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Nondeterministic amplifier for two-photon superpositions
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We examine heralded nondeterministic noiseless amplification based on the quantum scissors device, which
has been shown to increase the one-photon amplitude of a state at the expense of the vacuum-state amplitude.
Here we propose using the same basic design to perform perfect amplification in a basis set of up to two photons.
The device is much more efficient than several one-photon amplifiers working in tandem. When used to amplify
coherent states this advantage is shown either using fidelity or in terms of probability of successful action, or
more strikingly in a combination of the two.
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I. INTRODUCTION

It is not possible to amplify quantum states of light perfectly
[1]. For a deterministic amplifier, which always works, in
order to satisfy the uncertainty principle some extra noise
must be added, and typically in standard quantum optical
amplification this takes the form of an undetermined number
of extra noise photons added to the signal. In an amplifier
based on population inversion the amplified signal comes
from stimulated emission and the noise source is spontaneous
emission [2–7]. Although the extra noise photons are not
always a problem for quantum devices [8–10], it is usually the
case that useful quantum properties are destroyed or hidden
by the noise.

A perfect deterministic amplifier would be able to
transform coherent states by simply increasing their
amplitude multiplicatively without adding noise: |α〉 → |gα〉,
with |g| > 1 as the amplitude gain. Different coherent states
are not orthogonal, and so

|〈α|β〉|2 = e−|α−β|2
(1)

→ |〈gα|gβ〉|2 = e−g2|α−β|2 < e−|α−β|2 .

The states are transformed into a pair that are more orthogonal,
which would be able to be distinguished better, and such
a process is not allowed by quantum mechanics [11]. It is,
however, possible to distinguish experimentally between
nonorthogonal states without error, provided that inconclusive
results are allowed [12–15]. Similarly, it is possible to amplify
perfectly provided that the amplifier does not always work. As
long as the probability that the amplifier works is not so large
that it allows nonorthogonal states to be distinguished better
than the limits imposed by unambiguous error discrimination
then the process is allowed.

In its usual form the quantum scissors device [16,17]
(Fig. 1) is a postselecting device based on a pair of beam
splitters, the first of which (BS1) has zero and one photon
as inputs into the two input ports. One of the output ports
forms the output for the device, and the other forms the input
to the second beam splitter (BS2). The other input to the
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BS2 is any pure superposition of photon numbers, typically
a coherent state. This state forms the effective input to the
device. When zero and one photocounts are recorded at the
outputs of BS2, corresponding to vacuum and one photon
states, the output state from BS1 is the same superposition as
that at the input to BS2, but with photon numbers higher than
one removed—hence “scissors.” The remaining superposition
of |0〉 and |1〉 has relative amplitudes which can be adjusted by
altering the transmission and reflection coefficients of BS1.

The possibility of adjusting the relative amplitudes provides
a limited means of perfect amplification [18–20]. If the original
input superposition is a weak coherent state, which has a
small probability of photon numbers higher than one, then
the scissors device can perform the transformation

|α〉 � |0〉 + α|1〉 → |0〉 + gα|1〉 � |gα〉. (2)

This is a valid approximate transformation provided that the
state |gα〉 does not have a significant two-photon amplitude
g2α2/2. The transformation is not deterministic, as it only
works when the appropriate numbers of photocounts are
recorded at the detectors.

If the amplified two-photon component of the coherent state
is significant the scissors device can still be used to perform the
transformation, but the incoming state must be split using an
initial set of beam splitters to provide several coherent states of
smaller amplitudes, which can be recombined coherently after
each has been independently amplified [20]. There are two
main drawbacks with this method of amplification. First, each
independent scissors device requires a single photon input and
two detectors. Second, the method uses several interferometer
arms which must be stabilized to ensure that all of the coherent
states are recombined with the same phase, so that the desired
amplification is produced.

