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Entanglement created by spontaneously generated coherence
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We propose a scheme that is able to generate on demand a steady-state entanglement between two
nondegenerate cavity modes. The scheme relies on the interaction of the cavity modes with driven two- or
three-level atoms, which act as a coupler to build entanglement between the modes. We show that, in the limit
of a strong driving, it is crucial for the generation of entanglement between the modes to imbalance populations
of the dressed states of the driven atomic transition. In the case of a three-level V-type atom, we find that a
stationary entanglement can be created on demand by tuning the Rabi frequency of the driving field to the
difference between the atomic transition frequencies. The resulting degeneracy of the energy levels, together
with the spontaneously generated coherence, generate a steady-state entanglement between the cavity modes. It
is shown that the condition for the maximal entanglement coincides with the collapse of the atomic system into a
pure trapping state. We also show that the creation of entanglement depends strongly on the mutual polarization
of the transition atomic dipole moments.
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I. INTRODUCTION

The generation of continuous-variable (CV) entangled light
has attracted significant interest because of a potential applica-
tion in quantum information science, specifically in quantum
teleportation [1], quantum telecloning [2], and quantum dense
coding [3]. Continuous variables offer the possibility to
create entanglement deterministically, and different nonlinear
processes have been proposed to generate CV two-mode
entangled beams [4–8], including nondegenerate parametric
down conversion [9,10] and nondegenerate four-wave mixing
processes [11–15]. Recently, the four-wave mixing process has
been proposed as a potential source of narrow-band entangled
beams and as an important resource for quantum memory
storage [16] and long-distance communications [17].

Of particular interest for CV entanglement are cavity
quantum electrodynamic (QED) systems, where entanglement
between cavity modes can be created by coupling the modes
to an atomic system or nonlinear crystal located inside the
cavity [18–20]. It was shown that, for the generation of
entanglement between cavity modes, it is essential to create
a coherence in the coupling (or entangling) system. Typical
systems for entangling the modes are multilevel atoms or
nonlinear crystals, where the coherence can be established
initially by a preparation of the atoms in a linear superposition
of their energy states or can be created dynamically by
a suitable driving of the atoms through four-wave mixing
[11–15] or Raman-type processes [21–24].

The coherence is subjected to dissipation as a result of the
decoherence process, and over a long time it might be difficult
to maintain a coherence large enough for entangling the
cavity modes. The main source of decoherence is spontaneous
emission resulting from the interaction of the atoms with
the environment. On a microscopic scale, the spontaneous
emission can be reduced or even completely eliminated, but it
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could be difficult to eliminate on a macroscopic scale where
one would like to create entanglement using macroscopic
atomic ensembles. This raises an important question of how to
eliminate the decoherence or how to maintain a large coherence
in the presence of the decoherence.

In this paper, we propose a system formed by a three-level
atom located inside a two-mode cavity that can generate the
maximal stationary entanglement between the cavity modes
in the presence of decoherence. The atom is modeled as a
V-type system where the dipole-allowed transitions can be
independent of each other or can be correlated through the
spontaneously generated coherence (SGC) [25]. The atom is
driven by an external laser field coupled exclusively to only one
of the atomic transitions. We use the dressed-atom approach
and show that the effective three-level system of dressed states
comprises a suitable medium for a nonlinear coupling between
the cavity modes. We work in the strong driving limit, which
assumes that the Rabi frequency of the laser field is much larger
than the transition damping rates and the coupling strengths of
the cavity modes to the atomic transitions. This prompts us to
apply the secular approximation, which ignores the coupling
of the populations of the dressed states to the coherences. It
is known that nonsecular terms, although small, can have a
destructive effect on coherence effects [21,22] or may even
have constructive effects and lead to interesting novel features
[26–28]. However, we are interested in features created by the
SGC rather than features created by the coherence induced by
the driving field, and therefore neglect the nonsecular terms.

We consider four scenarios, wherein the cavity modes
couple to the same or different atomic transitions that could be
correlated or independent of each other. The first scenario
represents a situation in which the atomic transitions are
independent of each other, and both cavity modes couple to the
same atomic transition that, in addition, is driven by a strong
and in general off-resonant laser field. Physically, this system
behaves as a driven two-level system, and the driving field
occurs as a dressing field for the atoms. We demonstrate that
the necessary and sufficient conditions for generation of the
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maximal entanglement between the modes involve creating a
complete population inversion between the dressed states of
the coupling atomic system. A population difference between
the dressed states occurs for an off-resonant driving field.
Since, for a strong driving field, there is no coherence between
the dressed states, one could conclude that the entanglement
occurs without coherence in this case. However, for a detuned
driving field, a coherence actually occurs between the two bare
states of the system. In other words, in the bare atom picture,
the entanglement is created with coherence. We find that the
maximal entanglement can not be created in this scenario
because it is not possible to create a large population difference
between the dressed states and, at the same time, maintain a
strong coupling between the cavity modes mediated by the
atom.

In the second scenario, we include the coupling between
the atomic transitions through the SGC, a close analog on the
schemes of quantum-state engineering by dissipation [29–35].
We find that, in this case, the dissipation is used to create
the required coherence in the atomic system. The maximal
stationary entanglement can be created on demand for the
resonant driving field by tuning the Rabi frequency of the field
to the difference between the atomic transition frequencies.
As a result, the atomic system evolves into a pure trapping
state, which is an asymmetric superposition of the degenerate
energy states. The particular pure state into which the atomic
system evolves depends upon the ratio of the damping rates of
the atomic transitions and the detuning of the laser frequency
from the atomic transition frequency. The trapping effect
results in a complete population inversion between the dressed
states of the system. In other words, the maximal steady-state
entanglement is generated when the population of the atomic
system is trapped in a pure superposition state.

In the third scenario, we assume that the cavity modes
are coupled to different atomic transitions. The new feature
of this scenario is that the generation of entanglement is
now independent of the population of the dressed states.
The necessary condition for entanglement is the creation of
coherence between the atomic transitions, a coherence that
can be created by the SGC.

Finally, in the fourth scenario, we consider the most general
configuration in which each of the cavity modes is coupled to
both atomic transitions. We show that this scenario can be
treated as a combination of the second and third scenarios, and
find that the generation of entanglement now depends on the
mutual polarization of the atomic dipole moments. Depending
on whether the transition dipole moments are parallel or
antiparallel, the entanglement can be enhanced (reduced) by
the constructive (destructive) interference between the atomic
transition amplitudes.

