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Interaction-free all-optical switching via the quantum Zeno effect
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We propose an interaction-free scheme for all-optical switching which does not rely on the physical coupling
between signal and control waves. The interaction-free nature of the scheme allows it to overcome the fundamental
photon-loss limit imposed by the signal-pump coupling. The same phenomenon protects photonic-signal states
from decoherence, making devices based on this scheme suitable for quantum applications. Focusing on χ (2)

waveguides, we provide device designs for traveling-wave and Fabry-Perot switches. In both designs, the
performance is optimal when the signal switching is induced by coherent dynamical evolution. In contrast,
when the switching is induced by a rapid dissipation channel, it is less efficient.
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I. INTRODUCTION

All-optical networks hold the promise of fast transmission
speed and ultrahigh data capacity owing to the noninteracting
nature and large bandwidth of photonic signals. A necessary
resource for such networks is all-optical switching, in which
the state of a signal wave is switched in the presence of a
control wave (pump). This is routinely achieved using direct
coupling between the two waves in nonlinear materials, such
as semiconductors [1], χ (3) fibers [2–5], and cascaded χ (2)

waveguides [6–10]. A fundamental limit in these devices is
due to the photon loss resulting from signal-pump coupling.
When extended to the quantum domain, this photon loss
additionally causes the quantum states of photonic signals
to collapse (i.e., decohere). To overcome this difficulty, we
propose “interaction-free” switching that eliminates direct
signal-pump coupling.

The concept of an “interaction-free” phenomenon was first
proposed as “measurement without touching” [11,12] and has
recently been extended to quantum logic gates [13–16] and
counterfactual quantum computation [17]. In our application to
all-optical switching, we assume the signal wave is initially in
state, say, |0〉. If un-disrupted, it will coherently evolve into an
orthogonal output state |1〉, for example, after passing through
a nonlinear waveguide. To induce switching, we apply a pump
wave which couples |1〉 to an ancillary state |2〉. This coupling
provides a source of disruption to the |0〉 ↔ |1〉 evolution,
resulting in the signal being frozen in state |0〉. Thus the signal
output will be switched between |0〉 and |1〉 depending on the
presence or absence of the pump. Note that the signal and
pump do not directly interact during operation of the device,
as (ideally) the signal remains in |0〉 when the pump is on.
Therefore, in the ideal case, any photon loss from signal-pump
coupling is eliminated. Moreover, the quantum states of both
the signal and the pump are protected from decoherence.

Each of the previous schemes exploits the quantum Zeno
effect [18,19], whereby unitary evolution is suppressed via
quantum decoherence (i.e., quantum measurement) [20]. Phys-
ically, the decoherence can be induced via either incoherent
and irreversible coupling to many unknown quantum modes
(e.g., spontaneous emission into a large number of electro-
magnetic modes [21]), or coherent and reversible coupling to
a known quantum mode (e.g., polarization decoherence via

a polarization-dependent time delay [22]). In the context of
quantum measurement, these two processes are mathemati-
cally identical. In the context of interaction-free switching,
however, we will show that the “incoherent quantum Zeno”
(IQZ) effect and the “coherent quantum Zeno” (CQZ) effect
can lead to very different switching performances.

An IQZ-based interaction-free switch was recently pro-
posed by Jacobs and Franson (hereafter referred to as the
“JF switch”), which is composed of a microring embedded
in an atomic vapor [23]. We have recently designed another
type of CQZ-based, interaction-free switch which is based on
the coherent dynamical effect of Autler-Townes splitting [24].
The latter switch is composed of a χ (2) microdisk coupled to
two fibers (or waveguides). A third kind of switch has been
demonstrated which relies on the absorption or scattering of
pump photons to change the optical properties of resonators
[25–31]. Although implemented without direct signal-pump
coupling, switches of this kind are not lossless and involve
significant pump dissipation. They are thus not considered to
be “interaction-free.”

In our switch design, both the |0〉 and |1〉 states are assumed
to be lossless (a necessary condition for high-fidelity switch-
ing). The ancillary state |2〉, on the other hand, can be lossy.
Depending on its lifetime, the interaction-free disruption will
be induced by either the coherent or incoherent quantum Zeno
effects. First, if |2〉 is short-lived, then the |1〉 → |2〉 coupling
effectively opens a dissipation channel for |1〉. The inhibition
of the |0〉 ↔ |1〉 transition is therefore a consequence of the
IQZ effect. In the second case, that of a long-lived |2〉 sate, there
is no dissipation involved. Instead, the |0〉 ↔ |1〉 transition
is suppressed by an Autler-Townes–based CQZ effect [32],
similar to the electromagnetic-induced transparency [33]. The
former IQZ effect corresponds to broadening of the |1〉 state,
whereas the latter CQZ effect corresponds to shifting of
the same state. The two processes are equally effective for
suppressing the |0〉 ↔ |1〉 transition, but lead to very different
pump-power requirements for similar switching setups. To see
why, we consider the toy “�” model described earlier with
Rabi frequencies of �s and �p for the |0〉 ↔ |1〉 and |1〉 ↔ |2〉
transitions, respectively. The system evolution time t is set to
be π/�s , such that the signal evolves to |1〉 with pump off. The
|2〉 state is assumed to decay at rate γ . Note that a necessary
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condition is |�p| � |�s |. In the IQZ regime with γ � �p, one
finds via adiabatic elimination that the output power fraction
of the signal in |1〉 with pump on is γ t |�s |2/|�p|2. In contrast,
in the CQZ regime with γ � �p, the power fraction in |1〉 is
� |�s |2/|�p|2. As γ t � |�p|t � π , the fraction of the signal
evolving into |1〉, even with the pump on, is much higher
in the IQZ regime than in the CQZ regime. This strongly
suggests that the CQZ effect is more efficient in suppressing
the |0〉 ↔ |1〉 transition, which will lead to better switching
performance in the CQZ regime. Physically, this is because
in the presence of a strong dissipation for |2〉, the |1〉 ↔ |2〉
coupling is adversely suppressed by the IQZ effect. As a
result, for a given pump, the |0〉 → |1〉 transition is in fact
less disrupted in the IQZ regime.

In order to perform a systematic study of the interaction-free
switching, in this paper we consider systems composed of χ (2)

waveguides. Two designs are provided. The first is a traveling-
wave design composed of a single-pass waveguide. With no
pump, the signal undergoes a coherent second-harmonic gen-
eration (SHG) process in the waveguide, resulting in frequency
doubling or π-phase shifting. In this design, the fundamental
(signal input) and the second-harmonic (SH) wave correspond
to |0〉 and |1〉, respectively, in the previous prototypical model.
To induce switching, a pump wave suppresses the SHG
by coupling the SH state to an ancillary state (|2〉). This
coupling can be either sum-frequency generation (SFG) or
difference-frequency generation (DFG), but for concreteness,
in this traveling-wave design we focus on DFG. Using both
the IQZ and CQZ effects, we are able to construct frequency,
polarization, and spatial-mode switches. To achieve similar
performances, a much stronger pump is required in the IQZ
regime than in the CQZ regime. All switches turn out to
work well for continuous-wave inputs. For the realistic case
of nonflat pulses, however, only the frequency switch is
potentially practical. This is because both the polarization
and spatial-mode switches are subject to significant pulse
distortion, which fundamentally arises from the nonlinear
nature of the SHG process. Such distortion would severely
limit the cascadability of these types of switches, making them
not very useful for potential practical applications.

