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Solitons in weakly nonlocal media with cubic-quintic nonlinearity

Eduard N. Tsoy
Physical-Technical Institute of the Uzbek Academy of Sciences, Bodomzor Street 2-B, Tashkent-84, 100084 Uzbekistan

(Received 22 October 2010; published 27 December 2010)

The propagation of optical beams in weakly nonlocal media with cubic-quintic nonlinearity is studied. The
exact solutions for bright and dark solitons are found. The general solutions are implicit, and they are expressed
in terms of the elliptic integrals. In particular cases, the solutions are written explicitly in terms of the hyperbolic
functions. The dependence of the beam parameters and the soliton shapes on the system parameters is analyzed.
The role of nonlocality on the soliton stability is investigated.
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I. INTRODUCTION

A strong optical beam propagating in a nonlinear medium
induces a variation �n of the refractive index. In Kerr-type
media, this variation depends on the local intensity of the beam.
However, in general, �n should be considered as a nonlocal
function of intensity. In this case, �n is written as a convolution
of the medium response function and the intensity-dependent
function.

Usually, nonlocality originates from other processes that
accompany the beam propagation, such as heat transfer in
media with thermal nonlinearity [1–3], diffusion of particles
[4–7], and a change of molecule orientation [8–11]. Nonlocal
interaction is also important in the dynamics of ultracold
atomic gases [12–15].

Recent advances in the study of nonlocal media in optics
are related mainly to research on the beam propagation in
photorefractive media [4–7] and in liquid crystals [8–11]. The
soliton dynamics and interaction in these media have been
investigated theoretically and experimentally.

The propagation of a beam in nonlinear media is de-
scribed in the paraxial approximation by the following
equation [16]:

i∂zψ + 1

2β0
∂2
xψ + k0�n(I ) ψ = 0 , (1)

where ψ(x,z) is the envelope of the electromagnetic field, x

and z are the transverse and longitudinal coordinates, respec-
tively, β0 = k0n0 is the propagation constant, k0 = 2π/λ0, n0

is the linear index, and λ0 is the laser wavelength. We will
consider Eq. (1) in dimensionless form, taking β0 = k0 = 1.
For nonlocal nonlinear media, �n(I ) is represented as [17,18]

�n(I ) =
∫ ∞

−∞
R(x ′ − x)f (I (x ′,z))dx ′ , (2)

where f (I ) is the intensity-dependent function and I (x,z) ≡
|ψ(x,z)|2. The medium response function R(x) is a real
symmetric function, which is normalized to unity.

For media with cubic nonlinearity, f (I ) is proportional
to I . In this work, we include the next term in the Taylor
expansion, taking f (I ) = γ I + δI 2. Also, we consider a case
of weak nonlocality. This assumption is valid when the size of
the intensity distribution I (x,z) in the transverse direction x is

much larger than the spatial width of R(x) (see, e.g., Ref. [17]).
Then I (x ′,z) in Eq. (2) can be expanded around x ′ = x, so that

�n(I ) = γ I + δ I 2 + µ∂2
x I, (3)

where µ = 1
2

∫ ∞
−∞ x2R(x)dx characterizes the degree of non-

locality. In the derivation of Eq. (3), we ignore higher-order
terms, such as ∼∂2

x I 2.
Equation (1), together with Eq. (3), results in the cubic-

quintic nonlinear Schrödinger (NLS) equation with weak
nonlocality:

i∂zψ + 1
2∂2

xψ + γ |ψ |2ψ + δ|ψ |4ψ + µψ ∂2
x |ψ |2 = 0. (4)

When R(x) does not change sign over x, the signs of γ and
µ are the same. Here we consider a case in which the signs
of γ and µ are not related to each other. Equation (4) has a
general character, and it is valid for other nonlocal systems. For
example, in the physics of ultracold atoms, Eq. (4) describes
the dynamics of Tonks-Girardo gas in a weakly nonlocal
limit [14].

The aim of the present work is to present exact analytical
solutions for stationary bright and dark solitons in nonlocal
nonlinear media. For weakly nonlocal media with cubic
nonlinearity, the soliton solutions in an implicit form have been
found in Ref. [17]. Our work provides an extension of these
results to media with cubic-quintic nonlinearity. In general, the
solutions found are in implicit form. However, we also find the
conditions under which the solutions are expressed explicitly
in terms of hyperbolic functions. We also analyze, using the
invariants of Eq. (4), the stability of solitons.