This paper is organized as follows. We begin in Sec. II with
a description of the proposed schemes for the generation of
entanglement between two nondegenerate cavity modes and
derive the master equation for the reduced density operator
of the cavity modes. In Sec. III, we study the generation and
enhancement of entanglement between the cavity modes for
different coupling configurations of the cavity modes to the
atomic transitions. We are particularly interested in the role of
the mutual polarization of the atomic dipole moments and the
conditions for the generation of a large stationary entanglement

between the modes. The physical origin of entanglement
between the cavity modes is explained in terms of population
trapping in a linear superposition of the atomic levels. Finally,
we summarize our results in Sec. IV.

II. GENERAL FORMALISM

We consider a three-level atom located inside a two-mode
cavity. The atom is modeled as a V-type system with a
ground state |3〉 and two excited states |1〉 and |2〉 separated
in frequency by �0 = ω13 − ω23, where ω13 and ω23 are
atomic transition frequencies between states |1〉 ↔ |3〉 and
|2〉 ↔ |3〉, respectively. We shall assume that ω13 > ω23 so
that �0 is positive. This choice, of course, involves no loss
of generality. The atom acts as a coupling (or entangling)
medium that couples two nondegenerate cavity modes of
frequencies ω1 and ω2 through the interaction of the modes
with the atomic dipole transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉. In
addition, the transition |2〉 ↔ |3〉 is driven by a strong laser
field of angular frequency ωL and the amplitude determined
by the Rabi frequency 2�, as illustrated in Fig. 1. The
dipole moments of the two allowed atomic transitions can be
orthogonal or nonorthogonal to each other. The latter case can
lead to quantum interference effects induced by the SGC. The
cavity modes can simultaneously couple to one of the atomic
transitions or to different transitions. One can also arrange a
situation in which each of the cavity modes could couple to
both of the atomic transitions. In this case, the coupling and
the resulting entanglement between the modes can depend
on whether the transition dipole moments are parallel or
antiparallel to each other.

For an open cavity in which the atom and the cavity modes
are coupled to the outside vacuum modes, the dynamics of the
driven atom plus the cavity modes is conveniently described by
the density operator ρ, which, in a frame rotating with the laser
frequency ωL, satisfies the following master equation (h̄ = 1):

d

dt
ρ = −i(Hc + Ha + V,ρ) + Lcρ + Laρ, (1)

where

Hc = −δ1a
†
1a1 + δ2a

†
2a2 (2)

is the free Hamiltonian of the cavity modes,

Ha = (�L + �0) A11 + �LA22 − � (A23 + A32) (3)

ω1

ωL

ω2ω23

ω13

| 1 >

| 2 >

| 3 >

∆0

∆L

δ2

δ1

FIG. 1. Schematic diagram of the atomic levels and one of the
possible coupling configurations of the laser and the cavity fields.
A laser field of frequency ωL drives the |3〉 → |2〉 transition with
detuning �L, and two nondegenerate cavity modes of frequencies ω1

and ω2 couple to the driven transition with detunings δ1 and δ2 from
the laser frequency.
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is the Hamiltonian of the driven atom,

V = (g1a1 + g2a2) A23 + (g3a1 + g4a2) A13 + H.c. (4)

is the interaction Hamiltonian of the cavity modes with the
atomic transitions, and

Lcρ =
2∑

j=1

κj (2ajρa
†
j − a

†
j ajρ − ρa

†
j aj ) (5)

and

Laρ = γ1 [A31,ρA13] + γ2 [A32,ρA23]

+ η([A31,ρA23] + [A32,ρA13]) + H.c. (6)

are operators representing the damping of the cavity-field
modes by cavity decay with rates κ1 and κ2, and of the
atomic transitions by spontaneous emission with rates γ1 and
γ2. The parameters gi (i = 1,2,3,4) are coupling strengths of
the cavity modes to the atomic transitions. We assume that,
in general, the modes couple with strengths g1 and g2 to the
transition |2〉 ↔ |3〉 and also can be simultaneously coupled to
the |1〉 ↔ |3〉 transition with strengths g3 and g4, respectively.

The coefficient η = p
√

γ1γ2 is a measure of the amount of
coherence, the so-called SGC, induced by dissipation between
the |1〉 ↔ |3〉 and |2〉 ↔ |3〉 atomic transitions. The source
of this coherence has an obvious interpretation. Namely,
spontaneously emitted photons on one of the atomic transition
drives the other transition. The degree of the coherence,
measured by the coefficient η, depends explicitly on the mutual
polarization of the transition dipole moments with p = cos θ ,
where θ is the angle between the two dipole moments. Thus,
p = 0 when the transition dipole moments are orthogonal to
each other, and p attains its maximal value of p = ±1 when
the dipole moments are parallel or antiparallel to each other.
Obviously, the SGC vanishes when p = 0 and attains maximal
value when p = ±1.

The parameter �L = ω23 − ωL is the detuning of the laser
frequency ωL from the atomic transition frequency ω23, and
δ1 = ωL − ω1 and δ2 = ω2 − ωL are detunings of the cavity
modes ω1 and ω2 from the laser frequency, respectively; Aij =
|i〉〈j | are the atomic transition operators between energy states
|i〉 and |j 〉 (i,j = 1,2,3) of the atom.

Since the transition |2〉 ↔ |3〉 is driven by a strong, nearly
resonant laser field, it is convenient to work in the dressed-state
picture [36,37]. We introduce dressed states, which are the
eigenstates of the Hamiltonian (3):

|1̃〉 = |1〉,
|2̃〉 = sin φ|2〉 − cos φ|3〉, (7)

|3̃〉 = cos φ|2〉 + sin φ|3〉,
where

cos2 φ = 1

2
+ �L

2�0
, (8)

and �0 =
√
�2

L + 4�2 is the Rabi frequency of the detuned
field. In the dressed-state basis, the operators Aij are re-
placed by dressed-state operators Rij = |ĩ〉〈j̃ |, and the density
operator of the system can be transformed to the dressed-atom

picture by the unitary transformation

ρ̃ = exp(iH̃0t)ρ exp(−iH̃0t), (9)

where

H̃0 = (�L + �0)R11 + �0Rz − δ1a
†
1a1 + δ2a

†
2a2, (10)

and Rz = (R22 − R33)/2 is the population inversion operator
between the dressed states |2̃〉 and |3̃〉.