To overcome pulse distortion, our second design utilizes a
Fabry-Perot cavity, specifically, a χ (2) waveguide coated with
reflective layers on the two end faces. The cavity is designed
to be resonant for both the signal and pump waves. In the
absence of the pump, the signal wave, say, applied from the
left, is resonantly coupled with the cavity mode. Eventually, it
exits from the right end after a time delay. To induce switching,
we apply a pump wave to the cavity, also through the left-end
layer. In the cavity, the signal and pump waves undergo SFG (or
DFG). The SFG dynamics shifts the cavity out of resonance,
resulting in the signal being reflected from the cavity. Note here
that the SFG only “potentially” happens, as ideally the signal
would never enter the cavity. Moreover, by applying the pump
pulse slightly ahead of the signal pulse, the pump will pass
through the cavity unaffected (as there is ideally no signal field
in the cavity). Compared to the traveling-wave design, in this
case the quasilinear cavity-coupling process would overcome
pulse distortion, provided that the cavity passband is wider than
the Fourier spectrum of the pulses. Again, in this design, better
switching performance is obtained in the CQZ regime than in

the IQZ regime. We note that, in the IQZ regime, our cavity
design is physically equivalent to the JF switch [23]. Both are
implemented via avoided two-photon absorption. Physically,
the JF device is composed of a microring evanescently coupled
to an atomic vapor. In contrast, our device utilizes an all solid-
state design. In the CQZ regime, the present Fabry-Perot switch
can be mapped onto our recently proposed microdisk switch
[24]. The goal of this paper is to systematically study the IQZ
and CQZ effects in interaction-free switching by varying the
system dissipation. We present the traveling-wave and Fabry-
Perot designs in Secs. II and III, respectively, before presenting
a brief conclusion in Sec. IV.

II. TRAVELING-WAVE SWITCH

In this section we present the traveling-wave design for
interaction-free all-optical switching. In Sec. II A we describe
the schematic setups for three types of devices. In Sec. II B,
we analytically solve the system dynamics in the CQZ and
IQZ regimes. Using these results, in Sec. II C we analyze the
switching performance for both continuous-wave and pulsed
inputs.

A. Setup

The schematic setups for our frequency, polarization, and
spatial-mode switching devices are shown in Figs. 1(a)–
1(c), respectively. The frequency switch transforms a signal
wave originally at angular frequency ωs into an identical
signal at angular frequency ωs or 2ωs , depending on the
presence or absence of the control wave. To achieve this,
the waveguide is designed to be phase matching (PM) or
quasi-phase-matching (QPM) for SHG of the signal wave.
Phase matching can be achieved in some birefringent crystals
by angle tuning [34] or temperature tuning [35], whereas
quasi-phase-matching is more flexibly realized in periodically
poled materials whose crystal-axis orientation is periodically
inverted along the wave-propagation direction [36,37]. In the
absence of the control wave, the signal wave undergoes a
complete SHG cycle as it travels through the waveguide,
where its power is monotonically transferred to the harmonic
wave (at angular frequency 2ωs). In the presence of the
control wave the SHG process is suppressed, resulting in the
majority of the signal power remaining at angular frequency
ωs . In effect, the presence of the control wave switches the
output signal frequency from 2ωs to ωs .

Analogously, the polarization switch [see Fig. 1(b)] per-
forms a polarization rotation (while leaving the signal fre-
quency unchanged) that is conditional on the presence or
absence of the pump wave. This type of switch employs
phase-mismatched (PMM) waveguides to avoid monotonous
transfer of power from the signal to the second-harmonic
wave. Using a uniaxial crystal, the waveguide is designed
such that one of the two orthogonal signal polarizations
experiences a π -phase shift during the SHG process. This
can be achieved, for example, by using a periodically poled
(PP) uniaxial waveguide in which the ordinary-polarized light
is close to QPM, whereas the extraordinary-polarized light
is far from phase matching. As above, the presence of the
control wave suppresses the SHG process and the π -phase
shift associated with it. As an example, consider a waveguide
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FIG. 1. (Color online) Schematic setups for frequency switching
(a), polarization switching (b), and spatial-mode switching (c).

designed such that the polarization state |V 〉 gains an SHG-
induced π -phase shift, while the orthogonal polarization state
|H 〉 experiences no SHG and hence no phase shift. This
waveguide will rotate an input signal whose polarization state
is |+〉 ≡ 1√

2
(|H 〉 + i|V 〉) to an output signal with polarization

state |−〉 ≡ 1√
2
(|H 〉 − i|V 〉). When the pump wave is applied,

the SHG process is suppressed, leaving the input signal’s
polarization state |+〉 unchanged. To implement this switch
in isotropic crystals, the waveguide must be designed such
that both polarizations experience an identical π -phase shift
in the absence of the pump beam. An input signal |+〉 will
transform to the state −|+〉 (i.e., unchanged except for a
global π -phase shift). The switching operation is induced by
a vertically polarized pump of appropriate intensity which
suppresses the SHG process for vertically polarized inputs,
thus eliminating the SHG-induced π -phase shift. This type
of operation is feasible in type-I χ (2) crystals because the
diagonal nonlinear coefficient d33 is usually much larger
than the off-diagonal ones. For a control wave of a par-
ticular intensity, one can strongly disturb the |V 〉-polarized
harmonic wave (up-converted from the |V 〉-polarized signal
wave), while leaving the |H 〉-polarized harmonic wave nearly
undisturbed. (An analogous design is also possible for biaxial
crystals.)

By applying the same type of π -phase suppression to an
input signal in a waveguide inside one arm of an interferometer,
we can realize an analogous spatial-mode switching device.
The schematic setup in Fig. 1(c) shows a Mach-Zehnder
interferometer containing a waveguide in the lower arm. This
waveguide is designed such that the SHG process induces a
π -phase shift at the signal wavelength. In the absence of a
control wave, the relative phase between the two arms of the
interferometer can be adjusted such that a signal wave entering

FIG. 2. (Color online) The level scheme for DFG-based switch-
ing, showing the cases for pump on (a) and pump off (b).

the “q” input port of the interferometer will exit from the
“q” output port of the interferometer. In the presence of
the control wave, the SHG process is suppressed along with
the associated phase shift. As a result, the signal wave will
exit from the “p” output port of the interferometer. This setup
can be modified to incorporate two symmetric waveguides with
opposite-sign phase-mismatching coefficients, one in each arm
of the interferometer, such that—in the absence of the control
wave—phase shifts of π/2 and −π/2 will be applied to the
signal wave in each arm.

