vanishing boundary conditions on the two-body wave function
at infinity, we find that the ground-state energy E0 of the
trapped two-boson system satisfies the transcendental equation

2�
[

1
2 (1 + E0)

]
tan

[
1
2 (1 − E0)π

]
�[E0/2]

= − c√
2
, (12)

where E0 ∈ [1,2]. Our perturbative result (11) gives δE =
−(2/c)

√
2/π and coincides with the leading correction term

in the 1/c series expansion of this exact solution about the TG
ground-state energy ETG = 2. Also, an essentially identical
result was obtained by Sen [24] for the reduced single-particle
problem using a different local pseudopotential involving the
second derivative of the delta function ∝ δ′′(x2 − x1).1 A

1As noted in Ref. [12], Sen’s potential and the pseudopotential
used here yield identical interaction matrix elements between states
described by continuous fermionic wave functions. Since our calcula-
tions involve continuous Slater determinants, the distinction between
pseudopotentials is not relevant here.
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FIG. 1. (Color online) The first-order perturbation result (dashed
line) for the ground-state energy of two delta interacting bosons in
a harmonic trap is compared to the exact solution (solid line). The
ground-state energy ETG in the infinite repulsion limit is given by the
horizontal dotted line.

comparison of our first-order perturbation result and the exact
two-particle ground-state energy is shown in Fig. 1 and we
observe good agreement between the two results in the strongly
interacting regime c  10.

Before discussing the situation for more than two particles,
let us restore units and rewrite the perturbed ground-state
energy as

E0(N ) = 1
2h̄ωN2[1 + 2α(N )/c] + O(1/c2), (13)

where α(N ) is a dimensionless function of N . For values of
N up to 103, the magnitude of the scaled first-order correction
−cδE(N )/N2 is plotted in Fig. 2(a) as a function of N on
a double-logarithmic plot. Inspection of this graph suggests
a simple power-law scaling for the first-order correction with
large N . Leading order asymptotic analysis reveals that the
partial sums in Eq. (11) scale as ∼N3/2 for large N so that
N2α(N ) ∼ N5/2:

E0(N ) ≈ 1
2h̄ωN2[1 + 2α0

√
N/c], N → ∞, (14)

where α0 is a constant number. Indeed, for as few as N >∼ 15
particles the factor α(N ) is quite well approximated (within
1%) by the function α0

√
N with α0 ≈ −0.408. In other words,

the correction factor α(N ) reaches its asymptotic scaling
behavior for systems as small as N  O(101).

To obtain a thermodynamic limit with an extensive ground-
state energy, we observe that, in addition to sending the
number of particles to infinity, we must also require the
trapping frequency ω to vanish as 1/N . As we shall see, this
condition allows us to reproduce the Thomas-Fermi results
near the Tonks-Girardeau limit. This scaling requirement
implies that the quantity �/

√
N approaches a constant in

the thermodynamic limit, in contrast to the thermodynamic
limit in the case of a Lieb-Liniger model gas confined in a
flat-bottomed box, in which the linear dimension of the system
is taken to scale proportionally with particle number [25].
Looking back at our asymptotic expression α(N ) ≈ α0

√
N ,

we find that the quantity
√

N/c approaches a constant value
as N → ∞ in our prescribed thermodynamic limit. This is
precisely the condition used by Ma and Yang [11] to obtain
the ground-state energy of the trapped interacting boson gas
in the Thomas-Fermi formalism, which we reproduce here in
Fig. 2(b). We find that our first-order 1/c result is reliable
for

√
N/c <∼ 0.1, which means that, for a typical experimental

setup with hundreds of atoms, first-order perturbation theory
and the Thomas-Fermi result coincide only in the extreme
repulsion limit c >∼ 102.

If we now define the Tonks-Girardeau limit chemical
potential as µTG ≡ limN→∞,ω→0 h̄ωN and the scaled inter-
action parameter as γ ≡ limN→∞,ω→0 c/

√
N , we obtain the

zero temperature chemical potential

µ ≈ µTG
[
1 + 5

2α0/γ
]
. (15)

The first term in this expression corresponds to the chemical
potential of free fermions in a one-dimensional harmonic trap
while the last term gives the reduction in the chemical potential
due to the finite repulsion correction and serves as a measure
of the departure of the system from the unitarity limit.
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FIG. 2. (Color online) (a) The scaled perturbation −cδE/N2 (dots) grows as a power law
√