Applying the unitary transformation (9), we find that
the commutator part of the master equation for ρ̃ contains
explicitly time-dependent terms that oscillate at frequencies
δ1 and δ2, and the atomic dissipative part contains terms
oscillating with �0 and 2�0. In the limit of large Rabi
frequency �0 � gi,γi , the oscillating terms in the dissipative
part make contributions of the order γi/�0, where i = 1,2.
These terms can be neglected in the secular approximation.
The errors of the secular approximation are of the order γi/�0

and gi/�0. Thus, it is reasonable to neglect these terms on
time scales t � γ −1

i when �0 � gi,γi . This approximation
permits important mathematical simplifications, and “exact”
solutions for the steady-state density matrix elements may be
obtained that could provide immediate insight into the physics
involved in the problem.

Thus, the master equation in the dressed-atom basis and
under the secular approximation simplifies to

d

dt
ρ̃ = −i [Ṽ ,ρ̃] + Ldρ̃ + Lcρ̃, (11)

where

Ṽ = {
d1[sin(2φ)Rz + sin2 φR23e

i�0t − cos2 φR32e
−i�0t ]

+ d2
(

sin φR13e
i[�0+ 1

2 (�0+�L)]t

− cos φR12e
i[�0− 1

2 (�0−�L)]t
)} + H.c. (12)

is the interaction of the dressed atom with the cavity modes,
with

d1 = g1a1e
iδ1t + g2a2e

−iδ2t ,
(13)

d2 = g3a1e
iδ1t + g4a2e

−iδ2t ,

and

Ldρ̃ = γ1 (sin2 φ[R31,ρ̃R13] + cos2 φ[R21,ρR12] + H.c.)

+ γ2 sin2(2φ) ([Rz,ρ̃Rz] + H.c.)

+ γ2 (sin4 φ[R32,ρ̃R23] + cos4 φ[R23,ρ̃R32] + H.c.)

+ η0 sin2 φ([R31,ρ̃R23] + [R32,ρ̃R13] + H.c.)

+ η0 cos2 φ([R21,ρ̃R22] + [R22,ρ̃R12] + H.c.) (14)

is an operator representing the damping of the dressed-atom
system.

Obviously, the cavity damping term remains unchanged un-
der the dressed-atom transformation, but the atomic dynamics
is now determined in terms of the dressed-atom operators.
In this paper, we are interested in the case of the two cavity
modes being nondegenerated, i.e., ω1 �= ω2, for which the time
dependence of Ṽ is quite complicated. This renders the master
equation difficult to solve exactly, except in a special case of
a weak coupling of the cavity modes to the atomic transitions
gi � �0. In this case, we can treat the interaction as a weak
perturbation to the strong atom-laser interaction and find that,
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after tracing over the atomic variables, the effective master
equation for the reduced density operator of the cavity modes
ρc = TrAρ̃ is of the form

d

dt
ρc = i

2∑
j=1

(δ12 − B̄j )[a†
j aj ,ρc] − i

2∑
j=1

Āj [aja
†
j ,ρc]

+
2∑

j=1

(B̃j + κj ) (2ajρca
†
j − a

†
j ajρc − ρca

†
j aj )

+
2∑

j=1

Ãj (2a
†
j ρcaj − ρcaja

†
j − aja

†
j ρc)

+
2∑

j �=j ′=1

{Cja
†
j a

†
j ′ρc + Djρca

†
j ′a

†
j

− (Cj + Dj ) a
†
j ′ρca

†
j + H.c.}, (15)

where δ12 = (δ2 − δ1)/2 and Ãj ,B̃j and Āj ,B̄j are the real and
imaginary parts of complex coefficients Aj ,Bj , respectively.
The coefficients Ãj and B̃j have obvious interpretation as ab-
sorption and gain rates, whereas Āj and B̄j are radiative shifts
of the cavity-mode frequencies. Correspondingly, the complex
coefficients Cj and Dj determine terms representing desired
correlations between the cavity modes. The expressions for
the coefficients depend strongly on the coupling configuration
of the cavity modes to the atomic transitions and also on a
particular choice of other parameters. The explicit analytical
forms of the coefficients for different coupling configurations
of the cavity modes to the atoms will be given in Sec. III.

The master equation (15) is of a form characteristic for a
system composed of two field modes coupled to a multimode
squeezed vacuum [38]. For this reason, to quantify entangle-
ment between the modes, we shall use Duan’s criterion [39],
which relates entanglement to squeezing between the modes.
If the cavity modes were initially in a vacuum state, which is an
example of a Gaussian state, the state of the modes governed
by Eq. (15) will remain a two-mode Gaussian state for all times
t . The quantum-statistics properties of a two-mode Gaussian
state are conveniently studied in terms of quadrature operators
of the two cavity modes

Xl = 1√
2

(a†
l e

iθl + ale
−iθl ),

(16)

Yl = i√
2

(a†
l e

iθl − ale
−iθl ), l = 1,2

where θl is the phase angle of the modes. If we introduce two
operators

u = aX1 − 1

a
X2, v = aY1 + 1

a
Y2, (17)

where a is a state-dependent real number, then, according to
Duan’s criterion, a two-mode Gaussian state is entangled if,
and only if, the sum of the variances � = 〈(�û)2〉 + 〈(�v̂)2〉
satisfies the inequality

� = 2na2 + 2m/a2 − 4c < a2 + 1

a2
, (18)

with a2 = √
(2m − 1)/(2n − 1), n = 〈a†

1a1〉 + 1/2, m =
〈a†

2a2〉 + 1/2, and c = |〈a1a2〉|. Since the right-hand side of

Eq. (18) is a positive number, we may introduce a parameter

ϒ = � − a2 − 1

a2
, (19)

and then the condition for entanglement between the cavity
modes is that the parameter ϒ must be negative.

From Eqs. (18) and (19), it is obvious that, in order to
calculate the parameter ϒ , it is necessary to have available
the cavity-field correlation functions n, m, and c. These
correlation functions are readily found using the master
equation (15), from which we can derive equations of motion
for the required correlation functions and find that they satisfy
a set of coupled differential equations

d

dt
〈a†

j aj 〉 = −(j + ∗
j )〈a†

j aj 〉
+χj 〈a†

1a
†
2〉 + χ∗

j 〈a1a2〉 + 2Ãj ,

(20)d

dt
〈a1a2〉 = − (1 + 2) 〈a1a2〉 + χ2〈a†

1a1〉
+χ1〈a†

2a2〉 + (C1 + C2) ,

where j = κj + iδ12 − (Aj − Bj ) and χj = Cj − Dj . The
set of the differential equations (20) can be easily solved
for arbitrary initial conditions. Since we are interested in a
stationary entanglement between the cavity modes, we analyze
the stability condition and find that the system is stable and
reaches its steady state as t → ∞ when

Re[1 + 2 −
√

(1 − ∗
2 )2 + 4χ1χ

∗
2 ] > 0. (21)

The above stability condition may be simplified substantially
for particular choices of the detunings and the Rabi frequency
such as δ1,δ2 � γi and �0 � γi .