II. BRIGHT SOLITONS

We search for solutions of Eq. (4) in the following form:

ψ(x,z) = ρ(ξ ) exp[iφ(ξ )] exp(ikz), (5)

where ξ = x − vz, v is the soliton transverse velocity, and
k > 0 is the propagation constant. By substituting Eq. (5) into
Eq. (4) and separating the real and imaginary parts, we obtain
equations for the soliton shape ρ(ξ ) and phase φ(ξ ):

1

2
ρ ′′ +

(
vφ′ − k − 1

2
φ′2

)
ρ + γρ3 + δρ5 + µ(ρ2)′′ρ = 0,

1

2
ρφ′′ + (φ′ − v)ρ ′ = 0, (6)
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where the prime denotes the derivative on ξ . It follows from
the second of Eqs. (6) that ρ2(φ′ − v) = 0. Therefore, φ(ξ ) =
vξ + φ0, where φ0 is the initial phase. Then the first of Eqs. (6)
can be integrated once. The integration constant equals zero,
because ρ and all its derivatives vanish at ξ → ∞. Now we
introduce an auxiliary parameter ρa , such that ρ ′ = 0, when
ρ = ρa . Parameter ρa is used later in a definition of the soliton
amplitude. Then

k = v2/2 + γρ2
a

/
2 + δρ4

a

/
3, (7)

and the equation for ρ is written as

ρ ′ 2 = ρ2(ρ2
a − ρ2) γ + 2δ

(
ρ2

a + ρ2
)
/3

1 + 4µρ2
≡ −U (ρ). (8)

Relation (7) for the propagation constant is the same as that
for cubic-quintic media with local interaction.

For the existence of bright solitons, the function U (ρ) in
Eq. (8) should satisfy the following conditions: (i) ρ = 0 is
the root and the maximum point of U (ρ) (i.e., dU/dρ = 0 and
d2U/dρ2 < 0 at ρ = 0), and (ii) there exists a root ρ = ρm of
U (ρ), such that U (ρ) < 0 for 0 < ρ < ρm. These conditions
define the amplitude thresholds for the existence of bright
solitons. For γ > 0, solitons exist if

δ > 0, µ > 0, and any ρa,

δ > 0, µ < 0, and ρ2
a < −1/(4µ),

δ < 0, µ > 0, and ρ2
a < |3γ /(2δ)| ≡ ρ2

c , (9)

δ < 0, µ < 0, and ρ2
a < ρ2

c

and ρ2
m < −1/(4µ).

For γ > 0, the soliton amplitude ρm is defined as

ρm =
⎧⎨
⎩

ρa for δ > 0,

min
[
ρa,

√
−3γ

2δ
− ρ2

a

]
for δ < 0.

(10)

For γ < 0, solitons exist if

δ > 0, µ > 0, and ρ2
a > ρ2

c ,
(11)

δ > 0, µ < 0, and − 1/(4µ) > ρ2
a > ρ2

c .

In this case ρm = ρa . The existence of bright solitons for the
defocusing Kerr coefficient, γ < 0, is not surprising, because
such solitons are possible in local cubic-quintic media [see
Ref. [19] and Eq. (18)]. However, in local media, such solutions
are unstable. We will demonstrate that nonlocality (µ > 0) can
stabilize high-amplitude bright solitons in media with γ < 0.

As pointed out in Eq. (9), for δ < 0 and µ > 0, the
parameter ρa can be varied from zero to ρc. Actually, one
can consider values of ρa in the range [0,ρc/

√
2] only. In

this case, the soliton amplitude is ρm = ρa . One can show
that a solution of Eq. (8) with ρa = ρa,1 ∈ [0,ρc/

√
2] is the

same as a solution with ρa = ρa,2 ∈ [ρc/
√

2,ρc], provided
that ρ2

a,1 + ρ2
a,2 = ρ2

c . This is because the right-hand side
of Eq. (8) is identical for ρa = ρa,1 and for ρa = ρa,2 [see
also Eq. (10)]. A similar argument is valid when δ < 0 and
µ < 0. Here one can consider that ρa varies from zero to
min[ρc/

√
2,

√−1/(4µ)]. We consider the whole region of ρa

for completeness.

