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Demonstration of Deutsch’s algorithm on a stable linear optical quantum computer
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We report an experimental demonstration of quantum Deutsch’s algorithm using a linear-optical system.
By employing photon polarization and spatial modes, we implement all balanced and constant functions for a
quantum computer. The experimental system is very stable, and the experimental data are in excellent accordance
with the theoretical results.
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Quantum computation may solve some complex com-
putational problems and hit the security of the classical
cryptography. It has attracted much interest to investigate
quantum algorithms and to realize quantum hardware, which
are very important to quantum information processing and
quantum computation. The first quantum algorithm was
proposed by Deutsch in [1], then extended by Deutsch and
Josa in [2]. The realizations of quantum Deutsch’s algorithm
on quantum computers have been examined in many physical
systems, including ion traps [3], nuclear spins in magnetic
resonance [4], superconducting resonators [5], semiconductor
quantum dots [6], neutral atoms [7], and linear optics [8–10].
In linear optical systems, it is easy to deal with entanglement
and decoherence, and the incorporation of detection and
postselection make it possible to achieve all-optical quan-
tum computers [11], so linear optical systems are a good
candidate for implementing quantum algorithms [12,13]. The
system of single-photon few-qubit has been used to build
the deterministic quantum information processor (QIP), and
few-qubit QIPs have drawn much attention for application in
quantum optics and quantum computation [14–20]. Oliveira
et al. experimentally tested Deutsch’s algorithm using a
single-photon two-qubit (SPTQ) system in 2005 [9]. However,
the light source in their experiment was a bright coherent
light instead of a single photon, and they realized the four
relevant operations using a phase-sensitive Mach-Zehnder
interferometer, which needs additional phase stabilization. In
this Brief Report, we experimentally demonstrate Deutsch’s
algorithm using a more robust setup [20] at the single-photon
level. By employing photon polarization and spatial modes
as a SPTQ system, we implement all balanced and constant
functions for quantum computer. The experimental system
is very stable, and the experimental data are excellent in
accordance with the theoretical results. Furthermore, we also
introduce a phase variation in the input spatial qubit, which
helps us easily to study the differences of all input states for
the algorithm.

Deutsch’s algorithm combines quantum parallelism with
a property of quantum interference. Suppose we are given a
boolean function f (x), where x is either 0 or 1. What we want
to know is whether f (x) is a constant function or a balanced
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function, where constant function means f (x) = 0 or f (x) =
1 [or f (0) = f (1)] and balanced function means f (x) = x

or f (x) = inv(x) [or f (0) �= f (1)] and inv is the inversion
operation. The classic computer has to run the f (x) twice to
distinguish a balanced function from a constant function, while
a quantum computer does the job in just one go. Figure 1 is the
quantum circuit implementing Deutsch’s algorithm [21]. Uf

is the quantum operation which takes inputs |x,y〉 to |x,y ⊕
f (x)〉. A brief explanation is given subsequently. The initial
state is |�0〉 = |0〉|1〉. After the Hadamard transformation (H),
we get |�1〉 = (|0〉 + |1〉)(|0〉 − |1〉)/2. Applying Uf to |�1〉,
we obtain |�2〉 to be one of two possible states, depending on
f (x):

|�2〉 =
{±(|0〉 + |1〉)(|0〉 − |1〉)/2, f (0) = f (1),

±(|0〉 − |1〉)(|0〉 − |1〉)/2, f (0) �= f (1).
(1)

The final Hadamard gate is applied on the first qubit,

|�3〉 =
{

±|0〉(|0〉 − |1〉)/√2, f (0) = f (1),

±|1〉(|0〉 − |1〉)/√2, f (0) �= f (1),
(2)

so we can determine f (x) to be balanced or constant by only
measuring the first qubit once.

From the preceding description, to physically test the
algorithm, we need a device which can implement the Uf

operations for the four possible functions. All the possible
f (x) functions and Uf operations are summarized in Table I.
In the first case of Uf = I , it means that the second qubit
never changes, whether the first qubit is 0 or 1, so this can
be recognized as an identity operation to the two qubits.
The second case shows that Uf is a NOT gate. The second
qubit always flips, no matter what the first qubit is. In the
third case, Uf is a controlled-NOT (CNOT) gate. The second
qubit flips when the first qubit is 1. In the last case, Uf

is a zero–controlled-NOT (Z-CNOT) gate, where the second
qubit flips when the first qubit is 0. For these four different
Uf operations, identity operation and NOT operation are very
simple to be realized, and the Z-CNOT gate can be obtained
from a CNOT gate with some small changes. So the CNOT

gate is the fundamental and essential part to execute Deutsch’s
algorithm. In this context, we start with a CNOT gate realized by
employing polarization and spatial positions of photons [20],
construct the four different gates and Uf operations, and carry
out Deutsch’s algorithm.
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FIG. 1. Quantum circuit of Deutsch’s algorithm. H is the
Hadamard gate.