There are other means of performing the amplification oper-
ation shown in Eq. (2), all of which are based on postselection.
The addition and subtraction of single photons [21–23] in
its simplest noninterferometric form performs the required
transformation with g = 2. Oddly, for general gains the op-
eration can also approximately be done if the photon addition
is replaced by a noisy photon source [23,24]. The scheme has
also been extended to amplify polarisation qubits [25].

The purpose of this article is to consider nondetermin-
istic scissors-based amplification which works ideally for
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FIG. 1. The generalized quantum scissors device with arbitrary
beam splitter coefficients, three inputs, and two measured outputs.

superpositions of up to two photons and which does not
require multiple first-order interferometers. In Sec. II we
give an overview of the scissors amplifier as previously
introduced. The next section describes an extension of this
method which works in principle perfectly for superpositions
of up to two photons. The fourth section compares fideli-
ties and success probabilities for the two-photon amplifier
considered here with networks of one-photon amplifiers.
An overall figure of merit representing the utility of the
device is introduced. The final section contains discussion and
conclusions.

II. ONE-PHOTON AMPLIFIER

The quantum scissors device has the form shown in Fig. 1.
It consists of a pair of beam splitters and two detectors. The
beam splitters are denoted BS1 and BS2 and we assume that
in general they can have different reflection (r1,r

′
1,r2,r

′
2) and

transmission (t1,t ′1,t2,t
′
2) coefficients for incidence from dif-

ferent ports. The relations between input and output operators
for BS1 can be written

b̂2 = t ′1â2 + r1â1,
(3)

b̂1 = t1â1 + r ′
1â2,

with similar relations for BS2. Unitarity and energy conser-
vation require the moduli of the reflection and transmission
coefficients to be equal for each beam splitter,

|t ′| = |t | and |r ′| = |r|, (4)

and also imply a phase requirement,

φr + φ′
r ± π = φt + φ′

t . (5)

This phase requirement is a consequence of the fact that the
beam splitter transformation is unitary. A less restrictive phase
condition applies to lossy components.

For a one-photon scissors the inputs to BS1 are the vacuum
and one-photon states |10〉12 (Fig. 2), which transform to

|10〉12 = â
†
1|00〉12 → (r1b̂

†
2 + t1b̂

†
1)|00〉12. (6)

This forms the input in mode 2 to BS2. The other input is
the coherent state, which we artificially truncate to first order
in the creation operator as no more than one photon will be

FIG. 2. The one-photon quantum scissors device.

detected. We can therefore write the three component state as

e−|α|2/2(1 + αâ
†
3)(r1b̂

†
2 + t1b̂

†
1)|000〉123

→ e−|α|2/2(1 + αt2ĉ
†
3 + αr2ĉ

†
2)

× (r1t
′
2ĉ

†
2 + r1r

′
2ĉ

†
3 + t1b̂

†
1)|000〉123, (7)

where the BS2 unitary has been applied. The single-photon
detection in mode 3 allows the elimination of all terms
proportional to ĉ

†
2 and means that the mode 1 output

state is

e−|α|2/2
23〈00|ĉ3(1 + αt2ĉ

†
3)(r1r

′
2ĉ

†
3 + t1b̂

†
1)|000〉123

= e−|α|2/2r1r
′
2(|0〉 + gα|1〉), (8)

where the gain factor

g = t1t2

r1r
′
2

. (9)

The probability that the required photocounts are obtained,
and therefore that the device functions, is given by the squared
modulus of this state, e−|α|2 |r1r

′
2|2(1 + |gα|2).

In the original scissors device [16,17] the gain factor was
arranged to be unity, so that the device merely removed
the photon number components of the coherent state which
are higher than one, while maintaining the relative propor-
tions of vacuum and one-photon states. However it is clear
that this is not the only possibility [18–20]. Amplification
can be arranged by appropriately tuning the beam splitter
reflectivities.