N in the limit N → ∞. (b) Our large-N result
is consistent with numerical calculations (solid line) in the Thomas-Fermi approximation for

√
N/c 	 1. The dashed lines are regression

fits cδE ≈ −0.408N 5/2 calculated from values N ∈ [100,1000]. The prefactor −0.408 is independent of the particular values chosen in this
interval.
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V. CONCLUDING REMARKS

In this work we have calculated the first-order finite repul-
sion correction to the ground-state energy of harmonically
trapped bosons having contact interactions for any finite
number N of particles. For N  O(101) we found that, for a
fixed interaction strength, this correction scales as a power law
N5/2, which allowed us to describe a thermodynamic limit that
reproduces known results from Thomas-Fermi approaches.
This contribution clarifies the smooth transition of the ground-
state properties of a harmonically confined interacting boson
system as the particle number goes from finite N to infinity
near the Tonks-Girardeau limit. We have demonstrated that, in
this strongly interacting regime, to at least leading order in 1/c,
finite number effects are negligible in current experimental
situations that have ∼102 atoms.

A natural extension of this work would involve higher order
corrections to the ground-state energy and many-body wave
function, as was done recently for a wedge-shaped trapping

potential [26]. If we take the set of all fermionic Slater
determinants as an expansion basis for ordinary perturbation
theory about the TG limit, we discover that the perturbing
pseudopotential couples the ground state to an infinite number
of excited states. We therefore expect a complicated analytical
result for the second-order energy correction resulting in
a numerical problem that may require a truncation of the
corresponding Hilbert space. However, on the basis of the
agreement between our asymptotic results and the Thomas-
Fermi calculation [Fig. 2(b)], we conjecture that the second-
order correction scales as N3/c2 > 0 in the thermodynamic
limit.
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[26] D. Jukić, S. Galić, R. Pezer, and H. Buljan, Phys. Rev. A 82,

023606 (2010).

065603-4

http://dx.doi.org/10.1103/PhysRevLett.87.130402
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1007/s00340-005-2083-z
http://dx.doi.org/10.1103/PhysRevA.75.063604
http://dx.doi.org/10.1103/PhysRevA.75.063604
http://dx.doi.org/10.1103/PhysRevLett.100.090402
http://dx.doi.org/10.1103/PhysRevLett.100.090402
http://dx.doi.org/10.1088/0953-4075/43/15/155002
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/PhysRev.130.1616
http://dx.doi.org/10.1103/PhysRevLett.86.5413
http://dx.doi.org/10.1103/PhysRevLett.86.5413
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1088/0256-307X/26/12/120506
http://dx.doi.org/10.1088/0256-307X/27/2/020506
http://dx.doi.org/10.1103/PhysRevA.73.023612
http://dx.doi.org/10.1023/A:1018705520999
http://dx.doi.org/10.1103/PhysRevA.63.033601
http://dx.doi.org/10.1103/PhysRevA.63.033601
http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1103/PhysRevLett.82.2536
http://dx.doi.org/10.1103/PhysRevLett.85.1146
http://dx.doi.org/10.1103/PhysRevLett.85.1146
http://dx.doi.org/10.1103/PhysRevA.66.043610
http://dx.doi.org/10.1103/PhysRevA.67.015602
http://dx.doi.org/10.1088/0953-4075/37/7/073
http://dx.doi.org/10.1103/PhysRevLett.92.133202
http://dx.doi.org/10.1103/PhysRevLett.93.050402
http://dx.doi.org/10.1103/PhysRevLett.93.090405
http://dx.doi.org/10.1103/PhysRevA.70.032508
http://dx.doi.org/10.1103/PhysRevA.73.033609
http://dx.doi.org/10.1103/PhysRevA.73.033609
http://dx.doi.org/10.1088/0256-307X/27/8/080501
http://dx.doi.org/10.1088/0256-307X/27/8/080501
http://dx.doi.org/10.1103/PhysRev.34.1293
http://dx.doi.org/10.1103/PhysRev.36.1121
http://dx.doi.org/10.1103/PhysRev.36.1121
http://dx.doi.org/10.1142/S0217751X99000919
http://dx.doi.org/10.1088/0305-4470/38/36/001
http://dx.doi.org/10.1088/0305-4470/38/36/001
http://dx.doi.org/10.1103/PhysRevA.82.023606
http://dx.doi.org/10.1103/PhysRevA.82.023606