III. ENTANGLEMENT BETWEEN CAVITY MODES

It is clear from Eq. (15) that the dynamics and entanglement
of the cavity modes are a sensitive function of the properties of
the driven atomic system. To study this dependence, we shall
examine four scenarios of the coupling configuration of the
cavity modes to the atomic transitions, two scenarios in which
both modes couple to the same driven atomic transition and the
other two in which the cavity modes are coupled to different
transitions. Particular attention will be paid to the role of a
specific driving of the atoms and the SGC in entangling the
cavity modes.

A. The case of both modes coupled to the driven transition

In this section, we examine the entanglement properties
of the cavity modes when both modes are coupled to only
one of the atomic transitions, i.e., the laser-driven transition
|2〉 ↔ |3〉, as illustrated in Fig. 1. In other words, all the
fields couple to only one of the atomic transitions. This
is achieved by setting the coupling strengths g3 and g4 in
the Hamiltonian (4) equal to zero. We shall be particularly
interested in the generation of entanglement between the cavity
modes when the coupling system is reduced to a simple
two-level system and in the role of the spontaneous emission
in coupling of the two-level system to the auxiliary level |1〉.
Therefore, we consider separately two cases of orthogonal
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(p = 0) and nonorthogonal (p �= 0) dipole moments of the
atomic transitions. When the dipole moments are orthogonal
to each other, p = 0, and then the atomic transition |1〉 ↔ |3〉
decouples from the driven transition. In this case, the system
reduces to that of a driven two-level atom. On the other hand,
when the dipole moments are nonorthogonal, p �= 0, and then
the spontaneous emission on the |1〉 ↔ |3〉 can influence the
two-level dynamics of the driven |2〉 ↔ |3〉 transition.

We start by introducing the explicit form of the coefficients
of the master equation (15), which read

A1 = g2
1

[
−1

4
F1(δ1) sin 2φ + f ∗

1 (−δ1)ρs
33

f ∗
12(−δ1) − η2

0

cos4 φ

+ f1(δ1)ρs
22 − η0ρ

s
12

f12(δ1) − η2
0

sin4 φ

]
,

B1 = g2
1

[
−1

4
F2(δ1) sin 2φ + f1(δ1)ρs

33

f12(δ1) − η2
0

sin4 φ

+ f ∗
1 (−δ1)ρs

22 − η0ρ
s
21

f ∗
12(−δ1) − η2

0

cos4 φ

]
,

C1 = 1

4
g1g2 sin 2φ

[
F2(δ2) + f1(δ2)ρs

33

f12(δ2) − η2
0

+ f ∗
1 (−δ2)ρs

22 − η0ρ
s
21

f ∗
12(−δ2) − η2

0

]
,

D1 = 1

4
g1g2 sin 2φ

[
F1(δ2) + f ∗

1 (−δ2)ρs
33

f ∗
12(−δ2) − η2

0

+ f1(δ2)ρs
22 − η0ρ

s
12

f12(δ2) − η2
0

]
, (22)

where

F1(δj ) = [M32(δj ) − M22(δj )]ρs
22 − [M33(δj ) − M23(δj )]

× ρs
33 + [M34(δj ) − M24(δj )]ρs

12,

(23)

F2(δj ) = [M32(δj ) − M22(δj )]ρs
22 − [M33(δj ) − M23(δj )]

× ρs
33 + [M35(δj ) − M25(δj )]ρs

21,

and

f12(±δj ) = f1(±δj )f2(±δj ), j = 1,2 (24)

with

f1(±δj ) = γ1 + γ2 cos2 φ + i
(
�0 + 1

2 (�L + �0) ± δj

)
,

f2(±δj ) = γ2
(
1 + 1

2 sin2 2φ
) + i(�0 ± δj ). (25)

Here, ρs
22, ρs

33, and ρs
12 are the steady-state values of the atomic-

density matrix elements under the condition of ignoring the
effect of the weak coupling between the cavity modes and
the atom, and Mmn(δj ) are elements of the inverse matrix
of U (δj ):

U (δj ) =

⎛
⎜⎜⎜⎜⎜⎝

2γ1 + iδj 0 0 η0 η0

−2γ1 cos2 φ 2γ2 sin4 φ + iδj −2γ2 cos4 φ −η0 cos 2φ −η0 cos 2φ

−2γ1 sin2 φ −2γ2 sin4 φ 2γ2 cos4 φ + iδj −2η0 sin2 φ −2η0 sin2 φ

η0 η0 0 b + iδj 0

η0 η0 0 0 b∗ + iδj

⎞
⎟⎟⎟⎟⎟⎠

, (26)

where b = γ1 + γ2 sin2 φ + i[�0 − (�0 − �L)/2].
The remaining coefficients A2, B2, C2, and D2 are obtained

from Eq. (22) by exchanging δ1 with −δ2 and g1 with
g2. We should point out here that, in the derivation of the
coefficients (22), we have assumed that the states |1̃〉 and
|3̃〉 are separated in energy by �0 + (�0 + �L)/2, while the
states |1̃〉 and |2̃〉 are separated in energy by �0 − (�0 −
�L)/2. Thus, in general, the dressed states are nondegenerate.
However, by varying the Rabi frequency �0 or the splitting
�0, one may turn the states |1̃〉 and |2̃〉 into degeneracy,
whereas the states |1̃〉 and |3̃〉 will always remain far from
resonance. This would happen when �0 = (�0 − �L)/2. As
we shall demonstrate in this paper, the degeneracy condition
is an optimal condition for entanglement between the cavity
modes.

Having defined the coefficients of the master equation for
the case of both cavity modes coupled to the driven atomic
transition, we now turn our attention to the possibility of
generating a stationary entanglement between the modes.
In doing so, we shall consider separately two cases, p = 0
and p �= 0.