As the scissors device removes any two-photon (or higher)-
state component there is an effective limit to the magnitude of
the coherent state that the system will amplify. The criterion for
the device to operate as a perfect amplifier is that for a partic-
ular gain g any amplified two-photon component would have
been insignificantly small, which requires |g2α2|/2 � |gα|. If
this is not the case then a better approximation to the required
transformation could be made by splitting the coherent state
at a series of beam splitters to reduce its amplitude and
performing the scissors amplification on each component
before recombining the outputs. Such a system is heavy in
terms of resources and requires several stable interferometer
arms to recombine the amplified coherent states. Furthermore,
for each scissors device added the probability of success of
the composite device decreases, so that for a coherent state
|α〉 split into N equal coherent states of amplitude α/

√
N and
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(a)

(b)

FIG. 3. The two-photon quantum scissors device with required
inputs and detector results for amplification: (a) with two single-
photon inputs and (b) with vacuum and two-photon states as input.

then amplified, the success probability is [20]

P (N ) = e−|α|2 |r1r
′
2|2N

(
1 + |gα|2

N

)N

= e−|α|2

2N

1

(1 + |g|2)N

(
1 + |gα|2

N

)N

. (10)

On the second line we have assumed that BS1 is 50 : 50, as
is typical for scissors devices, a compromise between success
probability and gain, which, apart from an overall phase, is
then dependent on BS2 parameters alone: g = t2/r ′

2.

III. TWO-PHOTON STATE SPACE

It is natural to see if it might be possible to amplify slightly
larger coherent states in a relatively simple manner. In order to
do this we consider the normal scissors setup in Fig. 1, but with
the inputs specified in Fig. 3(a). For an output superposition
state in mode b̂1 of up to two photons the input to this beam
splitter should contain at least two photons. Similarly at the
measurement beam splitter the input state to be amplified ought
to be a superposition of |0〉,|1〉, and |2〉, and the measurements
ought to remove a total of two photons. Such a scenario
has been studied previously in the context of producing a
two-photon quantum scissors [26], where one photon enters
both input ports of BS1 and one count is detected at both
output ports of BS2. Other schemes have relied on the use of
multiport generalizations of the quantum scissors [27]. Here
an amplification action on the two-photon input superposition,

a0|0〉 + a1|1〉 + a2|2〉 → a0|0〉 + ga1|1〉 + g2a2|2〉, (11)

is required for some g.
The input state which enters BS1 consists of a single photon

in each input port, which is transformed into the output state

â
†
1â

†
2|00〉12 → [

t ′1r1b̂
†2
2 + (t1t

′
1 + r1r

′
1)b̂†2b̂

†
1 + r ′

1t1b̂
†2
1

]|00〉12.

(12)

Again the output port 2 from BS1 becomes the input port 2
for BS2. The other input port is in a coherent state, which is
truncated, this time at the two-photon level. This multimode
state is transformed by BS2 into a three-mode entangled state
using the inverse relations of Eq. (3) for BS2.

It turns out that it is not possible to perform the amplifier
transformation for a BS1 input of one photon in each input
port if one count is recorded in each BS2 output port. Rather
we require two photons to appear in one output port and none
in the other, as shown in Fig. 3(a). If we assume that the two
photons are detected in mode 3 this leads to the mode 1 output
state,

√
2e−|α|2/2

×
[
t ′1r1r

′2
2 |0〉 + α(t1t

′
1 + r1r

′
1)t2r

′
2|1〉 + α2

√
2
r ′

1t1t
2
2 |2〉

]

=
√

2e−|α|2/2t ′1r1r
′2
2

×
[
|0〉 + α

t1t
′
1 + r1r

′
1

t ′1r1
g|1〉 + α2

√
2

r ′
1t1

t ′1r1
g2|2〉

]
, (13)

with

g = t2/r ′
2. (14)

There are two criteria for amplification which can be imposed:
either we can demand pure state amplification in which the
one- and two-photon gains are identical or we can be less
restrictive and merely demand that the modulus of the two
gains be equal.

