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Excitability in semiconductor microring lasers: Experimental and theoretical pulse characterization
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We characterize the operation of semiconductor microring lasers in an excitable regime. Our experiments
reveal a statistical distribution of the characteristics of noise-triggered optical pulses that is not observed in other
excitable systems. In particular, an inverse correlation exists between the pulse amplitude and duration. Numerical
simulations and an interpretation in an asymptotic phase space confirm and explain these experimentally observed
pulse characteristics.
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I. INTRODUCTION

Excitability, the ability of nonlinear systems to fire large,
well-defined output pulses when a threshold is crossed, has
been investigated in a broad range of scientific areas, including
physics, chemistry, biology, and neuroscience [1–7]. The
strong interdisciplinarity of excitable systems has attracted
the attention of theoreticians interested in their universal
properties. These theoretical studies disclosed that excitability
takes place when a separatrix is crossed in the phase space
of the system, which led to a comprehensive classification of
excitable systems based on bifurcations taking place in their
phase space [3,6]. Considerable theoretical insight was further
gained into the role played by networks of excitable units in
neuroscience [8]. Moreover, the investigation of excitable units
is of high practical relevance as networks of spiking neurons
have proved to be computationally superior to other neural
networks [4].

In the field of photonics, excitability is widely studied both
theoretically and experimentally [9–17], and a broad search
was started for optical excitable units that could be deployed
in optical neural networks. In the last decade, lasers with
saturable absorber [9,10], optically injected lasers [11,16],
lasers with optical feedback [15], and vertical-cavity surface-
emitting lasers with optoelectronic feedback [17] have all been
proposed as optical excitable units.

Most often, excitable behavior in optical systems has been
shown to occur close to a fold bifurcation and a homoclinic
bifurcation of a stable limit cycle [9–12,16]. In these systems,
the response to noise is governed by the presence of an
accessible saddle point S embedded in the separatrix. Pulses
are activated by noise-induced fluctuations that connect the
resting state to S, and the large deterministic excursion takes
place along the unstable manifold of S. In this scenario,
excitability is therefore possible in the limit of vanishing noise
intensity.

In a recent paper [18], we proposed that excitability can
take place in systems with weakly broken Z2 symmetry, which
includes optical units such as semiconductor microring lasers
[19,20] and microdisk lasers [21]. It can be shown that in this
class of systems the accessible saddle is not embedded in the
separatrix for excitability. Therefore, the unstable manifold of
S does not participate in excitability, and the generation of
pulses cannot be initiated in the vanishing noise limit. Clear
evidence of such excitability was shown in semiconductor

ring lasers with weakly broken Z2 symmetry in the presence
of a nonvanishing, finite intensity of spontaneous emission
noise [18].

In this paper, we address the fact that microring lasers
(MRLs) in the excitable regime show a notable degree of
variation in the amplitude and width of the excited pulses.
We characterize, both theoretically and experimentally, the
particular pulse properties when the triggering occurs through
optical noise in the system. The main result is that a clear
inverse correlation is observed between the amplitude and
width of the excited pulses. In Sec. II, we experimentally
investigate the excitable behavior of a MRL in the time domain.
A characterization of the stochastic properties of excitability
is carried out to reveal an interspike-interval (ISI) distribution
that is exponential for large waiting times but diverges from
the Kramers form for intervals below approximately 50 ns. In
Secs. III and IV, we use a general rate-equation model and an
asymptotic model for excitability in MRLs as introduced in
Refs. [18,22] to explain the experimentally observed features.
Finally, in Sec. V, we discuss the main results presented and
their generality.

II. EXPERIMENTS

A. Device and setup

The experiments have been performed on an InP-based
multi-quantum-well MRL with a racetrack geometry [see
Fig. 1(a)]. The optical power is coupled out of the ring cavity
by directional coupling to bus waveguides that are integrated
on the same optical chip. The use of two bus waveguides in
the microring design allows for four independent input-output
ports A–D that can be accessed with optical fibers. The device
is mounted on a copper mount and is thermally controlled by
a Peltier element that is stabilized with an accuracy of 0.01◦C.

The MRL chip is deployed in a setup as shown in Fig. 1.
In our experiments only port A is used for collecting output
power from the MRL as well as injecting optical noise in
the microring cavity. We use a directly biased semiconductor
optical amplifier [SOA in Fig. 1(b)] operating in the C band
to generate a controllable amount of noise through amplified
spontaneous emission, which is injected in the ring through a
lensed optical fiber coupled to port A of the MRL. The use of
a circulator [C in Fig. 1(b)] allows us to read output from port
A with the same lensed fiber.
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FIG. 1. Experimental MRL setup. (a) The actual MRL device
with its contacting. The ring itself is pumped with a current Ip . Four
waveguide contacts are depicted, of which only port A is biased with
Iw . (b) The overall setup where the readout and the SOA are separated
from each other by a circulator C.