Equation (8) can be integrated, giving implicit solutions
for bright solitons. To simplify notation, we introduce two
parameters a and b:

a = −3γ

2δ
− ya, b = − 1

4µ
, (12)

where ya ≡ ρ2
a . For δ > 0, µ > 0, and ya > 0 > a > b, the

solution is written as follows:

±ξ = 1

2

√
3

2δµ

1

ya

√
ya − b

[�(λ1,(ya − a)/ya,q1)

+ 4µyaF (λ1,q1)], (13)

λ1 = sin−1

√
ya − y

ya − a
, q1 =

√
ya − a

ya − b
,

where y(ξ ) ≡ ρ2(ξ ). Functions F (λ,q) and �(λ,m,q) are the
elliptic integrals of the first and third kinds, respectively [20]
(see the Appendix). If δ > 0, µ > 0, and ya > 0 > b > a,
then the solution is obtained from Eq. (13) by using the
transformation a ↔ b. In both cases the soliton peak intensity
is ym ≡ ρ2

m = ya , as a nearest-to-zero positive root of U (ρ).
For δ > 0 and µ < 0, the solution is

±ξ = 1

2

√
3

2|δµ|
1

bya

√
b − a

[
(b − ya) �

(
λ2,q

2
2b/ya,q2

)
+ (1 + 4µb) ya F (λ2,q2)

]
, (14)

λ2 = sin−1

√
(b − a)(ya − y)

(ya − a)(b − y)
, q2 =

√
ya − a

b − a
,

where b > ya > 0 > a. For δ < 0, µ > 0, and a > ya > 0 >

b the solution with ym = ya is obtained from Eq. (14) by
using the transformation a ↔ b. When ya > a > 0 > b, the
solution with ym = a is obtained from Eq. (14) by using the
transformations a → b, b → ya , and ya → a.

For δ < 0, µ < 0, and b > a > ya > 0, the solution has the
form

±ξ = 1

2

√
3

2|δµ|
1

aya

√
b − ya

[(a − ya)�(λ3,a/ya,q3)

+ (1 + 4µa) ya F (λ3,q3)], (15)

λ3 = sin−1

√
ya − y

a − y
, q3 =

√
b − a

b − ya

.

For δ < 0 and µ < 0, three other cases should be considered.
In all of these cases, the solution is obtained from Eq. (15)
with the corresponding transformations of the parameters, as
follows:

a > b > ya > 0, then a ↔ b,

b > ya > a > 0, then a ↔ ya, (16)

ya > b > a > 0, then a → b, b → ya, ya → a.

The solutions (13)–(15) are valid for any sign of γ , provided
that the corresponding conditions [see Eqs. (9) and (11)] for
ρa and ρm are fulfilled.

For a particular value of the soliton amplitude, the fraction
in Eq. (8) can be reduced to a constant that depends only
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FIG. 1. Examples of different soliton shapes. Lines are labeled
by values of (δ,µ,ρm).

on the system parameters. Then the solution of Eq. (8) has a
hyperbolic secant form, which is similar to the standard NLS
equation:

ρ(ξ ) = ρm sech

[
ρm

2

√
2δ

3µ
(ξ − ξ0)

]
,

(17)

ρ2
m = 1

4µ
− 3γ

2δ
> 0, δµ > 0.

For γ > 0, if δ > 0 and µ > 0, this solution exists when δ >

6γµ, while if δ < 0 and µ < 0, it exists when 3γµ > δ >

6γµ. For γ < 0, δ > 0, and µ > 0, solution (17) is valid for
any δ and µ.

Equation (8) for µ = 0 corresponds to a local cubic-quintic
medium. In this case, Eq. (8) has an explicit solution [19]:

ρ(ξ ) = 2
√

k√
γ +

√
γ 2 + 16δk/3 cosh(2

√
2k ξ )

, (18)

where k is given by Eq. (7). This solution is valid for any sign
of γ . For γ > 0 and δ < 0, the soliton form tends to a flat-top
profile, when k → −3γ 2/(16δ).

Examples of the soliton solutions (13)–(15) are presented in
Fig. 1. The soliton width, as well as the soliton shape, depend
on the system parameters and the amplitude ρm. Solitons in
nonlocal media can have a cusp shape, a bell shape, or a flat-top
profile.

Figure 2 shows the dependence of the inverse of the soliton
width [full width at half maximum (FWHM) of the intensity]
on the soliton amplitude for γ > 0. For fixed ρm and δ > 0,
solitons become wider for larger µ > 0 [see Fig. 2(a)]. This
means that more power is necessary to create a soliton in media
with larger µ. This fact can be explained by the following
argument. Qualitatively, one can say that nonlocality (nl)
induces an additional potential Vnl = µ∂2

x |ψ(x,z)|2. For µ < 0
(µ > 0), the nonlocality potential is positive (negative) near the
soliton peak and negative (positive) near the soliton edges. This
can be interpreted to mean that for µ < 0 (µ > 0), nonlocality
increases self-focusing (self-defocusing) properties near the
beam core and self-defocusing (self-focusing) properties near
the beam edges.