A. Pure amplification

The identification of gain g with the BS2 parameters
depends on the following condition being satisfied for BS1:

r ′
1t1

r1t
′
1

=
(

t1t
′
1 + r1r

′
1

r1t
′
1

)2

, (15)

which becomes

|r1r
′
1|2 + |r1r

′
1||t1t ′1|ei(�t+�r ) + |t1t ′1|2e2i(�t+�r ) = 0, (16)

where �r = φr + φ′
r and �t = φt + φ′

t . The phase condition,
Eq. (5), allows this to be rewritten as

∣∣∣∣ r1r
′
1

t1t
′
1

∣∣∣∣
2

−
∣∣∣∣ r1r

′
1

t1t
′
1

∣∣∣∣ + 1 = 0, (17)

which cannot be satisfied for real |r1r
′
1|/|t1t ′1|. Thus there is no

possible solution for BS1 which allows perfect amplification.
The amplification condition (16) requires |t1t ′1| = |r1r

′
1| and

�t − �r = ±2π/3. This analysis is general enough that it
precludes even generalized beam splitters based on interfer-
ometers from satisfying the condition.

Beam splitters with less restrictive phase relations are
allowed, but only if they are lossy [28,29]. As the loss of the
beam splitter is increased the range of allowed phases in Eq. (5)
around π increases, and once the beam splitter reaches a loss
level of 50% any phase is allowed. It is shown in the Appendix
that the minimum loss level required to satisfy condition (16)
is 1/3. Thus BS1 can be no more than 33 : 33 in order for the
scissors to act as a two-photon amplifier.
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Of course it is not strictly necessary to have a real lossy
beam splitter, and it is probably not desirable in any case, as
such a component is restrictive. The lossy beam splitter can
be replaced by lossless components, either a tritter [30,31], in
which one of the outputs is ignored, or a lossy beam splitter
noise equivalent circuit [28]. These allow the amount of loss to
be controlled and further provide the required phase freedom.
It is also possible to control the amount of loss using polarizing
beam splitters.

The system described here is not the only possibility. The
same amplification transformations can be made if BS1 is
lossless and BS2 is lossy, provided that the inputs to BS1 are
|2〉 and |0〉 as in Fig. 3(b). In this case each detector at BS2 must
detect one count. However, it is more difficult to prepare a pure
two-photon state at the input—a difficulty which is potentially
offset by the increased detection simplicity for this system;
photon number discriminating detectors are not required.

B. Two-photon sign-shift amplifier

The condition on the BS1 parameters [Eq. (17)] ensures
that pure amplification is not possible for a lossless BS1.
However, if the requirements are relaxed a little so that only
the magnitudes of the one- and two-photon gains are required
to be equal,

∣∣∣∣ r
′
1t1

r1t
′
1

∣∣∣∣ = 1 =
∣∣∣∣ t1t

′
1 + r1r

′
1

r1t
′
1

∣∣∣∣
2

, (18)

so that

||t1|2ei�t + |r1|2ei�r |2 = |r1t
′
1|2. (19)

The beam splitter amplitude and phase conditions allow this
to be written as

5|t1|4 − 5|t1|2 + 1 = 0, (20)

which has the solutions

|t1|2 = 1

2
±

√
5

10
� 0.72,0.28. (21)

It is relatively straightforward to calculate the phases of the
gains experienced by the one- and two-photon components,
and it is found that the device makes the transformation

a0|0〉 + a1|1〉 + a2|2〉 → a0|0〉 + ga1|1〉 − g2a2|2〉, (22)

where

g = t2

r ′
2

e(φt1−φr1). (23)

The lossless scissors device therefore can make the required
amplifier transformation, but with a sign change to the two-
photon component of the state. There are situations in optical
quantum information processing where such a sign change is
required. The nonlinear sign shift gate [32] performs such a
sign change on the two-photon component of a state without
amplification. If the amplifier sign change is not desirable the
nonlinear sign shift gate could of course be used to correct
it. Another possibility might be to pass the state through two
identical amplifiers, in which case the nonlinear sign changes
would cancel.