The CNOT gate is shown in Fig. 2. The dove prism (DP) is
inclined at a 45◦ angle relative to the horizontal plane [shown in
Fig. 2(a)], so the images which pass through it from left to right
will be rotated by 90◦. Suppose the polarized beam splitter
(PBS) here transmits horizontal-polarized (H ) photons and
reflects vertical-polarized (V ) ones. So the H photons travel
counterclockwise, while the V photons travel clockwise. With
a DP inclined at 45◦, the spatial mode of H (V ) photons is
oriented 90◦ (−90◦). Specifically, the left-right (l-r) section of
the input photons is rotated into the down-up (d-u) section of
the output beam for H photons but into the u-d section for V

photons [shown in Fig. 2(b)]. If we define photon polarization
as the control qubit (V → 0 and H → 1) and spatial mode as
the target qubit (l,u → 0 and r ,d → 1), the CNOT operation
can be described as follows:

|V 〉|l〉 → |V 〉|u〉, |V 〉|r〉 → |V 〉|d〉,
|H 〉|l〉 → |H 〉|d〉, |H 〉|r〉 → |H 〉|u〉. (3)

For the Z-CNOT gate, we should realize the following transition:

|V 〉|l〉 → |V 〉|d〉, |V 〉|r〉 → |V 〉|u〉,
|H 〉|l〉 → |H 〉|u〉, |H 〉|r〉 → |H 〉|d〉. (4)

Similar to the implementation of the CNOT gate, if we set DP
at −45◦, the spatial mode of H (V ) polarized photons will
be oriented −90◦ (90◦), and it will be a Z-CNOT gate. The
CNOT (Z-CNOT) gate is a polarization Sagnac interferometer
in our setup, and the two counterpropagating photons always
undergo the same amount of phase disturbance. So this optical
CNOT (Z-CNOT) gate has an inherent stability which requires
no active stabilization.

We experimentally realize Deutsch’s algorithm using the
CNOT gate mentioned earlier. The experimental setup is shown
in Fig. 3. Our source is a He-Ne laser (MELLES GRIOT,
05-LHP-171) with deep attenuation to about 150 000 photon
counts per second, which means that the mean distance
between two photons is about 2000 m (much bigger than
our experimental setup length of 0.5 m), and the two-photon
probability is 2.5 × 10−4. All the PBS are quasisymmetric and
transmit H photons while reflecting V photons. A polarizer
and half-wave plate (HWP1) are used to prepare photon
polarization states. Here we prepare the initial polarization

TABLE I. Four different cases of Deutsch’s algorithm.

Class Function Operation Uf

Constant f (x) = 0 |x,y〉 → |x,y ⊕ 0〉 I (identity)
Constant f (x) = 1 |x,y〉 → |x,y ⊕ 1〉 NOT

Balanced f (x) = x |x,y〉 → |x,y ⊕ x〉 CNOT

Balanced f (x) = inv(x) |x,y〉 → |x,y ⊕ (x ⊕ 1)〉 Z-CNOT
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FIG. 2. (Color online) (a) Optical implementation of CNOT gate
by employing polarization and spatial positions of photons. The dove
prism (DP) is inclined at 45◦. Red lines (heavy gray) show the left (l)
and right (r) spatial modes, and green lines (light gray) show the up
(u) and down (d) spatial modes. (b) Spatial positions of input and
output beams on the splitting plane AB of the polarized beam splitter
(PBS).

of photons as V . A 50% beam splitter (BS) and a mirror
(M) are used to prepare the photon spatial-mode states. The
piezo transmitter (PZT) on the first mirror is used to control
the relative phase ϕ between two spatial modes. HWP2 and
HWP3 at 22.5◦ are used as the polarization Hadamard gates.
The state after HWP2 can be written as

|ψ1〉 = (|V 〉 + |H 〉)(|l〉 + eiϕ |r〉)/2; (5)

in particular, when ϕ = π , |ψ1〉 is equal to |�1〉, which is
mentioned earlier. So this single-photon two-qubit state can be
used as the input state of Deutsch’s algorithm, as we described
in Fig. 1. Then this state will be evolved by the Uf operation.
The detection part consists of a Hadamard gate (HWP3), PBS2,
and two single-photon detectors (D1 and D2), which detect the
photon’s polarization state (the first qubit of the output state).
The key point to carry out Deutsch’s algorithm is how to realize
the four different cases of Uf operation. We will discuss these
four Uf operations subsequently.