Electrical contacts have been applied to the bus waveguides
that can be independently pumped. They allow us to amplify
on the chip the signal emitted by the ring. More interestingly,
the presence of a contact allows us to continuously break the
symmetry of the device in a controlled way by making both
the strength and the phase of the linear coupling between
the clockwise (CW) and the counterclockwise (CCW) modes
asymmetric. Using the fiber’s facet as a mirror, we are able
to reflect power from one mode (e.g., CCW) back into the
waveguide and finally to the counterpropagating mode in
the ring. The application of a direct bias current Iw on the
waveguide’s electrode has two main effects. First, it controls
the power that is coupled to the CW mode; second, it affects the
optical length of the waveguide via carrier-induced refractive
index changes. Therefore, the phase of the reflected signal
can be controlled by tuning the bias current on the waveguide
and changing the position of the fiber facet which is piezo-
controlled. We have previously demonstrated in Refs. [18,22]
that such a breaking of the Z2 symmetry of the microring
leads to excitable behavior when the optical noise intensity is
large enough to make one of the states metastable. We analyze
the output power of the CCW mode (port A) using a fast
photodiode (with a bandwidth of 2.4 GHz) connected to an
oscilloscope (with a maximum sampling rate of 20 Gs s−1).

B. Excitability

In the temperature range of operation, the transparency cur-
rent density of our semiconductor material is ∼1.0 kA cm−2,
which leads to a transparency current of ∼24 mA for the
MRL and ∼4 mA for the waveguide. The MRL device
reaches threshold at 35 mA, and excitability is observed
between 42 and 48 mA. A typical time series revealing the
excitable behavior of the microring is shown in Fig. 2(a). The
device operates most of the time in the CW unidirectional
mode. However, pulses in the CCW direction can be regularly
observed. An example of an excited pulse with a pulse duration
of ∼7 ns is shown in Fig. 2(b).

0.01

0.02

0.03

0.01

0.02

0.03

0.01

0.02

0.03

0.04

0.05

 time (ms)

 p
ow

er
 (

ar
b.

un
its

)

 0  5  10  20

 0  40 80
 time (ns)

 p
ow

er
 (

ar
b.

un
its

)

 40  800

 time (ns)

 p
ow

er
 (

ar
b.

un
its

)(b) (c)

(a)

 CW

(a)

 15
 0

FIG. 2. (a) Experimental time series of port A demonstrating the
excitable behavior of the MRL operating at Ip = 47.45 mA. The
current on the waveguide of port A is Iw = 13 mA, and the current
in the external SOA is ISOA = 700 mA. Examples of (b) a single and
(c) a double excited pulse taken from the same time series.

In contrast to what is expected for a typical excitable system,
not all excited pulses have the same amplitude and duration;
see, e.g., Fig. 2(a). We clearly observe a degree of variation
in the amplitude of the pulses (which is not a consequence
of undersampling since it persists for higher sampling rates).
In the same way, a distribution of pulse durations is observed
in the experimental time series, and the pulse durations seem
to be spread between a minimum of 7 ns and a maximum of
20 ns. Such a spread is significantly larger than the sampling
time.

C. Interspike-interval distribution

In order to quantitatively describe the ISI, we have
constructed the ISI distribution from the experimental time
series. A threshold is put at 60% of the maximum pulse height
recorded in the time series. Only pulses above this threshold
are taken into account in the calculation of the ISI distribution.
We have verified that calculating the ISI distribution for other
values of the threshold gives the same qualitative results as long
as it is not chosen too low as one will then start to measure
noisy excursions instead of actual excited pulses. An example
of such an ISI distribution is shown in Fig. 3(a) for the MRL
operating at a current of 47.45 mA. The tail of the distribution
is well fitted by a typical Kramers exponential distribution
P (τ ) ∝ exp[−τ/T1], which indicates that the excited pulses
are activated by noise-induced crossing of a potential barrier.
The time constant T1 obtained from the fitting of Fig. 3(a) is
T1 = 0.63 µs.

A significant deviation from the Kramers law is, however,
observed for ISIs shorter than 50 ns, as shown in Fig. 3(b).
The distribution of such “short” ISI is strongly peaked
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FIG. 3. ISI distribution for pulses emitted by the symmetry-
broken MRL for device parameters as given in Fig. 2. The logarithm of
the number of events N in each ISI bin is shown. (a) The distribution
of long ISIs is well fitted by an exponential curve (see gray solid line).
The gradient 1/T1 = 1.6 µs−1 indicates a characteristic time scale of
∼0.63 µs. (b) The distribution of short ISIs reveals a different time
constant T2 ∼ 18.4 ns. The inset in (a) shows the dependence of the
long ISI time scale T1 (with error bars given by the standard deviation
from the mean value T1) on the current on the external SOA (ISOA),
which is used as noise source.

around approximately 20 ns and decreases abruptly with a
characteristic time T2 = 18.4 ns. A similar deviation from
the Kramers law was previously reported in the residence-time
distribution of MRLs [23] and in other optical excitable
systems, such as lasers with optical feedback close to
the low-frequency fluctuations regime [24,25].