When δ < 0 or µ < 0, the soliton amplitude is bounded by
the threshold amplitude [see Eqs. (9) and (10)]. Moreover, as
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FIG. 2. Inverse of soliton FWHM as a function of the amplitude
ρm for γ = 1, and for (a) δ > 0 and (b) δ < 0. Lines are labeled
by values of (δ, µ). Solid (dashed) lines are for µ > 0 (µ < 0). The
dotted (dash-dotted) line corresponds to the standard (cubic-quintic)
NLS soliton, δ = µ = 0 (µ = 0).

we will show later, for µ < 0, the solitons with amplitude close
to the threshold become unstable. This is because of additional
self-focusing near the soliton center due to nonlocality.

As seen from Fig. 2(b), for δ < 0 there exist two types of
beams with the same width. These beams have different am-
plitudes and, therefore, different total powers. This property,
which is peculiar to the local cubic-quintic NLS equation [21],
remains in the weakly nonlocal media as well.

Figure 3 shows the relation between the soliton parameters
for γ < 0. For moderate δ > 0 and µ > 0, the soliton width
is larger than that of the standard NLS soliton of the same
amplitude. An increase of the nonlocality parameter µ makes
the solitons wider. As will be demonstrated later, only high-
amplitude solitons are stable for γ < 0, δ > 0, and µ > 0.
For γ < 0, δ > 0, and µ < 0, solitons with any amplitude
are unstable; therefore, their characteristics are not shown
in Fig. 3.

To analyze the beam shape, we introduce the shape
parameter s(α), which is the ratio of the width of the intensity
distribution at level αym to the FWHM. We take α = 0.9 in the
forthcoming analysis. As a reference, we mention that s(0.9) =
0.152 for a cusp shape of ρ(x) ∼ exp(−|x/w|), s(0.9) = 0.175
for a triangular shape of ρ(x), s(0.9) = 0.2 for a triangular
shape of ρ2(x), s(0.9) = 0.372 for a ρ(x) ∼ sech(x/w) shape,
s(0.9) = 0.390 for a ρ(x) ∼ exp[−x2/(2w2)] shape, s(0.9) =
0.624 for a ρ(x) ∼ exp[−x4/(2w4) shape, and s = 1 for a
rectangular box, where w is the width parameter. For a
super-Gaussian shape of ρ(x) ∼ exp[−x2n/(2w2n)], where
n > 1 is an integer, the larger n is, the more the soliton shape
approaches the flat-top profile. Correspondingly, the parameter
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FIG. 3. Same as in Fig. 2, but for γ = −1, δ > 0, and µ > 0.

s increases with n. Therefore, we see that s can be used to
distinguish effectively between cusp, bell, and flat-top profiles.

The dependence of the shape parameter on the soliton
amplitude presented in Figs. 4 and 5 for the different system
parameters is summarized as follows. For γ > 0 (see Fig. 4)
and

(i) for δ > 0 and µ > 0: s(0.9) depends weakly on δ, µ,
and ρm, varying near the NLS soliton value.

(ii) for δ > 0 and µ < 0: The dependence of s(0.9) on ρm

changes sharply, when |µ| increases. The beam profile tends
to the cusp shape, when ρm → b1/2.

(iii) for δ < 0 and µ > 0: The dependence of s(0.9) on ρm,
which is close to that of the local cubic-quintic NLS soliton,
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FIG. 4. Soliton shape parameter s(0.9) as a function of the
amplitude ρm for γ = 1, and for (a) δ > 0 and (b) δ < 0. Lines
are labeled by values of (δ, µ). Solid (dashed) lines are for µ > 0
(µ < 0). The dotted (dash-dotted) line corresponds to the standard
(qubic-quintic) NLS soliton, δ = µ = 0 (µ = 0).
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FIG. 5. Same as in Fig. 4, but for γ = −1, δ > 0, and µ > 0.

changes slightly by varying µ for fixed δ. The beam tends to
the flat-top shape, when ρm → ρc/

√
2.