1. The case of p = 0

Let us first determine how much entanglement can be
generated when the atom behaves as a two-level system. The
master equation (15) can be applied to this simplified case
by setting p = 0. Figure 2 shows the entanglement measure
ϒ as a function of �L for η0 = 0, fixed detunings δ1,δ2,
and the Rabi frequency �0. The figure shows that, under
resonant excitation, the cavity modes are separable and become
entangled for an off-resonant excitation. The entanglement
exhibits an interesting behavior in that it has two maxima
that occur for certain nonzero values of �L and then rapidly
declines thereafter. A small difference δ12 = −0.61 between
the detunings δ1 and δ2 is introduced to cancel the effect of the
Stark shifts Āj and B̄j . As we see from the figure, the Stark
shifts have a distractive effect on entanglement.

We would like to point out that the magnitude of the
entanglement is not large and that there are no parameter
values at which the entanglement could reach the optimal
value ϒ = −1. Moreover, the maximal entanglement occurs
at large detunings �L ≈ ±40γ1, at which the driving field
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FIG. 2. The degree of entanglement ϒ plotted as a function of
�L for the case corresponding to a two-level system g3 = g4 =
0 and p = 0, with γ2 = 0.02, � = 50, δ1 ≈ δ2 = 50, κ1 = κ2 =
0.63, g1 = g2 = 10, and different values of δ12: δ12 = 0 (solid line)
and δ12 = −0.61 (dashed line). All parameters are normalized to γ1.

is weakly coupled to the atoms. We shall demonstrate in
the second scenario that the magnitude can be enhanced to
its optimal value ϒ = −1 by coupling the two-level system
to the third level. To summarize, we briefly discuss the
parameters characterizing the system and the ranges of these
parameters that are experimentally accessible. The parameters
are expressed in units of the spontaneous emission rate γ . In
the case of alkali atoms, γ is of the order of 10 MHz. Driving
lasers used in experiments are usually tunable, providing for
arbitrary detuning �L, so that the range �L � 100γ is easily
accessible. The lasers are sufficiently powerful to generate
Rabi frequencies up to 100γ .

2. The case of p �= 0

We now turn to illustrate the role of the SGC on entan-
glement creation between the cavity modes. We assume that
the driven transition to which the cavity modes are coupled
is coupled by spontaneous emission to the auxiliary level
|1〉. This coupling can occur for the case of nonorthogonal
(p �= 0) dipole moments of the atomic transitions, and then
the spontaneous emission on the |1〉 ↔ |3〉 can influence the
two-level dynamics of the driven |2〉 ↔ |3〉 transition.

Since the spontaneous emission on the atomic transitions
occurs at different frequencies and with different rates, the
created entanglement between the cavity modes may depend
strongly on the splitting �0. As we shall see, the crucial
component for entanglement between the cavity modes is the
relation between �0 and �0. Figure 3 illustrates the variation of
ϒ with gradually increasing �0 for the case of resonant driving
�L = 0. We see that the cavity modes become entangled only
for p �= 0; for a certain value of �0 = �0/2, the entanglement
becomes optimal. In terms of the energies of the dressed
states, the condition of �0 = �0/2 corresponds to the situation
wherein the dressed state |1̃〉 becomes degenerate with the
dressed state |2̃〉 [40,41]. The condition of p �= 0 corresponds
to the presence of direct coupling between the states |1̃〉 and |2̃〉.

FIG. 3. The degree of entanglement ϒ plotted as a function of �0

for �L = 0, γ2 = 0.02, � = 50, δ1 ≈ δ2 = 50, δ12 = −0.61, κ1 =
κ2 = 0.63, g1 = g2 = 10, and various values of p: p = 0.98 (solid
line), p = 0.7 (dashed line), p = 0.4 (dashed-dotted line), and p = 0
(dotted line). All parameters are normalized to γ1.

Note that this coupling is induced by the dissipative process
of spontaneous emission. Since this is a resonant coupling, it
creates a strong coherence between the states |1̃〉 and |2̃〉. Under
these circumstances, the modes become strongly entangled and
the degree of entanglement is maximal in comparison with
Fig. 2. The amount of the generated entanglement depends
also on the ratio of the spontaneous emission rates γ2/γ1,
and the maximal entanglement of ϒ ≈ −1 is achieved at
�0 = �0/2 and p ≈ 1 for γ2 � γ1. In other words, a large
entanglement occurs when most of the population resides in
the driven transition rather than in the undriven transition.
We may summarize that, by using carefully designed driving,
such that �0 = �0/2, and carefully chosen atoms, such that
γ2 � γ1, a large entanglement can be produced between the
cavity modes via dissipation created by coherence in the
atoms.

We now proceed to explain the physical origin of the
process responsible for entanglement of the cavity modes
predicted in the above two scenarios. As we shall see, the
physics of the process can be quantitatively explained on
the level of the stationary population of the atomic system.
In the first instance, a simple analytical expression can be
derived for the master equation as follows. When the frequency
difference δ and the Rabi frequency �0 are much larger
than the damping rates of the atomic transitions δ1 ≈ δ2 =
δ � γi and �0 � γi , the real parts of the parameters (22)
become negligible, i.e., Ãj = B̃j = C̃j = D̃j ≈ 0, and the
imaginary parts become Āj ≈ B̄j and C̄j = −D̄j . It is then
straightforward to show that the master equation (15) may be
approximated by

d

dt
ρc = − i(δ12 + 2Ā)[a†

1a1 + a
†
2a2,ρc]

− iD̄[a†
1a

†
2 + a1a2,ρc] + Lcρc, (27)
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where

Ā = g2�0 (1 + cos2 2φ)

4
(
�2

0 − δ2
) (

ρs
22 − ρs

33

)
,

(28)

D̄ = g2�0 sin2 2φ

2
(
�2

0 − δ2
) (

ρs
22 − ρs

33

)
,

and, for simplicity, we have assumed equal coupling constants
g1 = g2 = g.