In order to confirm and quantify the noise-activated origin
of excitability, we have investigated the dependence of
the average interspike-interval T1 as function of the bias current
on the ring Ip and the external noise. The external noise source
is the external semiconductor optical amplifier [see Fig. 1(b)],
and it is biased at different DC currents. We assume a linear
relationship between the SOA current and the noise intensity
coupled into the MRL. In the inset of Fig. 3(a) the dependence
of T1 versus the SOA current is shown. The linear relation
between ln(T1) and the inverse of the SOA current is consistent
with a Kramers rate across a potential barrier [26].

We have also verified that T1 increases with the bias current
Ip on the ring, which is consistent with the theoretical result
that the activation energy of the MRL increases with the bias
current [27].

In contrast, we have checked that the short ISI has a
much smaller dependence on the noise strength and remains
approximately constant when changing the ISOA and Ip. The
origin of the non-Arrhenius distribution for these short ISIs
is instead related to deterministic dynamics. This will be
discussed in more detail in Secs. III and IV.

D. Amplitude-width distribution

In order to further characterize the properties of the excited
pulses, we build the distribution of the pulse duration, defined
as the full width at half maximum (FWHM) and the distribution
of pulse amplitudes. Typical examples of the amplitude and
width distributions are shown in Fig. 4.

A distribution of pulse amplitudes is evident in Fig. 4(a),
which is consistent with the pulse amplitude modulation
present in Fig. 2. Such a distribution of amplitudes was not
observed in other optical excitable systems (see, for instance,
[9,14,28]) and is not consistent with a standard excitability
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FIG. 4. Distribution of (a) the pulse amplitude and (b) the pulse
width for Ip = 47.45 mA, ISOA = 700 mA, and Iw = 13.0 mA. The
number of events N in each bin is plotted. The gray solid line shows
the corresponding Gaussian distribution as predicted by the theory
presented in Sec. IV.

scenario where the system performs a large phase-space
excursion following the unstable manifold of a saddle structure
[6,7] for which a much sharper distribution is expected. The
width of the excited pulses is distributed asymmetrically
around an average value of 18 ns and reveals a nonzero
probability for pulses as long as 40 ns.

In order to shed light on the dynamical origin of such
distributions, we have measured the correlation between pulse
amplitude and width for different values of the bias current
on the ring. We minimize the noise contributions to the
pulse amplitude by performing this measurement without the
external SOA. The results are shown in Fig. 5 and are quantified
using a correlation coefficient C:

C =
∑

(wi − w̄)(hi − h̄)

Ntotσhσw

, (1)

σh =
√∑

(hi − h̄)2

Ntot
; σw =

√∑
(wi − w̄)2

Ntot
. (2)

For all used bias currents there is a clear correlation between
the width and amplitude of the pulses. The experiments reveal
that pulses with a higher peak power are narrower, whereas
pulses with a lower peak power are wider. For ISOA = 0 mA
and Iw = 13.0 mA, we have measured a correlation C of about
0.7. The slope of the linear fit between the amplitude and width
becomes steeper as the bias current on the ring Ip increases
(see the gray solid line in Fig. 5). We note that the correlation
shown in Fig. 5 has been obtained by defining the pulse width
by its FWHM; we have verified that other ways to quantify the
pulse duration (not shown) lead to consistent results.
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FIG. 5. Measured width and amplitude of the excited pulses for
two different values of the bias current Ip on the ring. ISOA = 0 mA
and Iw = 13.0 mA. (a) Ip = 42.82 mA and (b) Ip = 44.49 mA. A
linear fit of the data points is shown by the gray solid line. The
correlation coefficient C is approximately 0.7 in both cases.
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To understand the origin of this amplitude-width correlation
of the excited pulses, we will numerically analyze the pulse
properties in Sec. IV. To allow for a clear presentation
of the results, in Sec. III, we briefly review our approach
toward modeling the time evolution of a single-longitudinal,
single-transverse mode in a microring cavity using a general
rate-equation model for MRLs and an asymptotically reduced
model. In particular, we explain the excitability scenario for
MRLs in the asymptotic phase space. For more information
on the rate-equation model, we refer to Refs. [22,29,30].