(iv) for δ < 0 and µ < 0: The dependence of s(0.9) on ρm

changes sharply, when |µ| deviates slightly from zero; see, for
example, curves for µ = −0.1 and for µ = −0.3. The beam
profile tends to the cusp shape, when ρm approaches to the
maximum of allowed values.

For γ < 0, δ > 0, and µ > 0 (see Fig. 5), the beam profile
for a wide range of δ, µ, and ρm is close to the shape of the
standard NLS soliton.

For the analysis of the soliton stability, we use the invariant
of Eq. (4), which is the beam power:

P =
∫ ∞

−∞
|ψ(x,z)|2dx. (19)

For a solution in the form of Eq. (5), P can be calculated by
using Eq. (8). According to the Vakhitov-Kolokolov condition
[16], the soliton stability is determined by the dependence
of P on the propagation constant k. The soliton is stable if
dP/dk > 0 and unstable otherwise.

The beam power of the solutions (13)–(15) can be found
explicitly. For δ > 0, µ > 0, and ya > 0 > a > b one has

P = 2

√
6µ

δ

√
ya − b E(λ10,q1), (20)

where λ10 = λ1(y = 0) and E(λ,q) is the elliptic integral of
the second kind (see the Appendix).

For δ > 0, µ > 0, and ya > 0 > b > a, P is found as

P =
√

3

2δµ

1√
ya − a

[(1 + 4µa)F (λ̄10,q̄1)

+ 4µ(ya − a) E(λ̄10,q̄1)], (21)

where

λ̄10 = sin−1
√

ya

ya − b
, q̄1 =

√
ya − b

ya − a
. (22)

As expected, Eq. (21) is reduced to Eq. (20) by using the
transformation a ↔ b, since the expression in brackets in front
of F vanishes in this case.

For δ > 0, µ < 0, and b > ya > 0 > a,

P = 2

√
6|µ|
δ

(b − ya)√
b − a

�
(
λ20,q

2
2 ,q2

)
, (23)
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smaller than the label value are stable. The dotted line marks the
border of the soliton existence region.

where λ20 = λ2(y = 0).
For δ < 0, µ > 0, and a > ya > 0 > b,

P =
√

3

2|δ|µ
1√

a − b

[
(1 + 4µa)F (λ̄20,q̄2)

+ 4 µ(ya − a) �
(
λ̄20,q̄

2
2 ,q̄2

)]
, (24)

where

λ̄20 = sin−1

√
(a − b)ya

(ya − b)a
, q̄2 =

√
ya − b

a − b
. (25)

For δ < 0, µ > 0, and ya > a > 0 > b, P is obtained from
Eqs. (24) and (25) by using a ↔ ya .

For δ < 0, µ < 0, and b > a > ya > 0,

P =
√

3

2|δµ|
1√

b − ya

[(1 + 4µya)F (λ30,q3)

+ 4 µ(b − ya) E(λ30,q3) − 4µ
√

bya(b − ya)/a], (26)

where λ30 = λ3(y = 0). For different relations between a, b,
and ya , P is obtained from Eq. (26) by using the corresponding
transformation from Eq. (16). As a reference, we mention that
P = 4ρm

√
3µ/(2δ) for the solution (17).

Equations (20)–(26) and (7) provide the dependence,
parametrized by ρa , of the power on the propagation constant.
First we analyze the soliton stability at γ > 0. The function
P (k) increases monotonically for µ > 0; therefore, solitons
are stable in this region of the parameters. For µ < 0, P (k)
might have a maximum. The maximum defines a threshold
(th) value of k th, above which solitons are unstable (dP/dk <

0). Since ρm depends monotonically on k (at least when
ρa < ρc/

√
2), the threshold k th also defines the threshold

amplitude ρm,th. Isolines of the threshold power Pth ≡ P (k th)
and amplitude in the (δ,µ) plane are shown in Fig. 6. As seen
from the figure, only low-intensity (amplitude) solitons are
stable for large values of |µ|.
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FIG. 7. Dynamics of bright solitons for γ = −1, δ = 0.3, µ =
−0.3, and ρm,0 = 0.75. The thresholds for these parameters are Pth =
1.008 and ρm,th = 0.735. (a) A soliton collapses, when ε = 0.005
and P0 = 1.013. (b) The soliton oscillates, when ε = −0.005 and
P0 = 1.003.