This shows that the atomic variables contribute to the
coherent evolution of the cavity modes, and the only relaxation
in the system is the damping of the cavity modes. A choice
of δ12 = −2Ā simplifies further the master equation and
leaves only the parametric amplifying term in its commutator
part. This term is responsible for correlations and hence
for entanglement between the modes. The magnitude of
entanglement attains maximal value when D̄ maximizes. It
is evident from Eq. (28) that the parameter D̄ is different from
zero only if the population is unequally distributed between the
dressed states. Thus, only one factor determines the magnitude
of entanglement between the cavity mode, i.e., the population
must be inverted between the dressed states of the system.
For the case of p = 0, this can be achieved if the laser
frequency is detuned from the atomic transition frequency ω23.
It is interesting that the entanglement is created without any
coherence between the dressed states. There is no coherence
between the dressed states because the Rabi frequency �0 is
much larger than all relaxation rates, �0 � γi,κi . However,
we should point out that, in the case of an off-resonant
driving, there is a coherence between the bare atomic states.
Thus, one can argue that the predicted entanglement actually
occurs due to a nonzero coherence between the bare atomic
states.

To calculate the population inversion between the dressed
states, we introduce density matrix elements with respect to
the three atomic dressed states in the absence of the cavity
modes, denoting 〈1̃|ρ̃|2̃〉 by ρ12, etc. The equations of motion
are

ρ̇11 = − 2γ1ρ11 − η0 (ρ12 + ρ21),

ρ̇22 = 2γ1 cos2 φρ11 + 2γ2 (cos4 φρ33 − sin4 φρ22)

+ η0 cos 2φ(ρ12 + ρ21),

ρ̇33 = 2γ1 sin2 φρ11 − 2γ2 (cos4 φρ33 − sin4 φρ22) (29)

+ 2η0 sin2 φ(ρ12 + ρ21),

ρ̇12 = − {
γ1 + γ2 sin2 φ + i

[
�0 − 1

2 (�0 − �L)
]}

× ρ12 − η0(ρ11 + ρ22).

It is evident from the above equations that the coherence ρ12

induced by spontaneous emission oscillates with frequency
�0 − (�0 − �L)/2. This fact has the obvious physical mean-
ing that the coherence attains maximal value when �0 −
(�0 − �L)/2 = 0. For �L = 0, the coherence maximizes
at �0 = �0/2 and simultaneously the factor sin2 φ in the
coefficient D̄ equals to 1 (consequently, the value at which
the entanglement, shown in Fig. 3, attains the maximal
value).

In the steady state, the dressed-state population difference
can be worked out explicitly for both p = 0 and p �= 0. For the
case of p = 0, the steady-state population difference is given

by the expression

ρs
22 − ρs

33 = cos4 φ − sin4 φ

cos4 φ + sin4 φ
, (30)

which clearly shows that the populations among the dressed
states are imbalanced only for a nonzero detuning �L �=
0 (φ �= π/4). In this case, the parameter D̄ responsible for
the nonlinear coupling between the modes is different from
zero. It is easy to check that the maximal entanglement seen in
Fig. 2 is attained at the detunings corresponding to the maximal
value of D̄. Thus, we have a simple physical interpretation of
the entanglement creation by a detuned laser field.

We stress that, in the case of the detuned driving (�L �= 0)
and in the limit p = 0, i.e., in the two-level situation, the
population is unequally distributed between the dressed states;
however, it is not possible to produce atoms in a pure dressed
state in which |ρs

22 − ρs
33| = 1 and at the same time have the

coefficient D̄ different from zero. However, for the case of
three-level atoms with p = 1, it is possible to have |ρs

22 −
ρs

33| = 1, in which case the population is trapped in one of
the dressed states. The condition of the population trapping is
unique to the SGC and can be achieved even for a resonant
driving �L = 0.

We now proceed to evaluate the population inversion when
p = 1. A careful analysis of the steady-state solution shows
that, in the case of the level crossing at �0 = �0/2 and in the
limit p = 1, the population is not trapped in one of the dressed
states, but rather in one of linear superpositions

|s〉 = α|2̃〉 + β|1̃〉,
(31)

|a〉 = β|2̃〉 − α|1̃〉,
where

α =
(

γ2 sin2 φ

γ1 + γ2 sin2 φ

) 1
2

, β =
(

γ1

γ1 + γ2 sin2 φ

) 1
2

. (32)

It is easy to check that, at the level crossing condition and in
the limit p = 1, the population is trapped in the antisymmetric
state |a〉, i.e., ρs

aa = 1 irrespective of the detuning �L and the
ratio between the damping rates γ1 and γ2. This result implies
that the SGC is essential for the atomic system to be capable
of achieving a pure state. In other words, the trapping effect
is a direct manifestation of the presence of the SGC that can
be employed to maintain the complete inversion between the
dressed states, even in the case of zero detuning between the
laser and the atomic transition frequencies. If we incorporate
the solution ρs

aa = 1 into Eq. (28), we find that the resulting
coefficient D̄ takes the form

D̄ = g2�0

2
(
�2

0 − δ2
) γ1 sin2 2φ

γ1 + γ2 sin2 φ
, (33)

from which one can easily show that the coefficient D̄ is great-
est when φ = π/4 (�L = 0) and γ2 � γ1. This prediction
clearly explains our numerical results presented in Fig. 3.

To clarify the issue of the mechanism responsible for
creation of the stationary entanglement between the cavity
modes, we may refer to the equations of motion for the
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ω1

ωL

ω2

ω23

ω13

| 1 >

| 2 >

| 3 >

∆0

∆L

δ2

δ1

FIG. 4. Schematic diagram of the coupling configuration of the
cavity modes and the driven laser field. The cavity mode of frequency
ω1 is coupled to the laser-driven transition with detuning δ1 from the
laser frequency, while the cavity mode of frequency ω2 is coupled to
the undriven transition with detuning δ2 from the laser frequency.

correlation functions (20). It is straightforward to show that,
in the limits of δ � γi and �0 � γi , the only damping
mechanism of the correlation functions is the cavity damping.
Thus, the SGC facilitates correlations between the cavity
modes that then decay with the cavity damping to a stationary
entangled state.