Fundamentally, the switches described here rely on second-
order nonlinearities to enable the optical control. More specif-
ically, they rely on the suppression of certain second-order
nonlinear optical processes in the presence of a pump wave.
There are two ways to achieve this: sum-frequency generation
(SFG) and difference-frequency generation (DFG). When
using SFG, the harmonic wave (with angular frequency ωh =
2ωs) is coupled to the pump wave (with angular frequency ωp)
and up-converted into a sum-frequency (SF) wave of angular
frequency ω� = ωh + ωp. When using DFG, the harmonic
and pump waves generate a difference-frequency (DF) wave
of angular frequency ωd = ωh − ωp (or equivalently, ωd =
ωp − ωh), as shown in Fig. 2. In both cases, the harmonic
level (following atomic-physics terminology) will be disturbed
and, provided that the coupling is sufficiently strong, the SHG
process will be suppressed due to either the IQZ or the CQZ
effect. If the signal wave is in a single mode of the waveguide,
the SF wave will be well guided; such may not be the case for
the DF wave, however. For example, when using a 1565-nm
signal wave and a 1535-nm pump wave, the resulting DF wave
will be in the terahertz (THz) regime. For typical waveguides,
such as annealed proton-exchanged waveguides in PPLN with
a small circumference (∼100 µm), such a THz wave will
be strongly diffracted, leading to energy dissipation from the
system. This provides a natural dissipation channel for the
IQZ effect via the purely geometrical effect of diffraction.
(If desired, this diffraction could be overcome by applying
reflective coatings to the waveguide side surfaces.) In contrast,
for the SF wave the potential dissipation must rely solely on
material absorption. For concreteness, in the following we will
focus on the DFG scheme as shown in Fig. 2. Extending to the
SFG case is straightforward.

In all of the optical switches described earlier, the pump
wave does not directly interact with the signal wave. This
is because the signal’s second-harmonic level—the level
coupled to the pump wave—never gets populated when
under the suppressive influence of the pump. Again, this
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interaction-free feature eliminates photon loss and protects
against decoherence.

B. Wave dynamics

To model the system dynamics, we denote the positive-
frequency electric fields for the signal, harmonic, pump, and
DF waves as Es,Eh,Ep, and Ed , respectively. We assume all
waves travel in the ẑ direction and are linearly x̂ polarized.
Note whereas only the type-I dynamics are considered here,
generalization to the type-II case is straightforward.

To proceed, we define the following dimensionless vari-
ables,

Aj = i

√
ε0V nj

2h̄ωj

Eje
iβj z−iωj t , (1)

with j = s,h,p,d. Here, V is the quantization volume, ε0 is the
permittivity of free space, kj is the wave-vector magnitude, and
nj is the refractive index. Defined as such, the quantity |Aj |2
gives the average number of photons inside the volume V .
Further, we introduce the effective Rabi frequencies in the
space domain as

�1 = 4deff

√
h̄ω3

s

n2
s nhε0c2V

, (2)

�2 = 2deff

√
2h̄ωhωpωd

npndnhε0c2V
, (3)

where deff is the effective second-order nonlinear coefficient.
In this paper, we assume a matched group velocity vg

for all the waves and neglect any group-velocity dispersion.
For switching, we consider a phase-matched DFG process.
These two conditions lead to optimal switching performance.
Furthermore, for simplicity we assume all waves to be lossless
except for the DF wave. The coupled-wave equations in the
moving frame z → z − t/vg are

∂As

∂z
= −�1e

−i�kzAhA
∗
s , (4)

∂Ah

∂z
= �1

2
ei�kzA2

s + �2ApAd, (5)

∂Ap

∂z
= −�2A

∗
dAh, (6)

∂Ad

∂z
= −�2A

∗
pAh − γAd. (7)

Here, �k = 2ks − kh is the phase mismatch per unit length
and 2γ is the decay rate of the DF wave.

1. Case I: Pump off

In the absence of the pump wave [i.e., Ap(0) = 0], the
equations of motion are reduced to the well-known SHG
equations [36,38]. For our purposes, there are three dynamical
regimes of interest: (a) perfect phase matching with �k = 0;
(b) small PMM with �k � �1|As | (�k 
= 0); and (c) large
PMM with �k � �1|As |. Defining the field amplitude and
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FIG. 3. (Color online) Wave dynamics in a PM waveguide with
the pump off and on, for (a) the signal wave and (b) the harmonic wave.
Parameters are chosen as follows: �eff = 10 mm−1, �1 = 1 mm−1,
As(0) = 1, �k = 0 mm−1, and κ = 0 mm−1.

phase as Aj = µje
iφj , for �k = 0, the SHG dynamics have

an analytical solution [38]:

µs(z) = µ0
s sech

(
µ0

s�1z√
2

)
, (8)

µh(z) = µ0
s√
2

tanh

(
µ0

s�1z√
2

)
, (9)

φs(z) = φs(0), (10)

φh(z) = 2φs(0), (11)

where µ0
s ≡ µs(0). Thus the system undergoes a monotonous

up-conversion process, transferring all power from ωs to 2ωs .
An example of this PM dynamics is shown in Fig. 3.

For a PMM waveguide with �k 
= 0, a general analytical
solution was also derived [36], where the amplitudes are
given by

µs(z) = µ0
s

√
1 − 1

χ2
J 2

(
χµ0

s�1z√
2

,
1

χ4

)
, (12)

µh(z) = µ0
s

1√
2χ

∣∣∣∣J
(

χµ0
s�1z√

2
,

1

χ4

)∣∣∣∣ , (13)

where J is the Jacobi elliptic function Jacobi SN and

χ =
√

2 �k

4�1 µ0
s

+
√

1 + �k2

8�2
1 µ2

s (0)
. (14)

The solutions (12) and (13) are oscillatory functions with a
period,

z0 = 2
√

2

χµ0
s�1

K
(

1

χ4

)
, (15)

where K is the complete elliptic integral of the first kind. In
the small PMM regime with �k < �1µ

0
s , the signal and pump

waves undergo a complete power-conversion process, whereas
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FIG. 4. (Color online) Wave dynamics for small PMM with the
pump off and on. In (a) we plot the amplitude and in (b) the phase
of the signal wave. Parameters are as follows: �eff = 10 mm−1,
�1 = 1 mm−1, As(0) = 1, �k = 0.01 mm−1, and γ = 0.

in the opposite regime of �k > �1µ
0
s , the majority of power is

trapped in the signal wave. In the limit �k � �1µ
0
s , we have

µs(z) = µ0
s − �2

1

(
µ0

s

)3

�k2
sin2

(
�kz

2

)
, (16)

µh(z) =
(
µ0

s (0)
)2

�1

�k

∣∣∣∣sin

(
�kz

2

)∣∣∣∣ . (17)

In this case, only a small fraction ( 2µ2
s (0)�2

1
�k2 � 1) of the signal

power oscillates between the fundamental and SH levels. As an
example, in Figs. 4(a) and 5(a) we plot the amplitude dynamics
of the fundamental wave for the cases of small and large PMM,
respectively.