1 2 3 4 5
0

1

2

3

4

g2

FIG. 4. Log of the reciprocal fidelity defect, −log10(1 − F ), as
a function of gain for various coherent state amplitudes: |α|2 =
0.1 (solid line), |α|2 = 0.2 (dashed line), |α|2 = 0.3 (dotted line),
|α|2 = 0.4 (dot-dashed line), and |α|2 = 0.5 (sparsely dashed line).
An ordinate value of 1 corresponds to a fidelity of 0.9, 2 to 0.99, etc.

The remarks at the end of the last subsection regarding
interchanging the roles of BS1 and BS2 also apply here. The
same transformation is made with a two-photon state as input
to BS1, for BS2 transmission and reflection coefficients which
satisfy Eq. (21), when one count is recorded at each output
port of BS2.

IV. FIDELITY AND SUCCESS PROBABILITY

The amplifier described previously works perfectly for any
superposition state which contains no more than two photons,
but for states with nonzero amplitudes for higher photon
numbers the fidelity will be less than unity. We show this
effect in Figs. 4–7, which detail functions of the the squared
overlap (fidelity) between the amplified output and the state
|gα〉 for a range of intensity gains g2 and input coherent state
amplitudes α.

1 2 3 4 5
0.970

0.975

0.980

0.985

0.990

0.995

1.000

g2

F

FIG. 5. Fidelity F as a function of gain: comparison of two-
photon amplifier with N one-photon amplifiers and for |α|2 = 0.1.
The lines are as follows: two-photon amplifier (solid line), N = 1
(dashed line), N = 2 (dotted line), and N = 3 (dot-dashed line).
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1 2 3 4 5
1.0

1.5

2.0

2.5

3.0

3.5

4.0

g2

FIG. 6. −log10(1 − F ), as a function of gain: comparison of
two-photon amplifier with N one-photon amplifiers for |α|2 = 0.1.
The lines are as follows: two-photon amplifier (solid line), N = 1
(dashed line), N = 2 (dotted line), N = 3 (dot-dashed line), and
N = 4 (sparsely dashed line).

In Fig. 4 the effect of the input state coherent amplitude
on the reciprocal of the fidelity defect of the output with the
coherent state |gα〉 is shown; for a supposedly perfect amplifier
this function provides an appropriate measure of quality—it is
important to minimize the probability that the state is incorrect.
The defect is tiny at lower gains, for example, for a twofold gain
the defects for |α|2 = 0.1 and 0.2 are smaller than 0.001 and
0.01, respectively. Even for a fivefold gain the increases from
these values are less than one order of magnitude. However, for
higher coherent state amplitudes and gains the fidelity defect
is larger.

In Figs. 5–7, for comparison we show plots for the output of
N one-photon amplifiers. It is clear that there is considerable
advantage in using only one two-photon amplifier in most
cases. The set of one-photon amplifiers produces a state with
higher fidelity only when two criteria are fulfilled: first, that
|gα〉 has relevant three-photon and higher amplitudes, and
second, that N is large enough to provide a significant fraction
of the required amplitude. As we shall see, however, the
main disadvantage to increasing the number of one-photon
amplifiers is a reduced probability that the device will function.

1.0 1.5 2.0 2.5 3.0
0.5

1.0

1.5

2.0

2.5

g2

FIG. 7. Same as Fig. 6 but with α = 0.3.

1 2 3 4 5
0

2

4

6

8

10

g2

P

FIG. 8. Amplifier success probability as a function of gain for
|α|2 = 0.1. The lines are as follows: two-photon amplifier (solid line),
N = 2 (dashed line), N = 3 (dotted line), N = 4 (dot-dashed line),
and sign-shift amplifier [gray (top) line].

In any case, however, for |α|2 = 0.1 Figure 5 shows that
it is much better to use a two-photon amplifier than two
or three one-photon amplifiers for reasonable gains. Even
four one-photon amplifiers do not produce a state with a
higher fidelity than the two-photon amplifier for gains below
about 3, as shown in Fig. 6. Higher input coherent states
decrease the overlap of the two-photon amplifier with the
output coherent state more than they do for higher numbers
of one-photon amplifiers due to the fact that the two-photon
amplifier produces a state with a lower maximum photon
number. In Fig. 7, which is for |α|2 = 0.3, we can see
that four one-photon amplifiers do produce a state with
a higher fidelity than the two-photon amplifier, but three
one-photon amplifiers do so only if the gain is larger than
about 2.5.