B. The case of the modes coupled to different atomic transitions

We now proceed to evaluate entanglement between the
cavity modes when one of the cavity modes, a1, is coupled
to the driven |2〉 ↔ |3〉 transition and the other mode, a2, is
coupled to the undriven transition |1〉 ↔ |3〉, as illustrated in
Fig. 4. In this case, the coupling strengths g2 = g3 = 0, then
the coefficients of the master equation (15) are of the form

A1 = g2
1

[
−1

4
F1(δ1) sin 2φ + ρs

33 cos4 φ

f ∗
2 (−δ1) − η2

0

+ ρs
22 sin4 φ

f ∗
2 (δ1) − η2

0

− η0ρ
s
12 sin4 φ

f12(δ1) − η2
0

]
,

B1 = g2
1

[
−1

4
F2(δ1) sin 2φ + ρs

33 sin4 φ

f2(δ1) − η2
0 (34)

+ f ∗
1 (−δ1)ρs

22 − η0ρ
s
21

f ∗
12(−δ1) − η2

0

cos4 φ

]
,

C1 = g1g4 sin φ cos2 φ

[
F3(δ2) + f ∗

1 (−δ2)ρs
12 − η0ρ

s
11

f ∗
12(−δ2) − η2

0

]
,

D1 = g1g4 sin φ cos2 φ

[
F4(δ2) − η0ρ

s
33

f ∗
12(−δ2) − η2

0

]
,

with F1(δ1) and F2(δ1) given in Eq. (23),

F3(δ2) = [M32(δ2) − M22(δ2)]ρs
12 + [M35(δ2) − M25(δ2)]ρs

11,

F4(δ2) = [M31(δ2) − M21(δ2)]ρs
12 + [M35(δ2) − M25(δ2)]ρs

22,

(35)

and

A2 = g2
4

[
h1(δ2) + f2(−δ2)ρs

11 − η0ρ
s
21

f12(−δ2) − η2
0

sin2 φ

]
,

B2 = g2
4

[
h2(δ2) + f2(−δ2)ρs

33 sin2 φ

f12(−δ2) − η2
0

]
,

(36)

FIG. 5. The degree of entanglement ϒ as a function of �0 for
the case of the cavity modes coupled to different atomic transitions
g2 = g3 = 0 and g1 = g4 = 10, with �L = 0, γ2 = 2, � = 50, δ1 ≈
δ2 = 50, δ12 = −0.38, κ1 = κ2 = 0.67, and different values of p:
p = 0.98 (solid line), p = 0.7 (dashed line), p = 0.4 (dashed-dotted
line), and p = 0 (dotted line). All parameters are normalized to γ1.

C2 = g1g4 sin φ cos2 φ

[
h3(δ1) − η0ρ

s
33

f12(−δ1) − η2
0

]
,

D2 = g1g4 sin φ cos2 φ

[
h4(δ1) + f2(−δ1)ρs

12

f12(−δ1) − η2
0

]
,

with

h1(δ2) = [
M42 (−δ2) ρs

21 + M44 (−δ2) ρs
11

]
cos2 φ,

h2(δ2) = [
M41 (−δ2) ρs

21 + M44 (−δ2) ρs
22

]
cos2 φ,

h3(δ1) = M43 (−δ1) ρs
33 − M42 (−δ1) ρs

22 − M45 (−δ1) ρs
11,

h4(δ1) = M43 (−δ1) ρs
33 − M42 (−δ1) ρs

22 − M44 (−δ1) ρs
12.

(37)

Figure 5 shows the results for the entanglement measure ϒ

as a function of �0 for various values of p. Since, in the case of
p = 0, the creation of entanglement between the cavity modes
was associated with a nonzero detuning �L �= 0, the role of
SGC is illustrated most clearly if one assumes a resonant laser
field. Consequently, we choose to limit our illustration of the
creation of entanglement to a situation in which �L = 0.

As in Sec. III A 2, the entanglement occurs for p �= 0 and
the optimal entanglement can be obtained at �0 = �0/2.
However, in contrast to Sec. III A, the entanglement maximizes
at ϒ ≈ −1 for γ2 = 2γ1. This means that the entanglement
maximizes when the transition rates of the dressed transition
resonant with the undressed transition are equal.

In order to understand this behavior of entanglement, we
consider the coefficients of the master equation in the limits of
δ � γi and �0 � γi and find that, in these limits, the master
equation (15) reduces to the following form:

d

dt
ρc = − i(δ12 + 2Ā)[a†

1a1 + a
†
2a2,ρc]

+ i[D̄a
†
1a

†
2 + D̄∗a1a2,ρc] + Lcρc, (38)
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where

Ā = 1

4
g2

[(
sin4 φ

�0 + δ
+ cos4 φ

�0 − δ

) (
ρs

22 − ρs
33

)

+ sin2 φ

�0 − δ

(
ρs

11 − ρs
33

) + cos2 φ

δ

(
ρs

22 − ρs
11

)]
, (39)

D̄ = �0g
2 sin φ cos2 φ

(�0 − δ)δ
ρs

12.

We may further simplify the master equation by choosing
δ12 = −2Ā, which leaves only the nonlinear term in its
commutator part. Note that, comparing to Sec. III A, there is
a qualitative difference in the dependence of the coefficient D̄

on the density matrix elements. The magnitude of D̄ depends
now on the coherence between the states |1̃〉 and |2̃〉, but not
on the population difference. The coherence is induced by
spontaneous emission and can be different from zero only if
p �= 0. This means that the SGC is crucial for creation of
entanglement between the cavity modes when the modes are
coupled to different atomic transitions. As seen from Fig. 5,
the entanglement maximizes at �0 = �0/2 and p = 1. It is
easy to show from Eqs. (29) and (31) that, for �0 = �0/2
and p = 1, in the steady state the population is trapped in
the antisymmetric state |a〉. Thus, similar to Sec. III A, the
condition for the maximal entanglement coincides with the
collapse of the atomic system into the pure trapping state. In
this case, the coherence ρs

12 = −αβ and then the parameter D̄

reduces to

D̄ = −�0g
2 sin2 2φ

4(�0 − δ)δ

√
γ1γ2

γ1 + γ2 sin2 φ
. (40)

It is easily verified that the coefficient D̄ attains its maximal
value for φ = π/4 and γ2 = 2γ1. Thus, the simple formula
in Eq. (40) predicts accurately the parameter values of the
maximal entanglement in Fig. 5.