The phase dynamics, on the other hand, yield a complicated
and nonintuitive expression. Nonetheless, for �k <∼ 0.01�1µ

0
s ,

the periods for the fundamental wave to restore its power while
gaining a phase shift of π/2 and π are approximately z0 and
2z0, respectively. In the large PMM limit (�k � �1µ

0
s ), the

phase shift increases linearly with z, giving

φs(z) = �2
1µ

2
s (0)

2�k
z. (18)

This result also shows a linear dependence of the phase shift
on the intensity of the signal wave. As we will show later, this
intensity dependence constitutes a major obstacle to applying
the present traveling-wave switching scheme to time-varying
pulses. The phase dynamics in the small and large PMM
regimes are shown in Figs. 4(b) and 5(b), respectively.

2. Case II: Pump on

In the presence of the pump wave, the system dynamics will
be disturbed. For switching purposes, the dynamical regime of
interest is where the SHG process is strongly suppressed by
either the IQZ or the CQZ effect. In either case, a strong pump
wave will be required such that �2Ap � �1As , as we will
show later. For successful operation, the harmonic wave must
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FIG. 5. (Color online) Wave dynamics for large PMM with the
pump off and on. In (a) and (b) we show the amplitude and phase
of the signal wave, respectively. Parameters are as follows: �eff =
100 mm−1, �1 = 1 mm−1, As(0) = 1, �k = 10 mm−1, and γ = 0.

remain unpumped while the pump wave remains undepleted
(the “interaction-free” regime). Under the undepleted-pump
approximation, for which Ap(z) = Ap(0), Eqs. (4)–(7) are
simplified to

∂As

∂z
= −�1e

−i�kzAhA
∗
s , (19)

∂Ah

∂z
≈ �1

2
ei�kzA2

s + �effAd, (20)

∂Ad

∂z
= −�effAh − γAd, (21)

where we have introduced

�eff = �2Ap(0), (22)

and, without loss of generality, assumed Ap(0) to be real.
There are two characteristic dynamical regimes governed

by Eqs. (19)–(21). In the first regime, γ � �eff (i.e., the loss
rate for the DF wave is much smaller than the DFG rate). In this
case, the SHG process will be suppressed by the CQZ effect.
To obtain an analytic solution, we introduce the following
dressed-state waves that are decoupled in the Hilbert space
defined by the DFG Hamiltonian:

A± = 1
2e−i�kz(Ah ± iAd ). (23)

The wave equations (19)–(21) can then be rewritten as

∂As

∂z
= −�1(A+ + A−)A∗

s , (24)

∂A±
∂z

= �1

4
A2

s − i(�k ± �eff)A±. (25)

These equations clearly show that the effect of a strong pump
coupling is to split the harmonic level into two dressed levels
detuned from the original SHG resonance by ±�eff . Given that
�eff � �1|As |, the SHG dynamics are shifted off-resonance
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and are thus suppressed by the CQZ effect. In this picture, our
system is similar to an EIT system.

To obtain analytical solutions to Eqs. (24) and (25), we
follow the standard method of separating the fastest ”time”
scales in order to obtain the adiabatic-elimination results [39],

A±(z) ≈ −i�1A
2
s (z)

4(�k ± �eff)
, (26)

which are valid in the limit of |�k ± �eff| � �1µ
0
s . Inserting

this result into Eq. (24), one arrives at an effective equation of
motion for As , where

∂As

∂z
= i�2

1

2�k
SCQZ|As |2As, (27)

with the phase-suppression coefficient,

SCQZ = �k2

�k2 + �2
eff

. (28)

Solving the previous equation to first order gives

As(z) = exp

(
i�2

1(µ0
s )2z

2�k
SCQZ

)
µ0

s . (29)

This result exhibits a pure phase evolution. In the limit of
�eff � �k, the underlying phase-shift dynamic recovers the
result of Eq. (18) sinceSCQZ → 1. Thus there is no suppression
effect. In the opposite limit of �eff � �k, in contrast, the phase
shift is suppressed by a factor of SCQZ ≈ (�k/�eff)2 � 1
smaller than in the pump-off case. The 1/�2

eff scaling in SCQZ

clearly suggests a high-efficiency method for controlling the
phase shift of the signal wave.

In Eq. (29), the amplitude of As(z) is a constant of motion,
resulting from the first-order approximation that was used to
keep only the slowest-varying term in Eq. (26) for A±. The
fast-varying part of A± can be obtained iteratively by using
the result in Eq. (29). By inserting the resulting expression
for A± into Eq. (24), we can get an effective equation of
motion for As , which is a second-order result. In the parameter
regime of interest (�eff � �k), the amplitude dynamics are
governed by

∂µs

∂z
≈ −�2

1 sin(�effz)

2�eff
µ3

s , (30)

such that

µs(z) = µ0
s

(
1 + 2�2

1µ
2
s (0)

�2
eff

sin2

(
�effz

2

))−1/2

. (31)

Here, the amplitude of the fundamental wave rapidly oscillates

between its initial value µ0
s and µ0

s (1 − �2
1µ

2
s (0)

�2
eff

). In effect,

only a fraction of the input power ( 2�2
1|As (0)|2
�2

eff
� 1) undergoes

frequency conversion, while most remains in the fundamental
wave. We note that during this dynamics no dissipation of
any kind is involved; rather, the SHG is suppressed by the
coherent CQZ effect. In principle, all the input power can be
restored to the fundamental wave (the desired signal output),
thus implementing a lossless switch. In practice, however, it
may be noticeably difficult to achieve this, as the frequency-
conversion oscillation has a very short period (∼1/�eff).

In Figs. 3, 4, and 5 we compare the wave dynamics with the
pump off and on in the regimes of PM (Fig. 3), small phase
mismatching (Fig. 4), and large PMM (Fig. 5), respectively. In
all the dynamical regimes, the amplitude and phase dynamics
are strongly suppressed by the CQZ effect.

Finally, we note that by replacing �eff with �k, the leading-
order term in the Taylor series of Eq. (31) is the same as
Eq. (16). This result clearly shows that the effect of strong
DFG coupling is to shift the SHG off resonance (i.e., off phase
matching).

In the first dynamical regime considered earlier, the CQZ
effect dominates (γ � �eff). In contrast, in the second, op-
posite, dynamical regime of interest with γ � �eff , the wave
dynamics are dominated by the IQZ effect. To analytically
solve for the dynamics in this regime, we adiabatically
eliminate the DF wave in Eqs. (19)–(21), obtaining

∂As

∂z
= −�1e

−i�kzAhA
∗
s , (32)

∂Ah

∂z
≈ �1

2
ei�kzA2

s − κeffAh, (33)

with the effective decay rate for the SH level given by

κeff = �2
eff

γ
. (34)

Here, the effect of coupling to a lossy DF wave is to open
a decay channel for the SH level. Interestingly, the effective
decay rate κeff is inversely proportional to the DF loss rate γ .
This is a consequence of the IQZ-suppression effect on the
DFG dynamics (not SHG). More specifically, in the presence
of a strong dissipation for the DF wave, the DFG dynamics are

suppressed by the IQZ effect, leading to Ad ≈ �2
eff

γ 2 Ah � Ah.
Thus the DF wave remains nearly unpumped. As a result, the
effective dissipation rate for the SH level is γAd/Ah, giving
Eq. (34).