A particular manner of the instability development depends
on the system parameters and initial conditions. As an initial
condition we take

ψ(x,0) ≡ ψ0(x) = [1 + εr(x)]ψex(x,0), (27)

where ε is the perturbation parameter, r(x) ∈ [0,1] is the
random function with uniform distribution, and ψex(x,0)
is one of the exact (ex) solutions given by Eq. (5) and
Eqs. (13)– (17). A typical scenario of the dynamics observed in
the numerical simulations of Eq. (4) for γ > 0 is the following.
When the initial power P0 is larger than the threshold power
Pth, P0 > Pth, the soliton collapses [i.e. the soliton amplitude
increases sharply, while the soliton width decreases; see
Fig. 7(a)]. When P0 < Pth and ρm,0 < ρm,th, where ρm,0 is
the initial soliton amplitude, the soliton oscillates close to
the initial profile. When P0 < Pth and ρm,0 > ρm,th, then,
depending on ε, the soliton either collapses (when ε > εth,
where εth > 0 is a threshold value), or oscillates (when ε < εth)
near a stationary profile [see Fig. 7(b)]. That profile has the
amplitude smaller than ρm,th. We recall that Pth corresponds
to a maximum of the dependence P (ρm) [as well as of P (k)].
Therefore, the unstable soliton with ρm,0 > ρm,th and P0 < Pth

is switched to the state on the stable branch with ρm < ρm,th.
The results of the soliton stability at γ < 0 are summarized

in Fig. 8. For given δ > 0 and µ > 0, the dependence
P (k) has a minimum at k = k th. This minimum defines
the threshold values of the power Pth and amplitude ρm,th.
Low-amplitude solitons with ρm < ρm,th correspond to the
unstable branch, where dP/dk < 0, while high-amplitude
solitons with ρm > ρm,th are stable since dP/dk > 0. In local
cubic-quintic media with γ < 0 and δ > 0, stable solitons do
not exist. Thus, nonlocal effects can stabilize high-amplitude
solitons in media with γ < 0. Here, an interplay of cubic
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FIG. 8. Diagram of the stability of bright solitons for γ = −1.
Solid lines correspond to Pth(µ) for a given δ, while dashed lines
correspond to ρm,th(µ). Lines are labeled by δ values. Solitons with
power (amplitudes) larger than the threshold are stable.

self-defocusing, quintic self-focusing, and space-dependent
focusing (defocusing) due to nonlocality results in effective
nonlinearity that balances diffraction.

Numerical simulations of Eq. (4) for γ < 0 with initial
condition (27) reveal the following dynamics of the perturbed
soliton. First, consider δ > 0 and µ > 0. If P0 < Pth, the
soliton spreads (see Fig. 9). When P0 > Pth and ρm,0 > ρm,th,
the soliton oscillates near the initial profile. When P0 > Pth and
ρm,0 < ρm,th, then, depending on value of ε, the soliton either
spreads or oscillates near the stable profile with ρm > ρm,th.
For δ > 0 and µ < 0, solitons are always unstable. Depending
on initial conditions, solitons either collapse or spread for this
set of the parameters.

III. DARK SOLITONS

A dark soliton corresponds to a dip on a constant back-
ground [16]. We search for the dark soliton solutions, also in
the form of Eq. (5). Now, the second of Eqs. (6) results in the
following relation for the soliton phase:

φ′ = v(1 − yb/y), (28)

where y(ξ ) = ρ2(ξ ), yb = ρ2
b , and ρb is the background

amplitude, such that ρ → ρb at ξ → ±∞. The first of
Eqs. (6) and the boundary conditions at ξ → ±∞ give the
relation for the propagation constant

k = γyb + δy2
b . (29)
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FIG. 9. Spreading of a soliton for γ = −1, δ = 0.3, and µ = 0.3.
Initial conditions are ρm,0 = 2.6, P0 = 11.51, and ε = −0.005. The
thresholds are Pth = 11.54 and ρm,th = 2.67.

Similarly to Sec. II, we introduce an auxiliary parameter ρa

(or ya = ρ2
a ), such that ρ ′ = 0, when ρ = ρa . Then

v2 = −y2
a [γ + 2δ(2yb + ya)/3], (30)

and the equation for y(ξ ) has the form

y ′2 = −4(yb − y)2(y − ya)

× [γ + 2δ(y + 2yb + ya)/3]

1 + 4µy
≡ −Ud (y). (31)