III. MODELING AND ORIGIN OF EXCITABILITY
IN SEMICONDUCTOR RING LASERS

In order to model the MRL operating in single-longitudinal
and single-transverse mode, we use a rate-equation model for
the the evolution of the slowly varying amplitudes of the
counterpropagating modes Ecw,ccw and the carrier inversion
N [22]:

dEcw

dt
= κ(1 + iα) [gcwN − 1] Ecw

− (k − �k/2)ei(φk−�φk/2)Eccw + ξcw, (3)

dEccw

dt
= κ(1 + iα)[gccwN − 1]Eccw

− (k + �k/2)ei(φk+�φk/2)Ecw + ξccw, (4)

dN

dt
= γ [µ − N − gcwN |Ecw|2 − gccwN |Eccw|2], (5)

where gcw = 1 − s|Ecw|2 − c|Eccw|2, gccw = 1 − s|Eccw|2 −
c|Ecw|2 is a differential gain function that includes phe-
nomenological self (s) and cross (c) saturation terms. κ is
the field decay rate, γ is the inversion decay rate, α is the
linewidth enhancement factor of the semiconductor material,
and µ is the renormalized injection current with µ ≈ 0 at
transparency and µ ≈ 1 at lasing threshold. For a device such
as the one discussed in Sec. II, µ = 0 corresponds to 25 mA,
and µ = 1 corresponds to 35 mA, yielding the approximate
relation Ip ≈ (10µ + 25) mA.

Asymmetric linear coupling terms are present in Eqs. (3)
and (4) between Ecw and Eccw, which model a backscatter-
ing of power from one mode to the other. Such intrinsic
backscattering originates from reflections at the directional
coupler or at the chip facets and is, in general, asymmetric
due to unavoidable imperfections introduced during device
fabrication. Moreover, asymmetries in backscattering intro-
duced externally in our setup (see Fig. 1), such as reflections
at the fiber tip at one side of the chip, are also lumped into
these coupling terms. The parameters k and φk represent the
average coupling amplitude and phase, respectively, and the
coupling asymmetry is described by the symmetry-breaking
terms �k and �φk . Unless mentioned otherwise, throughout
this manuscript we will use the parameters shown in Table I.

Noise terms are introduced in Eqs. (3)–(5) as complex,
Gaussian, zero-mean stochastic terms ξcw,ccw described by
the correlation terms 〈ξi(t + τ )ξ ∗

j (t)〉 = 2DNδij δ(τ ), where
i,j ={cw, ccw} and D is the noise intensity [31].

All simulations are performed in this rate-equation model
(3)–(5). However, we will interpret our results in a two-
dimensional phase space corresponding to a reduced MRL

TABLE I. Summary of the physical meaning of the parameters
in the rate equations (3)–(5) and their typical values used throughout
this article, unless stated otherwise.

Symbol Physical meaning Simulation value

κ Field decay rate 100 ns−1

γ Carrier inversion decay rate 0.2 ns−1

α Linewidth enhancement factor 3.5
µ Renormalized bias current 1.65
s Self-saturation coefficient 0.005
c Cross-saturation coefficient 0.01
k Coupling amplitude 0.44 ns−1

�k Coupling amplitude asymmetry 0.044 ns−1

φk Coupling phase 1.5
�φk Coupling phase asymmetry 0

model that has been proven to be a powerful tool for modeling
the slow time dynamics in MRLs [18,22,23,32]. This two-
dimensional model is valid on time scales slower than those
of the relaxation oscillations. The variables θ ∈ [−π/2,π/2]
and ψ ∈ [0,2π ] are defined by

θ ≡ 2 arctan

( |Ecw|
|Eccw|

)
− π

2
, (6a)

ψ ≡ 
 Eccw − 
 Ecw, (6b)

where θ is a measure for the power partitioning between
the counterpropagating modes and ψ is the phase difference
between the corresponding electric fields.

To describe the excitability scenario in MRLs, we consider
a ring laser operating unidirectionally, whose symmetry has
been slightly broken. The corresponding phase space is shown
in Fig. 6.

Two counterpropagating unidirectional stable attractors are
present in the MRL, the CW and the CCW modes, and are
depicted here in the two-dimensional (θ,ψ) phase space. The
white and gray regions in Fig. 6 indicate the basins of attraction
of the CW and the CCW modes. They are separated by the
stable manifolds of a saddle state indicated by S.