In the IQZ regime, a necessary condition for successful
switching is κeff � �1µs in the case of PM SHG or small-
PMM SHG, or κeff � �2

1µ
2
s /�k in the case of large-PMM

SHG. Given that, the wave dynamics can be solved by
adiabatically eliminating the SH wave and we obtain

As = As(0)

(
1 + �2

1µ
2
s (0)

κeff + i�k
z

)−1/2

≈ As(0) exp

(
−�2

1µ
2
s (0)γ

2�2
eff

z

)
exp

(
i
�2

1µ
2
s (0)

2�k
SIQZz

)
,

(35)

with a phase suppression coefficient,

SIQZ = �k2γ 2

�4
eff

. (36)

Here, both the amplitude loss and the phase shift of the signal
wave increase with γ . Thus a better switching performance
is achieved with a weaker loss of the DF wave; in fact, the
switch is optimal for γ = 0 corresponding to the CQZ regime.
To show this, in Fig. 6 we plot the SHG dynamics for various
values of γ . As shown, the SHG dynamics is most efficiently
suppressed with γ = 0 (i.e., in the CQZ regime). As γ

increases, the suppression effect becomes weaker. Eventually,
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FIG. 6. (Color online) Amplitude dynamics of the signal wave
with the pump off (solid line) and pump on (dashed lines). The
chosen parameters are as follows: �eff = 10 mm−1, �1 = 1 mm−1,
As(0) = 1, �k = 0.01 mm−1. The DF dissipation rates γ marked in
the figure are in units of mm−1.

for γ → ∞, the SHG dynamics approach the pump-off
result.

Of course, the fact that the SHG suppression is weaker with
a large γ does not imply that the IQZ effect is inapplicable
to all-optical switching. Our conclusion is that for a given
pump intensity, the SHG-suppression effect, and thus the
switching efficiency, is highest when the system is operated in
the CQZ regime. In other words, to achieve a certain switching
performance, a much weaker pump would be required when
the switch is operated in the CQZ regime than in the IQZ
regime. In terms of photon loss, a switching operation in the
CQZ regime yields a fraction of � 2�2

1µ
2
s (0)/�2

eff compared
to �2

1µ
2
s (0)γ z/�2

eff in the IQZ regime. For the same pump
intensity, the latter is a factor of γ z � 1 greater than the
former. (Here, γ z � 1 is from γ � �1µ

0
s and �1µ

0
s z > 1.) In

terms of the SHG suppression, which determines the switching
contrast, for the same pump intensity we obtain

SCQZ

SIQZ
= �2

eff

γ 2
� 1, (37)

showing a much stronger suppression effect in the CQZ
regime.

C. Switching performance

In the previous section, we have solved for the wave
dynamics of light propagation in a χ (2) waveguide, where
analytical results are obtained for the three dynamical regimes
of interests. In this section we use these results to characterize
the switching performance. We focus on the CQZ regime with
γ = 0, as it leads to the strongest SHG-suppression effect. We
consider nearly degenerate signal and pump waves and use the
approximation nd ≈ np.

We consider super-Gaussian input signal and pump waves
in the form,

µs,p(t) ∝ exp

(
− t2m

2σ 2m

)
, (38)

where m = 0,1,2 . . . is the order number for the super-
Gaussian waves. m = 0 corresponds to a flat continuous
wave (cw), m = 1 corresponds to a Gaussian pulse, and m > 1
corresponds to super-Gaussian pulses with increasingly flatter
top. In the following, we assume the pulse shapes to be the
same for the signal and pump waves.

To characterize the switching performance, two important
metrics are normally used: the photon loss during switching
and the switching contrast. The switching loss is the fraction
of energy missing from the two outputs. In all of our switches,
the mean energy loss for cw operation is

L = Is

Ip

, (39)

with an upper bound of 2 Is

Ip
. Here, Is (Ip) is the input intensity

of the signal (pump) wave. The universality of L over all
dynamical regimes has been discussed in Sec. II B. For pulsed
operation, where the signal and the pump have similar shapes,
L matches the cw result (39). Thus, for all switches, a pump
wave of power over 100 times greater than the signal wave
is required to achieve below 1% loss. In practice, this would
fundamentally limit the present switch from being applied
in a fan-in/fan-out all-optical network. This difficulty can be
overcome with a Fabry-Perot design, which we will present
later.

The switching contrast, on the other hand, is defined as
the power ratio with pump on and off in a certain output
channel. As there are two outputs in our switches, we define
the “flipped” (“unflipped”) contrast as the power ratio in the
flipped (unflipped) output state. In Figs. 1(a)–1(c), the flipped
state, respectively, corresponds to the frequency state 2ωs , the
polarization state |H 〉 − i|V 〉, and the output state in the “q”
port. In each case, the unflipped state then corresponds to the
complementary output.

1. Frequency switching

For cw operation, the flipped-state contrast is

Fcw = 2

L tanh2

(
µ0

s�1L√
2

)
, (40)

which increases monotonically with the waveguide length L.
This behavior arises from the fact that the SHG is a one-
way process (assuming no spontaneous down-conversion). It
approaches 2/L when L � µ0

s�1. The unflipped contrast, on
the other hand, is given by

Ucw = (1 − L)cosh2

(
µ0

s�1L√
2

)
, (41)

which monotonically approaches infinity as L → ∞ and all
the power is transferred to the SH level.

In the case of pulsed operation with the pump off, the pulse
center up-converts more quickly than the pulse tails, due to the
nonlinear nature of the SHG process. After the switching, the
SH pulse width is reduced by half compared to the signal. With
the pump on, the SHG-dynamic is equally suppressed across
the whole pulse area. Therefore, the switching contrasts with
pump off or on are about the same as for cw inputs.
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2. Polarization and spatial-mode switching

The polarization and spatial-mode switches operate on a
similar principle; in fact, they yield an identical mathematical
formulism. Therefore, here we only analyze the spatial-mode
switch, noting that all results can be exactly applied to the
polarization-mode switch.

In the case of cw inputs and small PMM (with �k �
�1µ

0
s ), we set L = 2z0 to necessarily acquire a π -phase shift

as the signal passes through the waveguide. We note that z0

is insensitive to �k, but is proportional to 1/µ0
s ; thus this

switch can only function appropriately for signal waves of
a certain known intensity. Therefore, it cannot be applied
to nonflat pulses. The flipped-state contrast in this case is
given by

Fcw = 16�k2

π2�4
1µ

4
s (0)L2S2

CQZ

>
I 2
p

I 2
s

. (42)

This results in a high switching efficiency. The unflipped-state
contrast, on the other hand, is infinity in the ideal case, as no
wave exits from the “p” output port with the pump off.