For the existence of dark solitons, the following conditions
should be satisfied: (i) y = yb is the root and the maximum
point of Ud (y), (ii) Ud (y) < 0 for ym � y � yb, where ym is
the value at the minimum of y(ξ ), and (iii) v2 in Eq. (30) is
non-negative. These conditions define threshold values of yb

and ya for the existence of dark solitons. Similarly to Sec. II,
we introduce two parameters:

a = −3γ

2δ
− 2yb − ya, b = − 1

4µ
. (32)

Then, for γ < 0 we have the following conditions for the
existence of dark solitons

δ > 0 and µ > 0 : if a > yb > ya ⇒ 3yb + ya < yc,

if ya > yb > a ⇒ 3yb + ya > yc > 2yb + ya,

δ > 0 and µ < 0 : if a > yb > ya

⇒ 3yb + ya < yc and yb < b,

if yb > ya > a ⇒ 2yb + ya < yc,

yb + ya > yc/2 and ya > b, (33)

if yb > a > ya ⇒ 3yb + ya > yc,

yb + ya < yc/2 and a > b,

if ya > yb > a ⇒ 3yb + ya > yc > 2yb + ya

and yb < b,

δ < 0 and µ > 0 : any ya < yb,

δ < 0 and µ < 0 : b > yb > ya.

For γ > 0, the conditions are

δ < 0 and µ > 0 : yb > ya and 2yb + ya > yc,
(34)

δ < 0 and µ < 0 : b > yb > ya and 2yb + ya > yc.

No dark solitons exist for γ > 0 and δ > 0. The minimum
intensity ym of the dark soliton is found as nearest to yb and
smaller than that root of U (y). We note that, in cubic-quintic
nonlocal media, dark solitons exist for any sign of cubic
nonlinearity γ as well.

Here we represent only an explicit solution that is realized
when the fraction in Eq. (30) is reduced to a constant. This is
possible when the following condition is satisfied:

2yb + ym = −3γ

2δ
+ 1

4µ
> 0, (35)

where we take ya = ym. For these values of the parameters,
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the dark soliton solution has the form

ρ(ξ ) = [
ρ2

m + (
ρ2

b − ρ2
m

)
tanh2 θ

]1/2
,

φ(ξ ) = −
√

6|µ|
|δ|

v

ρm

tan−1

⎛
⎝

√
ρ2

b − ρ2
m

ρm

tanh θ

⎞
⎠ , (36)

θ =
√

|δ|
6|µ|

(
ρ2

b − ρ2
m

)
(ξ − ξ0).

This solution is valid for γ < 0, when δµ < 0, and for γ > 0,
when δ < 0 and µ > 0.

The stability of dark solitons can be analyzed by using the
modified momentum [22–24]

Q = i

2

∫ ∞

−∞
(ψ∂xψ

� − ψ�∂xψ)
(
1 − ρ2

b/|ψ |2) dx, (37)

where ψ� is the complex conjugate of ψ . Parameter Q, similar
to P , is the integral invariant of Eq. (4). If dQ(v)/dv < 0, then
the dark soliton is stable, and unstable otherwise [23,24]. To
calculate Q, it is not necessary to have an explicit form of the
dark soliton solution. From Eq. (30), one can find that

Q = v

∫ yb

ym

√
1 + 4µy

(ya − y)[γ + 2δ(y + 2yb + ya)/3]

× yb − y

y
dy . (38)

Equations (38) and (30) provide the dependence Q(v)
parametrized by ya at fixed yb.

We calculate numerically the integral in Eq. (38). We
consider a black soliton with ρb = 1, ρm = 0, and v = 0.
Figure 10 shows the dependence of the threshold value µth on
δ for γ = ±1. Black solitons are unstable above the threshold.
As seen from Fig. 10, black solitons are stable for moderate
values of δ and µ, and become unstable for sufficiently
large µ > 0. We mention also that the instability threshold
for gray solitons (ρm > 0) is usually lower than that for black
solitons.
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FIG. 10. Threshold value µth, above which black solitons with
ρb = 1 and ρm = 0 are stable, as a function of δ for γ = −1 (solid
line) and for γ = 1 (dashed line). For γ = 1, black solitons exist on
the left-hand side from the vertical dotted line.
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FIG. 11. Dynamics of gray solitons for γ = −1 and δ = 0.3.
(a) Instability of the background at µ = −0.3 and ρb = 1.291. (b)
Stable propagation at µ = −0.1 and ρb = 1.

To study different types of the soliton dynamics, we
consider the initial condition as in Ref. [24]:

ψ(x,0) = {
ρ(x) + ε

[
ρ2

b − ρ2(x)
]}

exp[iφ(x)], (39)

where ρ(x) and φ(x) are from the exact solution (36). In all of
the following numerical examples, we take a gray soliton with
ym = ya = yb/2. For given δ and µ, the value of yb is defined
by Eq. (35).