The presence of an asymmetry parameter manifests itself
in the different stability of the modes, leading to different
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FIG. 6. The phase-space topology of an asymmetric MRL. CW,
CCW, and S are two quasiunidirectional states and a saddle state
whose stable and unstable manifolds are displayed, respectively. The
basin of attraction of the CW (CCW) quasiunidirectional state is
white (gray). Parameters are as in Table I.
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sizes of their basins of attraction. In particular, the distance
between two branches of the stable manifold of S is affected
by the symmetry breaking and can be made arbitrarily small
by controlling the parameters of the system [22]. When
noise is present in the system, a diffusion length scale LD

appears, which depends on the noise intensity D. The onset of
excitability in MRLs is regulated by the interplay between LD

and the distance between the folds of the stable manifold of S.
Assume that the MRL is operating in a regime such that LD

is small compared to the size of the basin of attraction of CW
and large compared to the distance between the branches of the
stable manifold of S. The MRL will spend most of the time
in the vicinity of the CW stable state; however, a rare large
fluctuation may move the system to the boundary of the basin
of attraction of CW. When this happens, the system will cross
this boundary with an overwhelming probability by crossing
both branches of the stable manifold of S and thereafter will
perform a large deterministic excursion leading to the emission
of a CCW pulse.

This excitability scenario is different from the one most
frequently encountered in optics, where pulses are initiated
stochastically by crossing only one branch of the stable
manifold of a saddle and completed largely deterministically
by following a branch of the unstable manifold of the same
saddle back to the initial quiescent state [9–11,14,16]. Even
in the rare situations where the system was shown to be
both bistable and excitable at the same time, the excitable
excursions were still completed by following the unstable
manifold of the saddle point [33]. In MRLs, however, this
scenario is forbidden by the residual Z2 symmetry and the
unstable manifold of S, which connects with the metastable
CW state [18].

This specific mechanism of excitability is general for all
systems with weakly broken Z2 symmetry and occurs near a
homoclinic bifurcation that unfolds from a Takens-Bogdanov
point. In that homoclinic bifurcation an unstable cycle is
created, which later disappears in a fold of cycles [22].
Such a sequence of bifurcations leads to the folded shape
of the stable manifold of the saddle (see Fig. 6), which is
necessary for the system to be excitable. The unfolding of the
different bifurcations from a Takens-Bogdanov point has been
characterized in depth, both in systems with Z2 symmetry
[34,35] and in systems where this symmetry is broken [36].
As an example of other systems that share the same symmetry
as the MRL and that can therefore exhibit similar excitable
behavior when weakly breaking this symmetry, we mention,
e.g., CO2 lasers [37] and oscillatory convection in binary fluid
mixtures [38]. Perhaps the most obvious example with the
same circular symmetry as MRLs is semiconductor microdisk
lasers [21]. In semiconductor microdisk lasers where the two
lasing modes are the whispering gallery modes, the appropriate
rate-equation model is identical to the one studied in this work.

IV. STOCHASTIC ANALYSIS AND COMPARISON
TO THE EXPERIMENTS

In this section, we use direct numerical integration of
Eqs. (3)–(5) using a stochastic Euler-Heun method to char-
acterize the specific features of excited pulses in MRLs. More
specifically, numerical time series are collected, and statistics

of the ISI, the pulse amplitude, and the pulse width are built.
A projection of the time series on the reduced phase space
(θ,ψ) is then performed in order to validate the topological
arguments of Sec. III, explaining the spread in amplitude of
the pulses and the associated correlated spread in their width,
as also observed experimentally (see Figs. 4 and 5).

A. Pulse amplitude and width

Figure 7 shows the distribution of the phase-space trajecto-
ries corresponding to excited pulses. In order to avoid sampling
of double pulses, the system is reinitialized to the original
CW mode when the tail of the pulse satisfies the condition
θ > 0. Rare excursions that reside longer than 20 ns around
the metastable CCW state are discarded. Figures 7(a) and 7(c)
show histograms of the collected trajectories projected on the
asymptotically reduced two-dimensional phase space (θ,ψ)
for two different values of the noise strength D. The solid
(dashed) white lines indicate the stable (unstable) manifolds
of the saddle S.

It is clear from Figs. 7(a) and 7(c) that noise-activated
trajectories cross the excitability threshold at a finite distance
from the saddle S. Such saddle avoidance is expected in
stochastic systems where LD is not the shortest length scale
[39], and it is therefore compatible with the mechanism
described in Sec. III.

After crossing the stable manifolds of S, the trajectories
spread in the phase space due to diffusion. A distribution of
pulse amplitudes and pulse widths as experimentally observed
in Figs. 2 and 4 can therefore be expected in MRLs as the
deterministic evolution of the pulse does not take place along
a unique trajectory. In the reduced phase space, pulses are a
one-parameter family of trajectories that can be parameterized
by their initial conditions (θin,ψin) (see Fig. 6). By fixing
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FIG. 7. (Color online) Results of simulations of Eqs. (3)–(5). In
(a) and (b) D = 1.5 × 10−4 ns−1, tobs = 100 ms, and in (c) and (d)
D = 2.5 × 10−4 ns−1, tobs = 10 ms, where D is the noise strength and
tobs is the observation time. (a) and (c) Histogram of the trajectories
in asymptotically reduced two-dimensional phase space. The solid
(dashed) white lines indicate the stable (unstable) manifolds of the
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line indicates the prediction from the deterministic reduced model.
Parameters are as in Table I.
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θin = 0 and ψin beyond the excitability separatrix, a sampling
of excited pulses is achieved. The width of each pulse can be
quantified by the required time to return to the θ > 0 condition;
in the same way, the extreme value θmax can be used to quantify
the pulse amplitude.