In the case of large PMM with �k � �2
1µ

2
s (0), the

waveguide length is set to be

L = 2π�k

�2
1µ

2
s (0)

� 2z0, (43)

to achieve a π -phase shift for the signal wave. Thus for a given
pump, a much longer waveguide is needed in the large PMM
regime than that in the small PMM regime. The flipped-state
contrast in this case is given by

F ′
cw = 4

π2S2
CQZ

≈ 4�4
eff

π2�k4
1

, (44)

which shows a moderate switching efficiency. For example, for
Ip = 100Is and a typical �k = 10�1µ

0
s , we have F ′

cw = 40.
The unflipped-state switching contrast here is infinity, for the
same reason as in the small PMM case.

When nonflat pulses are used, the system behavior is similar
to the cw case with the pump on. This is because the SHG-
suppression effect is determined by the ratio of the signal and
pump intensities, and not by their absolute values. Thus the
flipped-state contrast is about the same as in the cw case. On
the other hand, with the pump off—due to the nonlinear nature
of SHG—the output signal pulse will be significantly distorted.
This gives rise to a low unflipped-state contrast.

First, for small PMM, the pulse distortion arises from the
linear dependence of the SHG period on the signal amplitude
µs . This is a fundamental difficulty inherent to SHG; to
overcome this pulse distortion one would require nearly
flat-top super-Gaussian pulses. In Fig. 7 we show the amplitude
and phase profiles of the output signal in the fundamental
level with the pump off. For a Gaussian pulse, the amplitude
is very distorted and the phase is highly inhomogeneous. By
using m = 2 super-Gaussian pulses, the distortion is somewhat
mitigated. A direct consequence of the pulse distortion is a
low unflipped-state switching contrast. For the parameters
used in Fig. 7, we numerically find the contrast to be 10
for m = 1; and the contrast near-linearly increases to 90 for
m = 10.

0

0.2

0.4

0.6

0.8

1

S
ig

na
l A

m
pl

itu
de

 

 

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

1

2

3

t (ns)

S
ig

na
l P

ha
se

 

 

input, m=1
output, m=1
input, m=2
output, m=2

output, m=1
output, m=2

FIG. 7. (Color online) Amplitude and phase profiles of the output
signal wave passing through a waveguide in the case of small PMM
and pump off, shown for Gaussian (m = 1) and super-Gaussian (m =
2) pulses. Here σ = 0.2 ns and all other relevant parameters are the
same as in Fig. 4.

For large PMM, the signal pulse largely maintains its shape
with the pump off, while its phase evolves inhomogeneously.
For an mth-order Gaussian input, the resulting phase shift is

φs = π exp

(
− t2m

σ 2m

)
. (45)

This arises from the linear proportionality of the phase to the
intensity, as seen in Eq. (18). As a result, the output pulse in
the “p” channel in Fig. 1(c) is

Ap
s ∝ exp

[
iπ exp

(
− t2m

σ 2m

)
− 1

]
exp

(
− t2m

2σ 2m

)
. (46)

Here, the first exponential term gives rise to pulse distortion.
As an example, we plot the signal output in Fig. 8 for
Gaussian (m = 1) and super-Gaussian (m = 2) input pulses.
Comparatively, the distortion is significantly mitigated for
super-Gaussian pulses. Lastly, for the parameters used in
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FIG. 8. (Color online) Amplitude profile of the signal wave at
the output port I for Gaussian (m = 1) and super-Gaussian inputs
(m = 2) with pump off in the case of large PMM, compared to the
input. Relevant parameters are the same as in Fig. 5.
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Fig. 5, we numerically find the unflipped-state contrast to be 8
for m = 1, and near-linearly increasing to 54 for m = 10.

III. WAVEGUIDE FABRY-PEROT DESIGN

The fundamental difficulty with the traveling-wave design
is pulse distortion. To overcome this difficulty, in this section
we present a Fabry-Perot design. The organization is as
follows: In Sec. III A, we describe the switch setup and
present the dynamical model. In Sec. III B, we use semistatic
analysis to characterize the switching performance. Finally, in
Sec. III C, we present numerical simulations for pulsed inputs.

A. The model

The schematic setup of our Fabry-Perot switch is shown in
Fig. 9. It is composed of a χ (2) waveguide designed to support
PM or QPM SFG for the signal and pump waves. The two
waveguide ends are coated with highly reflective layers. The
waveguide length is chosen such that both the signal and pump
waves are in cavity resonance. With the pump off, as shown
in Fig. 9(a), the signal wave resonantly couples to the cavity,
say, from the left, which then eventually exits from the right.
For switching, we apply a pump pulse to change the cavity
resonance condition via SFG, as shown in Fig. 9(b). As a result
the signal will be reflected (which is the switching operation).
For optimal performance, the pump pulse is applied slightly
ahead of the signal pulse to allow a sufficient pump field to
built up in the cavity by the time the signal pulse arrives. This is
necessary to reflect the front of the signal pulse. By excluding
the signal wave from the cavity, the pump pulse is able to pass
through the cavity unaffected. Note that while Fig. 9 shows a
planar Fabry-Perot cavity, in practice a spherical cavity will
be more robust against mirror divergence or misalignment. Of
course, one can also replace the reflective coatings with two
mirrors. It is straightforward to extend our analysis to these
types of setups.

For simplicity, in the following we consider identical,
lossless coatings on the two end faces. The coating reflectivity
is R (thus the transmissivity is T = 1 − R), which is assumed
to be the same for both the signal and pump waves. For the
SF field, it is taken as R′ and in general R′ 
= R. For further
simplicity, we neglect the waveguide loss for both the signal
and pump waves. This approximation is valid given that the

FIG. 9. (Color online) Schematic setup of the noninteracting
all-optical switch configured using a χ (2) waveguide. Here (a)
and (b) illustrate the ideal light paths with the pump off and on,
respectively.

single-round-trip loss is expected to be much smaller than the
coating transmissivity. The loss rate for the SF wave, which
determines whether the switch is in the IQZ or CQZ regime,
is denoted by 2γ .

To model the SFG process, we define the following
dimensionless variables in a similar fashion as in Eq. (1):

Aj = i

√
ε0V nj

2h̄ωj

Ej , (47)

where Ej (j = s,p,f ) is the slowly varying electric field of the
signal, pump, and SF waves, respectively. We also introduce
an effective Rabi-frequency similar to Eqs. (2) and (3),

� = 2deff

√
2h̄ωsωpωf

nsnpnf ε0c2V
. (48)

At phase matching, the SFG dynamics in the cavity are
governed by

∂As

∂z
= −�A∗

pAf , (49)

∂Ap

∂z
= −�A∗

s Af , (50)

∂Af

∂z
= �AsAp − γAf . (51)

The previous equations of motion have analytical solutions
under the undepleted-pump approximation, in which Ap(z) =
A0

peiφp(z). In the IQZ regime, corresponding to γ � �|Ap|,
we have

As(z) ≈ exp
[−�2

effz/γ
]
As(0), (52)

where we have introduced �eff = �A0
p. In the opposite CQZ

regime, we have

As(z) = As(0) cos(�effz) − Af (0)e−iφp sin(�effz), (53)

Af (z) = Af (0) cos(�effz) + As(0)eiφp sin(�effz). (54)

Note that in the present cavity design, we have assumed
the following: (a) the SFG process is phase matched, and
(b) the cavity is triply resonant with the signal, the pump,
and the sum-frequency waves. In practice, in order to simul-
taneously meet these two conditions, one can first employ
the periodic-poling technique to achieve QPM for the SFG
process. Then, one can apply a combination of techniques,
including fine tuning of the pump wavelength, varying
the waveguide temperature, and changing the waveguide
refractive index via the electro-optic effect [40], to achieve
the triple resonance. Because the phase-matching bandwidth
for the SFG process is usually large (typically >2 nm
in terms of the signal-pump wavelength tuning [41,42] or
∼20oC in terms of the waveguide temperature [43]), the
triple resonance can be achieved without shifting the SFG
process off phase matching.