In the constant-function case, Uf can be an identity or NOT

operation. For an identity operation, we can simply remove
PBS1 in our setup and set DP at −45◦. Therefore photons
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FIG. 3. (Color online) Experimental setup of Deutsch’s algo-
rithm. The source is a He-Ne laser (MELLES GRIOT, 05-LHP-171)
of wavelength 632.8 nm. We attenuate the coherent light into a
single-photon level by using some neutral attenuators denoted by
ATT. P denotes the polarizer for initial state preparation. Three
half-wave plates (HWP) and two polarized beam splitters (PBS) are
used in the setup. A PZT actuator is used to modulate the phase ϕ

between l and r paths. The dove plate (DP) is set at 45◦. Detectors (D1

and D2) are single-photon counting modules (SPCM-AQRH-14-FC).
All the mirrors are marked as M.

064302-2



BRIEF REPORTS PHYSICAL REVIEW A 82, 064302 (2010)

FIG. 4. (Color online) Experimental data of Deutsch’s algorithm. Black squares show the photon counts of D1, and red triangles show the
photon counts of D2. Fitting lines are also shown. By modulating the voltage of PZT from 0 to 34 V and every 1 V as a step, we record the
photon counts of D1 and D2 simultaneously. (a) Identity operation of Uf for constant function f (x) = 0. (b) NOT operation of Uf for constant
function f (x) = 1. (c) CNOT operation of Uf for balanced function f (x) = x. (d) Z-CNOT operation of Uf for balanced function f (x) = inv(x).
Green dashed vertical lines are used to mark the proper points (phases) of the initial states, which can be used to perfectly discriminate the two
kinds of functions.

in l or r will always undergo a counterclockwise route and be
output in u or d, respectively, without the effect of polarization.
This means that the target qubit (spatial mode of photons) will
not change with control qubit (polarization of photons). We
can deduce the process as follows:

|ψ1〉 I−→ |ψ2〉 = (|V 〉 + |H 〉)(|u〉 + eiϕ |d〉)/2,

HWP3−→ |ψ3〉 = |V 〉(|u〉 + eiϕ|d〉)/
√

2, (6)

whereas for the NOT operation, we can remove PBS1 in our
setup and set DP at 45◦. Then |l〉 is converted to |u〉 and |r〉 is
converted to |d〉. Applying a Hadamard gate (HWP3), we can
obtain

|ψ3〉 = |V 〉(|d〉 + eiϕ |u〉)/
√

2. (7)

For the preceding two cases, we can only detect the polariza-
tion qubits; the results are same without any changes when
we adjust the relating phase ϕ. So in our setup, when the
boolean function f (x) is a constant function, the detector D2

will be clicked, and no photons will arrive at D1. Figure 4(a)
shows our experimental results of Uf = I , and Fig. 4(b) shows
the results of Uf = NOT. Because there is no interference in
these processes, the counts of D1 and D2 do not change while
modulating the voltage of PZT.

In the balanced-function case, f (x) = x or f (x) = inv(x).
We need to place the PBS1 into the optical route, so the V

photons and H photons will travel through the DP in different

directions. As we have discussed, when we set the DP at 45◦
(−45◦), this will be the CNOT (Z-CNOT) gate for the input state
|ψ1〉 shown in Eq. (5). Using the corresponding relations of
Eq. (3), the theoretical analysis of Uf = CNOT is

|ψ1〉 CNOT−→ |ψ2〉 = (|V 〉|u〉 + eiϕ |V 〉|d〉 + |H 〉|d〉
+ eiϕ |H 〉|u〉)/2,

HWP3−→ |ψ3〉 = [(1 + eiϕ)|V 〉(|u〉+ |d〉)
+ (1 − eiϕ)|H 〉(|u〉 − |d〉)]/2

√
2. (8)