The correlation between amplitude and width can now be
understood due to the different velocity fields at different
positions in the reduced phase space. Higher (larger |θ |) pulses
move faster in phase space and are thus narrower, while lower
pulses are slower and consequently also wider. The correlation
curves extracted in such a way are plotted in Figs. 7(b) and 7(d)
(see the solid white line). The observed increase in pulse width
with the decrease in pulse amplitude confirms the experimental
trend reported in Sec. II D (see Fig. 5). A projection of the
pulses, obtained by numerically solving the stochastic full-rate
equation model, in the amplitude-width space [see point cloud
in Figs. 7(b) and 7(d)] provides an extra confirmation of this
deterministic prediction.

We observe that the theoretical amplitude-width curve is
not evenly sampled by the numerical pulses and that the
numerical data cluster around a middle value. For this reason,
we argue that the full profile of the amplitude-width curve
cannot be observed experimentally in our devices. The position
of the point cloud in the amplitude-width space is slightly
affected by noise. The correlation relation holds for the two
different noise strengths, although it is clear that for lower
noise strengths [Fig. 7(b)] the pulses tend to be less high in
amplitude and thus wider than in the case of higher noise
strengths [Fig. 7(d)]. The fact that the point cloud in Figs. 7(b)
and 7(d)) opens up for decreasing pulse amplitudes is related
to the nature of these pulses. These relatively long pulses tend
to wander around the metastable CW state or the saddle point.
Near the saddle point the deterministic trajectory greatly slows
down. Hence, in this case, the transit times of the pulses
are mainly determined by the noise, giving rise to a larger
spread.

A more tangible picture is given by considering the
width distribution and the amplitude distribution separately,
instead of their mutual projection on the two-dimensional
(θ,ψ) phase plane. These histograms are shown in Fig. 8.
The pulse amplitude distribution can be properly fitted by
a Gaussian distribution A exp[−(θmax − B)2/C2], indicating
that the amplitude of the pulse is mainly determined by
the magnitude of the perturbation and less by the topology
of the flow. The average pulse amplitude also increases
with increasing noise intensity, initiating excursions farther
away from the stable saddle manifold. In contrast, the pulse
width distribution is asymmetric. Some of the pulses tend
to erratically wander around the CCW state or the saddle,
giving rise to the tail in the pulse width distribution. The
average pulse width decreases with increasing noise intensity,
indicating that the flow near the stable manifold is slower.
This also confirms the pulse amplitude-width trade-off trend
of Fig. 7. Similar experimental histograms have been shown in
Fig. 4. Figure 4(a) shows that the spread in pulse amplitudes is
consistent with a Gaussian distribution, while the spread in the
width of the pulses in Fig. 4(b) is distributed asymmetrically.

Finally, in Fig. 9 we show typical pulse shapes as the pulse
width varies. Figures 9(a)–9(e) show a random collection
of pulses with widths in the following intervals: 5–6, 8–9,
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FIG. 8. (Color online) Results of simulations of Eqs. (3)–(5). The
histogram of events N/Ntot is shown (a) and (c) as a function of the
pulse amplitudes and (b) and (d) as a function of the pulse widths. D =
1.5 × 10−4 ns−1 for (a) and (b), and D = 2.5 × 10−4 ns−1 for (c) and
(d). The histogram of the pulse amplitudes can be fitted by a Gaussian
distribution: A exp{−[(x − B)/C]2}. In (a), Ntot = 15 052 events,
A = 0.0575,B = 0.9762,C = 0.1237. In (c), Ntot = 23 748 events,
A = 0.0503,B = 1.019,C = 0.1508. The vertical gray lines show
the maxima of the histograms: A width of ≈9.20 ns is found in
(b), and a width of ≈7.99 ns is found in (d). Parameters are as in
Table. I.