In concluding this section, we would like to point out that
the qualitative features of entanglement between the cavity
modes depend on whether the dipole moments of the atomic
transitions are parallel (p = 1) or antiparallel (p = −1) to
each other. We have already seen that, in the case of parallel
dipole moments and �0 = �0/2, the population is trapped in
the antisymmetric state irrespective of the laser detuning �L

and the ratio between the atomic spontaneous emission rates.
However, for the antiparallel dipole moments, the situation is
different. It is not difficult to show from Eqs. (29) and (31)
that, for p = −1 and �0 = �0/2, the steady-state populations
of the states are

ρaa = (α2 − β2)2, ρss = 4α2β2, ρ33 = 0, (41)

where α and β are given in Eq. (32). It is evident that, in
general, the population is redistributed between the symmetric
and antisymmetric states, and only in the case of γ1 = γ2 sin2 φ

is the population trapped in the symmetric superposition
state. A consequence of this population redistribution is the
reduction of the entanglement between the cavity modes.
This is shown in Fig. 6, where we plot the entanglement
measure for p = −1 and different ratios between the atomic
spontaneous emission rates. For γ2 �= 2γ1, the magnitude of
the entanglement is reduced and attains the maximal value
of ϒ = −1 for γ2 = 2γ1. This is an another demonstration

FIG. 6. The degree of entanglement ϒ plotted as a function of
�0 for the case of antiparallel transition dipole moments p = −1,
with �L = 0, � = 50, δ1 ≈ δ2 = 50, κ1 = κ2 = 0.72, and different
values of γ2/γ1: γ2/γ1 = 0.5 (solid line), γ2/γ1 = 1.0 (dashed line),
γ2/γ1 = 2.0 (dashed-dotted line), and γ2/γ1 = 3.0 (dotted line). All
parameters are normalized to γ1.

that the maximal entanglement between the modes is achieved
only when two correlated atomic transitions decay rates obey
γ2 = 2γ1.

C. Other possible couplings of the modes
to the atomic transitions

Finally, we briefly comment on the other possible coupling
configurations of the cavity modes to the atomic transitions.
The two cases discussed above predict a large entanglement at
practically the same conditions, with only different conditions
imposed on the damping rates of the atomic transitions.
Another possible configuration is to couple the cavity mode
ω1 to the undriven transition |1〉 ↔ |3〉 and the mode ω2 to the
driven transition |2〉 ↔ |3〉. One can see from Fig. 4 that this
configuration is obtained from Sec. III B simply by replacing
δ by −δ. Thus, a large entanglement could be generated in this
configuration for the same condition as in Sec. III B.

The most general configuration of the coupling constants
is the case corresponding to all of the cavity modes simulta-
neously coupled to both atomic transitions. It is easily verified
that this general case can be treated as a sum of two cases of
modes coupled to different atomic transitions with opposite
detuning δ. By combining the two cases together, we find that
the magnitude of the effective coefficient D̄ depends strongly
on the sign of the parameter p. For p = ±1, the effective
coefficient D̄ takes the following form:

D̄p=±1 = g2�0 sin2 2φ

2
(
�2

0 − δ2
)

√
γ1 (

√
γ1 ∓ √

γ2)

γ1 + γ2 sin2 φ
. (42)

We see that, depending on the sign of p, these two coupling
configurations can interfere constructively or destructively,
resulting in an enhanced or reduced effective magnitude of
the nonlinear process. For p = 1, the configurations interfere
destructively such that, for γ1 = γ2, the effective coefficient D̄
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vanishes. On the other hand, for p = −1, the configurations in-
terfere constructively, which results in an enhanced amplitude
of the nonlinear process. However, the resulting magnitude of
the effective coefficient depends strongly on the ratio γ2/γ1

such that D̄ is large for γ2/γ1 � 1; but, it becomes very small,
proportional to

√
γ1/γ2 in the opposite limit of γ2/γ1 � 1.

In other words, the three-level system can strongly entangle
the cavity modes only if the spontaneous emission rate on
the undriven transition is much larger than that of the driven
transition.

We conclude this section with a short discussion of the
possibility of creating entanglement between the cavity modes
by the SGC in three-level atoms in the Lambda or cascade
configurations. As we have shown, the crucial component for
the maximal entanglement is to trap the population in a pure
superposition state of the atoms. However, it is well known that
the SGC has a constructive effect on trapping of the population
in a pure state only in the V-type atoms [25]. In the Lambda
or cascade-type atoms, the SGC has a destructive rather than
a constructive effect on the trapping phenomenon [42,43].

The crucial components for the entanglement are three-level
atoms with parallel or nearly parallel dipole moments between
the two atomic transitions. It is difficult in practice to find
V-type systems with parallel or antiparallel dipole moments.
One of the possibilities is to use sodium dimers, which
can be modeled as a five-level molecule in which transi-
tions with parallel and antiparallel dipole moments can be
selected [44,45]. An alternative solution is to engineer atomic
systems with parallel dipole moments. For example, Zhou
and Swain [46] showed that transitions with parallel dipole
moments can be achieved in a three-level atom coupled to a
cavity field with pre-selected polarization in the bad cavity
limit. Agarwal [47] has demonstrated that an anisotropy in the
vacuum can lead to quantum interference among the decay
channels of close-lying states. Another possibility is to align
the dipole moments by a slow motion of the atoms through
the medium [48], or to apply a dc field to couple the upper
levels of a three-level V-type atom with perpendicular dipole

moments [49]. In addition, SGC arising from radiative decay of
the trion into the spin states has been experimentally confirmed
in charged GaAs quantum dots [50].

IV. CONCLUSIONS

We have proposed a scheme for generation on demand
of a steady-state entanglement between two optical modes
coupled to a V-type three-level atom. We have demonstrated
that the condition for generation of the maximal entanglement
between the modes is to create the complete population
inversion between the dressed states of the coupling atomic
system. In the case of a two-level atom composing the
entangling atomic system, we have shown that a sufficient
condition for entanglement between the modes is to create
a population difference between dressed states of the driven
atomic transition. However, we have found that the maximal
entanglement can not be created in this system because it is not
possible to create the complete population inversion between
the dressed states and, at the same time, maintain a strong
coupling between the cavity modes mediated by the atom. In
the case of three-level atoms composing the entangling system,
we have found that a stationary entanglement can be created
on demand by tuning the Rabi frequency of the driving field to
the difference between the atomic transition frequencies. The
laser field mediates the spontaneously generated coherence
between the atomic dipole transitions, enabling it to engineer
the dissipation in such a way that the atoms evolve into a pure
trapping state.
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[24] X. Y. Lü, P. Huang, W. X. Yang, and X. Yang, Phys. Rev. A 80,
032305 (2009).

[25] Z. Ficek and S. Swain, Quantum Interference: Theory and
Experiments (Springer, New York, 2005).

[26] N. Lu and P. R. Berman, Phys. Rev. A 44, 5965 (1991).
[27] S. Smart and S. Swain, Quantum Opt. 5, 75 (1993).
[28] R. Tan, G. X. Li, and Z. Ficek, Phys. Rev. A 78, 023833 (2008).
[29] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. Büchler, and
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