First, we analyze the dynamics at γ = −1. Usually, dark
solitons with the high background amplitude ρb are unstable.
For δ > 0 and µ < 0, a large ρb for solution (36) is realized
when δ is small, and/or |µ| is large. Figure 11(a) shows the
soliton dynamics at δ = 0.3, µ = −0.3, and ρb = 1.291. One
can see that the soliton background is unstable. This is a typical
scenario of instability of the gray soliton (36) for such signs
of δ and µ. Solitons with lower background are stable, as
shown Fig. 11(b), where δ = 0.3, µ = −0.1, and ρb = 1. For
δ < 0 and µ > 0, the gray soliton (36) is stable, at least when
0 > δ > −2 and 0.2 > µ > 0. It should be mentioned that for
δ < 0 and µ > 0, the general dark soliton solution of Eq. (4)
may become unstable.

Now we consider the case γ = 1, δ < 0, and µ > 0.
Similarly to the results for black solitons (see Fig. 10), an
increase of µ and/or ρb can induce the soliton instability.
Figure 12(a) shows the development of instability for δ =
−0.2, µ = 0.8, ρb = 1.768, and ε = −0.005. The gray soliton
transforms initially into the black one. The latter breaks into
two kinks moving in opposite directions. This dynamics is
similar to what occurs in a local cubic-quintic media with
γ > 0 and δ < 0 [24]. The dynamics depends also on the
sign of the modulation parameter ε. Figure 12(b) shows the
dynamics for the same parameters as those in Fig. 12(a), but at
ε = 0.005. Here the gray soliton transforms smoothly to that
with the larger minimum amplitude. Since the variation of the
amplitude is small, it is not noticeable in the figure.
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FIG. 12. Dynamics of gray solitons for γ = 1, δ = −0.2, µ =
0.8, and ρb = 1.768. (a) Soliton splitting into two kinks for ε =
−0.005. (b) Transformation of the soliton into that with the larger
minimum amplitude for ε = −0.005.

We find that results of all numerical simulations considered
are consistent with the prediction of the stability condition.
A dark soliton is unstable as soon as dQ/dv becomes
positive.

IV. CONCLUSIONS

In the present paper, we have found exact solutions for
bright and dark solitons in weakly nonlocal media with cubic-
quintic nonlinearity. In general, the solutions are implicit in
terms of the elliptic integrals. They can be reduced, for the
particular values of the parameters, to explicit solutions in
terms of the hyperbolic functions. The soliton profile can be
cusp shaped, bell shaped, or flat topped, depending on the
system parameters.

The stability of bright solitons has been analyzed by using
the dependence of soliton power P on the propagation con-
stant. It has been demonstrated that for γ > 0, bright solitons
can be unstable, when µ < 0. This is because nonlocality with
negative µ increases self-focusing properties near the beam
center. A typical scenario of the unstable dynamics for these
parameters is the soliton collapse. It was also shown that stable
bright solitons exist for defocusing cubic nonlinearity γ < 0
and µ > 0, provided that the soliton amplitude is above the
threshold. Solitons with the amplitude below the threshold
spread, since nonlinearity cannot balance diffraction.

The regions of existence of dark solitons in weakly nonlocal
media have been identified. The stability of dark solitons has
been studied by using the modified momentum Q. It has been
shown that black solitons are stable for the small nonlocality
parameter µ > 0, and become unstable when µ increases. The
development of instability has been studied for gray solitons
with ym = yb/2. Typical regimes of instability include the
growth of perturbation on the background and the splitting of
the dark soliton into two kinks.

Our study provides further insight into an interplay between
competing nonlinearities and nonlocality. We demonstrate that
nonlocal effects can stabilize solitons that are unstable in local
media.

APPENDIX

The elliptical integrals of the first, second, and third kinds,
F (λ,q), E(λ,q), and �(λ,m,q), respectively, are defined as
follows [20]:

F (λ,q) =
∫ sin λ

0

dx√
(1 − x2)(1 − q2x2)

,

E(λ,q) =
∫ sin λ

0

√
1 − q2x2

√
1 − x2

dx, (A1)

�(λ,m,q) =
∫ sin λ

0

dx

(1 − mx2)
√

(1 − x2)(1 − q2x2)
d.
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