11–12, 14–15, and 17–18 ns, respectively. The corresponding
trajectories in the (θ,ψ) phase space are shown in gray. The
faster, narrower pulses start out at a relatively large distance
from the stable manifold and remain distant from it during
the whole pulse trajectory. This is clearly visible in the pulses
in Figs. 9(a) and 9(b). Conversely, pulses that start out closer
to the stable manifold slow down and are less high. For this
type of excursion, if the pulse trajectory comes too close to
the stable manifold, it can get tangled up in the metastable
CCW state or slowed down near the saddle, explaining the
formation of possible plateaus in the pulse. In the case where
one gets trapped in the CCW state, the pulse would show a
plateau at the pulse maximum, while if the pulse slows down
near the saddle, it would exhibit a plateau at the trailing edge
of the pulse. In Fig. 9(d), many of the pulses come very close
to the saddle point, resulting in an even more pronounced
slowdown, especially at the trailing edge of the pulse. Several
rare pulse events where the system briefly gets stuck in the
CCW state are depicted in Fig. 9(e). Also, pulses that do not get
close to the CCW state or the saddle point are characterized by
an asymmetric pulse shape. Such asymmetry due to a slowing
down of the pulse at the trailing edge (higher values of ψ) is
best visible in Figs. 9(b) and 9(c).

B. Interspike-interval diagram

We have also determined the ISI distribution by simulating
Eqs. (3)–(5) during a time tobs = 10 ms. The distribution of
the ISI between all excited pulses is shown in Fig. 10. We
have plotted the logarithm of the normalized number of events
ln(N/Ntot) as a function of the interspike interval, where N

063841-6



EXCITABILITY IN SEMICONDUCTOR MICRORING . . . PHYSICAL REVIEW A 82, 063841 (2010)

 0.35

 0.4

 0.45

 0.5

 0.55

 In
te

ns
ity

 2.4
 2.6
 2.8
 3

 3.2
 3.4
 3.6
 3.8

-1.2 -1 -0.8 -0.6 -0.4 -0.2  0

 ψ

 θ

-1.2 -1 -0.8 -0.6 -0.4 -0.2  0
 θ

-1.2 -1 -0.8 -0.6 -0.4 -0.2  0
 θ

 0.35

 0.4

 0.45

 0.5

 0.55

 2.4
 2.6
 2.8
 3

 3.2
 3.4
 3.6
 3.8

-1.2 -1 -0.8 -0.6 -0.4 -0.2  0

-1.2 -1 -0.8 -0.6 -0.4 -0.2  0

 In
te

ns
ity

 Time (ns)
 θ

 ψ

 Time (ns)  θ

 (d)

 (e)

 Time (ns)

 (a)

 Time (ns)

 (b)

 Time (ns)

 (c)

 0.35

 0.4

 0.45

 0.5

 0.55

 In
te

ns
ity

 0.35

 0.4

 0.45

 0.5

 0.55

 In
te

ns
ity

 2.4
 2.6
 2.8
 3

 3.2
 3.4
 3.6
 3.8

 ψ

 2.4
 2.6
 2.8
 3

 3.2
 3.4
 3.6
 3.8

 ψ

 0.35

 0.4

 0.45

 0.5

 0.55

 In
te

ns
ity

 2.4
 2.6
 2.8

 3.2
 3.4
 3.6
 3.8

 ψ
 3

FIG. 9. Simulation of Eqs. (3)–(5). Typical pulse shapes corre-
sponding to different pulse widths are shown. (left) Single pulses are
collected from the time traces, and (right) the corresponding trajectory
in the (θ,ψ) phase space is shown in gray. Stable (solid lines) and
unstable (dashed lines) manifolds are in black. From (a) to (e), pulses
are shown with widths in the following intervals: 5–6, 8–9, 11–12,
14–15, and 17–18 ns. D = 2.5 × 10−4 ns−1, and the other parameters
are as in Table. I.

is the total amount of events in each bin and Ntot is the total
amount of excited pulses.

In Fig. 10(a), we have set µ = 1.65 and D = 2.5 ×
10−4 ns−1, corresponding to the parameter set used in
Figs. 7–9. The bin size has been chosen to be 1 ns. It becomes
evident from Fig. 10(a) that the total ISI distribution is the
combination of two different time scales. The short ISIs and
long ISIs are distributed in a different way and together
represent a strong Kramers type of behavior.

The slow time scale can be fitted by an exponential
curve [∝ exp (−t/T1)], where the average ISI (T1) is the
fitting parameter. This slow time scale T1 is typically of
the order of µs and corresponds to the generation of the
pulses in a Kramers-type noise-activation process across the
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FIG. 10. Simulation of Eqs. (3)–(5) for 10 ms, showing the
interspike-interval diagram. ln(N/Ntot) is plotted as a function of the
interspike interval. In (a) µ = 1.65, D = 2.5 × 10−4 ns−1, and the bin
size is chosen to be 1 ns. In (b)–(d), a zoom of the peak at shorter ISI
is shown with a bin size of 0.05 ns. (b) and (c) show the variation of
the ISI with µ for D = 2.5 × 10−4 ns−1 and D = 1.5 × 10−4 ns−1,
respectively. (d) demonstrates the change in ISI for asymmetric noise
contributions to the CW (Dcw = D) and the CCW (Dccw) modes for
µ = 1.65. The other parameters are as in Table. I.

excitability threshold [26]. The short ISI times, however, are
a signature of multiple consecutive excited pulses due to
noise clustering. The possible excitation of double pulses such
as those experimentally shown in Fig. 2(c) depends on the
closeness of the stable and unstable manifolds of the saddle S.
When these are close enough, noise can excite a second pulse
before the system can relax to the quiescent state. The presence
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of such excited multipulses will show up in the ISI distribution
as a sharp peak around the average pulse width. The numerical
results in Fig. 10(a) confirm the experimental observation of
both time scales in the experimental ISI distribution presented
in Sec. II (see Fig. 3).