B. Quasistatic analysis

We now use quasistatic analysis to characterize the switch-
ing performance. With the pump off, the signal wave is
resonant with the cavity, as shown in Fig. 9(a). Assuming
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a π/2 phase shift on the reflected light by the coating, a
straightforward self-consistent analysis reveals

AT
s = AI

s T eiksL

1 + Re2iksL
, (55)

AR
s = i

√
RAI

s

(
1 + T

R + e−2iksL

)
, (56)

where kj = njωj/c, and AT
s and AR

s are the transmitted and
reflected signal fields, respectively. The cavity transmittance
and reflectance spectra are then given by

Toff(ks) = (1 − R)2

|1 + Rei2ksL|2 , (57)

Roff(ks) = 1 − (1 − R)2

|1 + Rei2ksL|2 . (58)

An example of a typical cavity spectrum with the pump off is
shown in Fig. 10.

When the pump is on, the cavity spectrum is altered
by the SFG process. In the IQZ regime with γ � �eff ,

FIG. 10. (Color online) Cavity transmission (a) and reflection
(b) spectra, for the cases of pump off (solid), pump on in the IQZ
regime (dash-dotted), and pump on in CQZ regime (dashed). The
various parameters are chosen to be: L = 1 mm, R = 0.99, R′ =
0.90, and �eff = 0.5 mm−1. The IQZ and CQZ regimes correspond
to γ = 5 mm−1 and γ = 0, respectively.

we find

AT
s = AI

s T eiksLe−�2
effL/γ

1 + Re2iksLe−2�2
effL/γ

, (59)

AR
s = i

√
RAI

s

(
1 + T

R + e−2iksLe2�2
effL/γ

)
, (60)

which lead to the following transmission and reflection spectra
in the IQZ regime:

TIQZ(ks) = (1 − R)2e−2�2
effL/γ

|1 + Rei2ksLe−2�2
effL/γ |2 , (61)

RIQZ(ks) = R2

∣∣∣∣∣ 1 + e−2iksLe2�2
effL/γ

R + e−2iksLe2�2
effL/γ

∣∣∣∣∣
2

. (62)

On the signal resonance with ksL = (n + 1/2)π (n is an
integer), they become

T 0
IQZ = (1 − R)2e−2�2

effL/γ

|1 − Re−2�2
effL/γ |2 , (63)

R0
IQZ = R2

(
1 − e2�2

effL/γ

R − e2�2
effL/γ

)2

. (64)

Equation (64) shows that the cavity reflectance R0
IQZ decreases

with γ , indicating that the switching is in fact less efficient in
the presence of a strong loss for the SF wave.

In the CQZ regime with γ � �eff , a similar quasistatic
analysis can be performed. The cavity transmittance and
reflectance at the signal resonance are approximately

T 0
CQZ = T 2(η2 + R′2ζ 2)

|1 − Rη2 − i
√

R′ζ [(i
√

R + √
R′)η + √

Rζ ]|2 ,

(65)

R0
CQZ = (R + R′)ζ 2(

√
RR′η + ζ )2

|1 − Rη2 − i
√

R′ζ [(i
√

R + √
R′)η + √

Rζ ]|2 ,

(66)

with η = cos(�effL) and ζ = sin(�effL).
To show the switching performance, in Fig. 10 we plot the

cavity spectra in three cases: pump off, pump on in the IQZ
regime, and pump on in the CQZ regime. We choose the system
parameters to be L = 1 mm, R = 0.99, and R′ = 0.90. For
the SFG coupling, we consider �eff = 0.5 mm−1. For a planar
periodically poled lithium-niobate waveguide with 1-µm full
width at half maximum mode width, telecom O-band signals,
and C-band pumps, this coupling strength corresponds to an
input pump peak power of 0.6 mW. In the IQZ and CQZ
regimes, the dissipation of the SF wave is taken to be γ =
5 mm−1 and γ = 0, respectively. As shown in Fig. 10(a), the
transmission window is significantly altered in both regimes.
The cavity transmittance is lowered to <1% (<0.05%) in the
IQZ (CQZ) regime, while the corresponding reflectance is
raised to >81% (>98%) [see Fig. 10(b)]. Here the fact that
the transmittance and reflectance do not sum to 1 is indicative
of signal losses. Comparatively, for similar parameters, the
switch is more efficient in the CQZ regime than in the IQZ
regime.

To further compare the IQZ and CQZ effects, in Fig. 11
we plot the cavity transmittance and reflectance at the signal
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FIG. 11. Cavity transmittance (a) and reflectance (b) plotted as a
function of γ at the signal resonance. The system parameters are the
same as in Fig. 10.

resonance as a function of γ . Unlike in Fig. 10 where
we applied a static self-consistent analysis, here we obtain
the results via an asymptotical analysis using a dynamical
model. As shown in Fig. 11(a), the cavity transmittance
increases slowly with γ , indicating that both the IQZ and
CQZ mechanisms are effective in making the cavity opaque.
In contrast, the reflectance drops dramatically from 99% to
80% when γ increases from 0 to 6, as seen in Fig. 11(b).
This behavior shows that the cavity is highly reflective only
in the CQZ regime. In the IQZ regime, on the other hand, a
significant portion of the signal is lost owing to the presence of
the SF-dissipation channel. It is, therefore, optimal to operate
the switch in the CQZ regime.

We now give a physical explanation as to why all-optical
switching is more efficient in the CQZ regime than in the
IQZ regime. It is well known that light transmission through
a cavity relies on the destructive interference of the reflected
light and the light leaking from the cavity through the input
coupler (the left-end coating in our design). Cavity reflectivity
is then achieved by eliminating this destructive interference.
There are two ways to accomplish this: (a) by diminishing
the amplitude of the leaking light or (b) by modulating its
phase. The JF proposal is based on the principle in (a),
where the signal field in the resonator is eliminated via
two-photon absorption [23]. In this case, the cavity resonance
is destroyed. The switches in Refs. [25–31], for example, are
based on the principle in (b), where the cavity resonance is
shifted by modifying the refractive index of the intra-cavity
material. Comparatively, the latter design allows a higher
reflectance and weaker photon loss for similar parameters.
This is because unlike in the JF switch, here a portion of the

light entering the cavity is “recycled” as it leaks backward
from the cavity and eventually recombines with the reflected
beam.