For the Z-CNOT operation, we set the DP at −45◦. The output
state is

|ψ3〉 = [(1 + eiϕ)|V 〉(|u〉 + |d〉)
− (1 − eiϕ)|H 〉(|u〉 − |d〉)]/2

√
2. (9)

For these two operations, we still detect the polarization qubits.
Then we can get two curves which show the photon counts of
two detectors changing with the relative phase between two
spatial modes. Figure 4(c) corresponds to the CNOT operation,
and Fig. 4(d) corresponds to the Z-CNOT operation. From
Eqs. (8) and (9), we know that the theoretical results are
sinusoidal functions, and our experimental data fit them well.

Our experimental results are shown in Fig. 4. In our
experiment, we make the relative phase ϕ adjustable by
using a PZT controller, so the output state |ψ3〉 contains
the phase parameter ϕ. When using a PBS for the projective
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detection, the detectors of D1 and D2 detect photons of different
polarization: H on D1 and V on D2. From Eqs. (8) and (9), we
can see that the photon counts of D1 and D2 will sinusoidally
vary with the ϕ being continuously changed. We set the phase
range for two periods (the voltage of PZT is adjusted from
0 to 34 V) and plot the counts-voltage curves. From the
description of Deutsch’s algorithm, the input state is a certain
state with a certain phase [Eq. (1)]. However, we can get this
state simply by setting the phase ϕ = (2N + 1)π (adjust the
PZT in proper voltages), where N is an integer. Then Eqs. (8)
and (9) are changed into |ψ3〉π = ±|H 〉(|u〉 − |d〉)/√2, where
+ is for the CNOT operation and − is for the Z-CNOT operation.
And if we also set ϕ = (2N + 1)π in Eqs. (6) and (7), we
get |ψ3〉π = ±|V 〉(|u〉 − |d〉)/√2, where + is for the NOT

operation and − is for the I operation. These results are the
same as those for |�3〉, described in Eq. (2). These proper
points for Deutsch’s algorithm are marked by green lines in
Fig. 4. From these points, we can claim that it is a constant
function when D1 clicks and a balanced function when D2

clicks. Our data also show that we can only probabilistically
discriminate the function if ϕ �= (2N + 1)π ; in particular,
when ϕ = 2Nπ , we cannot discriminate the two kinds of f (x)
at all.

Benefiting from the Sagnac interferometer, our experimen-
tal setup is very stable without any other additional feedback
control. This longtime stability makes it possible to change
the voltage 1 V as a step from 0 to 32 V. We can define η =
|(CD1 − CD2)/(CD1 + CD2)| as a contrast ratio to describe
the precision of our results, where CD1 and CD2 denote the
photon counts of D1 and D2, respectively. Theoretically,
the contrast ratio η is equal to 1. In our experiment, for
the constant functions, ηc = 99.96 ± 0.03% in Fig. 4(a) and
ηc = 99.96 ± 0.03% in Fig. 4(b); for the balanced functions,

the contrast ratio η equals the interference visibility; in
Fig. 4(c), ηb = 95.76 ± 0.07%; and in Fig. 4(c), ηb = 96.13 ±
0.07%. From Figs. 4(a) and 4(b), we can see that the photon
counts of D2 fall with increasing voltage. This phenomenon
is mainly caused by the coupling of multimode fibers used
in the detection part. We modulate the phase by changing
the angle of the first mirror (changing the voltage of PZT).
Although the change of the angle is very tiny, it will also affect
the coupling efficiency, becoming worse when photons pass
though the setup. Our experimental errors are mainly caused by
the imperfections of PBS and HWP, the interference visibility,
and the effect of DP [22,23]. However, these errors can be
reduced with improvement in the experimental technique.

In conclusion, we have experimentally realized Deutsch’s
algorithm using linear optical components. We can determine
a property of a function in one evaluation in the quantum case
instead of two in the classic case. When phase ϕ = (2N +
1)π , we need only a single photon as the input to judge the
function f (x): a constant function when the photon is in V

polarization and a balanced function when the photon is in
H polarization. For the other input states, ϕ �= (2N + 1)π , we
can only probably discriminate the function. We implement the
CNOT gate using a Sagnac interferometer in the SPTQ logic.
This experimental system is very stable, and the experimental
data are in excellent accordance with theoretical results. We
believe these can be used to perform more complex entangled
states or few-qubit quantum computation.
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