The presence of these time scales was also found in our
study of stochastic mode hopping in the bistable regime in
Refs. [23,27,32]. Both a mode hop in the bistable regime and
an excitation beyond the excitability threshold are described by
a noise-activated escape, corresponding to the slow Arrhenius
time scale. The fast non-Arrhenius character of the ISI orig-
inates in a noise-induced diffusion through both branches of
the stable manifold, thus initiating another excursion in phase
space before relaxing to the CW state. Such a noise clustering
of pulses due to the proximity of the relaxation trajectory of the
excited pulse and the excitability threshold has been observed
in several other noise-driven excitable systems, such as
lasers with optical feedback [24,25], quantum-dot lasers with
optical injection [28,40], and neurons of the Hodgkin-Huxley
type [41].

In Figs. 10(b)–10(d), we study in more detail the ISI
distribution of the faster time scale for different values of
the pump current µ, the noise strength D, and asymmetric
contributions of the noise to both counterpropagating modes.
The bin size is taken to be 0.05 ns. Figures 10(b) and 10(c)
show the ISI distribution for varying values of the current
µ at a fixed noise strength D = 2.5 × 10−4 ns−1 and D =
1.5 × 10−4 ns−1, respectively. One can see that in all cases
the maximum number of events is located around 5 ns, which
corresponds roughly to half of an excitable excursion [42]. For
slightly higher ISI (5 − 10 ns) a dip in the ISI distribution is
observed. Such a dip is typical for noise clustering [24,41] and
is due to the nature of the relaxation trajectory of the excited
pulse. In particular, it becomes evident from Figs. 10(b) and
10(c) that the dip becomes less pronounced for decreasing
values of the current µ because the relaxation to the stable
node occurs increasingly slowly for lower values of µ. One
can also see that the entire ISI curve moves up for decreasing
µ, which is a logical consequence of the decreasing depth
of the potential well. It is interesting to note that the basin
of attraction of the metastable CCW state decreases when
decreasing µ. In fact, similar excited pulses and ISI distribution
still hold for µ = 1.59 when the saddle and the metastable
CCW state have disappeared. This can be explained by the
fact that such dynamics arise as a scar of the bifurcations
nearby [24].

All of the previous theoretical analysis has been done for
the stochastic rate-equation system (3)–(5), where for reasons
of simplicity the noise terms have been added in a symmetric
way to both counterpropagating modes. From the experimental

setup explained in Sec. II, one can wonder whether this
symmetric assumption is valid as noise coming from the
external SOA is injected mainly in one direction (the stable CW
state). In order to check the validity of such an assumption, we
have checked our analysis for asymmetric noise contributions,
introducing noise with strength Dcw = D in Eq. (3) for the
stable CW mode and noise with strength Dccw < D in Eq. (4)
for the metastable CCW mode. Qualitatively similar results
are obtained as presented throughout this paper, which is
reflected in Fig. 10(d), which shows the ISI distribution for
µ = 1.65, Dcw = D = 2.5 × 10−4 ns−1, and different values
of Dccw.

V. DISCUSSION AND CONCLUSION

In conclusion, we have investigated the features of ex-
citability in optical systems that are close to Z2 symmetry
and have elucidated the differences with other, more common,
excitability scenarios [9–16,24,28]. The key message of this
paper is the experimental and theoretical observation of a
spread of the pulse amplitude and width in MRLs in the
presence of noise, where a correlation between the amplitude
and width of the excited pulses has been observed. Such a
correlation between these two quantities is the signature of
the deterministic evolution of the system once the separatrix
is crossed. Multipulse excitability [24] is also present due to
the finiteness of the noise intensity and the relaxation to the
quiescent state being slow due to the closeness to a homoclinic
bifurcation in parameter space.

For a realization of an all-optical neural network based
on MRLs, such a pulse width distribution can present a
drawback compared to other excitable systems. However, such
a drawback is eventually balanced by the easy integrability of
MRLs on an optical chip and the possibility of controlling
the coupling between the ring cavity and waveguide [43].
Furthermore, excitability in MRLs does not require feedback
from an external cavity or optical injection from a master laser,
as in the case of other optical systems.
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