Overlap with the output state is not the only criterion for
a useful device. It is also pertinent to consider the probability
that the device performs the amplification. The probability
that the two-photon amplifier works is given by the squared

1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

g2

P

FIG. 9. Same as for Fig. 8, but with |α|2 = 0.3.
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1 2 3 4 5

2

1

0

1

2

g2

lo
g 10

U

FIG. 10. log10 of the utility function as a function of gain for
|α|2 = 0.1. The lines are as follows: two-photon amplifier (solid line),
N = 2 (dashed line), N = 3 (dotted line), and N = 4 (dot-dashed
line).

normalization factor of the output state from Eq. (13). This is

P = 2e−|α|2 |t ′1|2|r1|2|r ′
2|4

(
1 + |gα|2 + |gα|4

2

)

= 2

9

1

(1 + |g|2)2

(
1 + |gα|2 + |gα|4

2

)
, (24)

where in the second line we have set BS1 to be symmetric,
|t ′1|2 = |r1|2 = 1/3. For the two-photon sign-shift amplifier the
factor of 2/9 becomes 0.4, but the form of the probability
is unchanged. We plot this in Figs. 8 and 9 against gain
together with the corresponding probabilities for N one-
photon amplifiers from Eq. (10). The two-photon amplifier
success probability is of the same order as the one-photon
amplifier probability for N = 2, but is much larger than that
for N = 3 and higher (the difference will be even greater
when the probability of producing the extra input photon is
taken into account). The picture is not dramatically changed
by increasing the input coherent Fiurás̆eknt state amplitude.
The two-photon amplifier is slightly more likely to function
at higher gains than the pair of one-photon amplifiers. The
other point to note is that the two-photon sign-shift amplifier
is significantly more likely to work than either the two-photon
amplifier or two one-photon amplifiers.

We can combine the fidelity defect and the success probabil-
ity into an appropriate overall figure of merit, U = P/(1 − F )
values of which represent the utility of a device for producing
the desired quantum state. It is clear from Fig. 10 that the
two-photon amplifier is much better than any of the other
combinations of single-photon amplifier according to this
criterion. For low gains the two-photon amplifier is better than
N = 2 by about an order of magnitude, and for gains up to
about fivefold the two-photon amplifier is better by a about a
factor of 2.

V. CONCLUSIONS AND DISCUSSION

Some optical quantum information protocols are performed
in the two-photon basis and require a significant two-photon
amplitude, something which can be difficult to achieve from
coherent states without exciting the three or higher photon
number components of the state. In this article it has been

shown that it is possible to perform perfect amplification of
a superposition of up to two photons using beam splitters
in a quantum scissors configuration. There are two types of
possible amplification. If amplification in which the two-
photon and one-photon gains are identical is required, the
transformation can be performed with one lossy and one
lossless beam splitter. The lossy beam splitter must on average
absorb at least one-third of the light which falls upon it. Such
a lossy device can be straightforwardly mimicked by higher
order multiports.

The second type of amplification which is possible is that in
which the two-photon component of the state receives a sign
change. Such a sign change is sometimes required in optical
quantum-information protocols. When it is not required it can
be corrected. This type of amplification can be done with two
standard lossless beam splitters.

If the amplifier is used on coherent states it will not amplify
perfectly. The fidelity of the output state obtainable in this
case using the two-photon amplifier, for reasonable gains
and for the coherent amplitudes typically used in quantum
information, is much better than that obtainable even with a
network of three one-photon amplifiers. Also, the probability
that the two-photon amplifier works is of the same order of
magnitude as that for two one-photon amplifiers, and so there
is no significant disadvantage to using the higher-order device.
For higher numbers of one-photon amplifiers the advantage is
greater as the probability that they all work successfully is so
small.