In our design, both the amplitude and phase modulation
effects exist. In the IQZ regime, the dominant processes are a
combination of the two and subsequent loss of the signal and
the pump fields from the cavity. In this case, the switch op-
erates on amplitude modulation, or more precisely, amplitude
dissipation. This is exactly analogous to the mechanism in
the JF switch, as both are based on two-photon absorption.
The ultimate cavity reflectance is R, which is achieved
when the two-photon absorption is 100%. In the CQZ regime,
on the other hand, the cavity fields undergo a coherent
dynamics. Depending on the value of R′ (the reflectivity of
the coatings for the SF light), the switch can be operated on
either principle. In the first case, for R′ � 1, the SF field is
mostly lost through the coatings, resulting in a strong loss of the
signal field from the cavity after each cavity cycle. The switch
is then effectively a IQZ-based switch, working on amplitude
modulation. Note, however, that in this case the depletion of
the signal field in single pass through the cavity is efficient,
as it is not suppressed by the Zeno effect. In contrast, in the
JF switch (as well as in our switch in the IQZ regime), the
two-photon absorption is Zeno suppressed by the fast decay
of their atomic level 3 (of the SF wave in our design) [23].
In the second case, for R′ ≈ 1, the scattered SF light is
mostly stored in the cavity. The signal field then undergoes
a coherent, oscillatory dynamical evolution, incurring a π/2
phase shift. As a result, the destructive interference at the input
coupler is destroyed, leading to reflectance from the cavity.
The ultimate reflectance is (1 + R)/2, which is higher than
in the IQZ regime above by an amount of (1 − R)/2. This
improvement can be very useful for cavity-based all-optical
switching, especially when short pulses are used [44]. Working
on phase-modulation, this switch is similar to the designs in
Refs. [25–31]. However, there is an important difference. In the
cited designs, the pump photons are destroyed, for example, to
create free carriers, leading to physical energy dissipation. This
feature also prevents their potential operation in the quantum
domain due to an increased number of noise channels that are
coupled in. Our scheme, however, does not involve dissipation
of any kind. In fact, it is the potential for the SFG process
that changes the cavity from transmissive to reflective. In this
sense, our switch is very “clean” and, therefore, suitable for
quantum applications (as we recently showed for an equivalent
microdisk model [24]).

To graphically present these arguments, in Fig. 12 we plot
the cavity reflectance as a function of R′. As shown, the
cavity reflectance increases monotonically with R′. At R′ = 0,
for which the cavity is effectively in the IQZ regime, the
reflectance is only 86.3%. [Note that by increasing the pump
power or the cavity length, this reflectance can eventually
approach the limit of 99% (= R) for an IQZ-based switch.]
At R′ = 1, the reflectance increases to 99.5%, a result which
agrees with our prediction earlier. From the inset in Fig. 12, one
sees that for R′ > 0.93 the reflectance exceeds the fundamental
limit (99%) of IQZ-based switches [e.g., the JF switch and
our switch in the (effective) IQZ-regime]. We note that the
crossing will occur at a smaller R′ as one increases the pump
power.

063826-11



YU-PING HUANG, JOSEPH B. ALTEPETER, AND PREM KUMAR PHYSICAL REVIEW A 82, 063826 (2010)

FIG. 12. (Color online) Solid line, cavity reflectance as a function
of R′, where γ = 0 and all other parameters are the same as in
Fig. 11. Dashed line, fundamental limit for an IQZ-based switch. For
the JF switch and the present Fabry-Perot switch in the (effective)
IQZ regime, this limit is obtained when the (effective) two-photon
absorption is 100%.

C. Pulse dynamics

In the last subsection we characterized the Fabry-Perot
switch using a continuous-wave model. In this section we
examine the switching performance for pulsed operation,
focusing on the optimal CQZ regime with R′ = 1. We note first
that for any cavity-based switch, the spectral width of the cavity
must be much wider than the bandwidth of the incident pulse
in order to avoid distortion of the switched output pulse [44].
In our design, the spectral width of the cavity is

�cavity = vc(1 − R)

L
, (67)

where vc is the speed of light in cavity. For typical vc =
1011 mm/s and L = 1 mm, one would then require R < 0.99
in order to switch a GHz-bandwidth pulse.

In order to reflect the entire signal pulse, a sufficient pump
field must build up in the cavity by the time the signal pulse
arrives. Therefore, when using signal and pump pulses of
similar lengths, one must arrange to have the pump pulse arrive
ahead of the signal pulse by a time interval τd . Logically, τd

should be chosen 1/2 of the cavity lifetime, that is,

τd = 1

2�cavity
. (68)

Note that for similar light intensities the roles of the signal
and the pump are completely interchangeable; in fact, in
the opposite case where the signal pulse arrives prior to the
pump, the pump pulse will be reflected, while transmitting
the signal pulse. This behavior is due to the bistability of such
switches [23].

As an example, we consider L = 1 mm, R = 0.95, and
vc = 1011 mm/s. The signal and pump pulses are assumed
to be identical, with a e−1 half width of 2 ns. The peak
intensity is chosen such that it gives �eff = 0.5 mm−1. For
these parameters, in Fig. 13 we show the temporal profiles
of the transmitted and reflected signal pulses. As shown in

FIG. 13. (Color online) Transmitted and reflected signal-pulse
profiles with the pump off (a) and pump on (b).

Fig. 13(a), with the pump off, the signal pulse is mostly
transmitted, with a peak-to-peak time delay of 0.51 ns and
a transmitted power fraction of 98.1%. When the pump is
applied, the signal pulse is mostly reflected (as high as 99.4%)
as shown in Fig. 13(b). These results are indicative of the high
switching efficiency achievable with our Fabry-Perot switch
design.

In Fig. 14 we plot the profiles of the input, transmitted,
and reflected pump pulses. As shown, the pump is mostly
transmitted through the cavity with a well-maintained profile.
The transmission and reflection fractions are 96.5% and 3.2%,
respectively, for the parameters used. The total pump-power
loss is only 0.3%, indicating that this switch is indeed
“interaction-free.”

FIG. 14. (Color online) Pump-pulse profiles for the switching
example plotted in Fig. 13.
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IV. CONCLUSION

In this paper, we have systematically studied a new, loss-
free, scheme for all-optical switching that does not require
direct interaction between the signal and pump waves (i.e,
“interaction-free” switching). The distinct features of such
switching devices include: (a) photon dissipation via signal-
pump coupling is eliminated; (b) the photonic quantum states
(both for the signal and the pump) are maximally protected
from decoherence [24]. We have presented a traveling-wave
design and a Fabry-Perot design, both of which use χ (2)

waveguides for nonlinear interaction. After a thorough study
of the switching parameter space, we conclude that the
optimal switching performance is obtained in all cases in the

coherent-quantum-Zeno (CQZ) regime. No photon dissipation
occurs in this regime and the switching is achieved via the
level splitting caused by the CQZ effect. The IQZ effect, which
occurs when there is a strong dissipation channel, significantly
degrades the switching efficiency, as well as increases the
photon loss. These results are generally applicable to most
interaction-free switching designs for optical applications.
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