We have quantified the overall device performance using
a figure of merit which takes account of both fidelity and
success probability. This figure of merit displays the significant
advantage to be gained from using the two-photon amplifier.

Furthermore the resources required by the two-photon
amplifier [two photons, one beam splitter, one lossy beam
splitter (or lossless for the sign-shift version), and two
photon number discriminating detectors] are smaller than
those required for two one-photon amplifiers [two photons,
six beam splitters (including a two-arm interferometer), and
four detectors]. This is still true even if the lossy beam splitter
is replaced by a tritter [30,31] and the discriminating detectors
are replaced by a beam splitter and two standard detectors.
The resources required by three or more one-photon amplifiers,
together with the fact that the success probabilities are so small,
render them of limited use when compared to the two-photon
amplifier.

The usefulness of the two-photon amplifier is further
underlined by what happens if it fails to work. Photons are
typically produced by downconversion sources in pairs, and
so single photons are typically heralded. If, for example, only
one heralded photon enters BS1, the two-photon amplifier
will sometimes operate as a one-photon amplifier. Thus, even
when the device fails to work fully it can sometimes produce
a state of some use, albeit of smaller overlap with the desired
amplified state.

The extension of nondeterministic amplification to higher
basis sets such as those which include three or four photons
is possible, but not for the relatively simple scissors device
considered in this article. There are not enough free parameters
in the set of beam splitter coefficients to allow the required gain
conditions to be satisfied. It ought to be possible to use the same

063828-6



NONDETERMINISTIC AMPLIFIER FOR TWO-PHOTON . . . PHYSICAL REVIEW A 82, 063828 (2010)

basic scissors structure to perform amplification in such higher
bases, but with the beam splitters which make up the device
substituted with higher-order multiports, with multiple photon
inputs. The resources required for higher-order multiports are
lower than would be used by multiple single-photon scissors,
so there may be be some advantage to this.

APPENDIX: PHASE CONDITIONS FOR LOSSY
BEAM SPLITTERS

The phase condition for a lossy beam splitter is easily
derived by first assuming that coherent states are incident from
each input arm and requiring that the mean number of photons
in the output does not exceed that of the input. A similar
analysis was used in [28] to derive magnitude restrictions. For
example if coherent states |α〉 and |β〉 are incident from ports
1 and 2 onto BS1 this means that (dropping the subscripts)

|t ′β + rα|2 + |tα + r ′β|2 � |α|2 + |β|2. (A1)

This can be rearranged to give

α

β
(t ′r∗ + t∗r ′) + α∗

β∗ (t ′∗r + tr ′∗)

�
(

1 + |α|2
|β|2

)
(1 − |t |2 − |r|2), (A2)

and then
2|α/β|

1 + |α/β|2
2|t ||r|

1 − |t |2 − |r|2 cos [(�r − �t )/2]

× cos[φα − φβ + (φr − φ′
r + φt − φ′

t )/2] � 1, (A3)

where we have explicitly written the coherent state amplitudes
in terms of magnitude and phase. The maximum value of the
first factor is 1 for coherent states of the same magnitude. We
can also adjust the phase of the second cosine factor using
the coherent states so that it is ±1. Equation (17) imposes
|r| = |t |, and so

± 2|t |2
1 − 2|t |2 cos [(�r − �t )/2] � 1. (A4)

For the 50:50 beam splitter this condition is equivalent to
Eq. (5), and the phase �r − �t is limited to ±π . For a lossy
beam splitter a range of phases around these values is allowed,
which increases as the loss grows. Clearly, when the loss
reaches 50% (|t |2 = |r|2 = 0.25) any phase is allowed.

For the amplifier we require BS1 phases to be related by

�r − �t = ±2π

3
. (A5)

If the allowed range of phases around ±π is to include this,
then Eq. (A4) implies that the transmission coefficient should
be limited to |t |2 � 1/3.
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