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Angular momenta and spin-orbit interaction of nonparaxial light in free space
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We give an exact self-consistent operator description of the spin and orbital angular momenta, position,
and spin-orbit interactions of nonparaxial light in free space. Both quantum-operator formalism and classical
energy-flow approach are presented. We apply the general theory to symmetric and asymmetric Bessel beams
exhibiting spin- and orbital-dependent intensity profiles. The exact wave solutions are clearly interpreted in
terms of the Berry phases, quantization of caustics, and Hall effects of light, which can be readily observed
experimentally.
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I. INTRODUCTION

The problem of the identification of the spin and orbital
parts of the angular momentum (AM) of an electromagnetic
wave has a long history and has posed fundamental difficulties
in both quantum electrodynamics and classical optics [1–4].

It is known that the photon AM operator in the momentum
(plane-wave) representation has the form [1]

Ĵ = −i(k × ∂k) + Ŝ ≡ L̂ + Ŝ. (1)

Here the orbital part is L̂ = r̂ × p̂ (p̂ = k, r̂ = i∂k, k is the
wave vector, and we use units h̄ = c = 1), whereas Ŝ is the
spin-1 operator given by 3 × 3 matrices (Ŝa)ij = −iεaij (εaij

is the Levi-Civita symbol) that act on the Cartesian components
of the wave electric field. Canonical orbital AM (OAM) and
spin AM (SAM) operators L̂ and Ŝ satisfy so(3) algebra
and generate rotations in spatial and polarization degrees of
freedom, respectively. However, “the separation of the total
AM into orbital and spin parts has restricted physical meaning.
. . . States with definite values of OAM and SAM do not satisfy
the condition of transversality in the general case” [1]. In 1994,
Van Enk and Nienhuis put forward an alternative, noncanonical
AM separation, where the modified spin and orbital parts are
measurable and consistent with the transversality of the wave,
although they are not generators of rotations [2].

In classical optics, the two parts of Eq. (1) can be unam-
biguously associated with the OAM and SAM for paraxial
light, where the eigenmodes of L̂z = −i∂φ (φ is the azimuthal
angle in k space) and Ŝz are circularly polarized vortex beams
with the corresponding quantum numbers � = 0, ±1, ±2, . . .
(topological charge of the vortex ei�φ) and σ = ±1 (helicity)
[5]. However, for nonparaxial fields the identification of
OAM and SAM meets serious difficulties [2–4]. Calculations
based on the recently suggested division of the Poynting
energy flow into spin and orbital parts [3,6–8] show that
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the nonparaxial correction to the OAM is proportional to σ

rather than to � [3,7]. This resulted in the conclusion that “in
the general non-paraxial case there is no simple separation
into �-dependent orbital and σ -dependent spin component of
AM” [3].

In this paper we reexamine the problem and give an exact
self-consistent solution in terms of both the fundamental pho-
ton operators and classical energy flows. The identification of
the well-defined measurable OAM and SAM of light is shown
to be closely related to the analogous problem for the position
of localized photons [9–11]. Our approach generalizes and
unifies previously disjointed results: (i) noncanonical OAM
and SAM operators obtained earlier for the second-quantized
fields [2]; (ii) noncommutative photon-position operator
and Berry monopole field in momentum space [9,10]; and
(iii) separation of the spin and orbital parts of Poynting energy
flows [6–8]. We find that the σ -dependent nonparaxial part
of the OAM arises from Berry-phase terms describing the
spin-orbit interaction (SOI) of light. A similar effect occurs
dynamically upon spin-to-orbital AM conversion in focusing
and scattering of polarized light [8,12–14]. Other manifesta-
tions of the SOI are the spin [15–18] and orbital [19–22] Hall
effects of light (i.e., �- and σ -dependent transverse shifts of
the field center of gravity) that are described by our position
operator and take place even in free space [18,22]. We apply
the general theory to vector Bessel beams, for which the
fundamental operators manifest themselves in immediately
observable �- and σ -dependent intensity distributions. The
exact wave results are also explained in terms of the underlying
geometrical-optics rays and caustics.

II. OPERATOR FORMALISM

We consider an electromagnetic field in free space, charac-
terized by its plane-wave electric-field spectrum Ẽ(k) without
evanescent modes. The SOI of light originates from the
transversality constraint, k · Ẽ = 0, which couples polariza-
tion to the wave vector and reduces the full 3D vector space
of the electric field components to the 2D subspace of the
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components tangential to a sphere of directions in k space. The
operators L̂ and Ŝ do not keep this subspace invariant; i.e., their
action on a transverse mode results in a nonzero longitudinal
component [1,2]. However, this subspace is invariant for the
total AM operator Ĵ, and one can divide it into two parts
consistent with the transversality condition:

Ĵ = L̂′ + Ŝ′, L̂′ = L̂ − κ × (κ × Ŝ), Ŝ′ = κ(κ · Ŝ), (2)

where κ = k/k and the modified OAM and SAM operators L̂′
and Ŝ′ can be regarded as projections of the operators L̂ and Ŝ
onto the transversality subspace [2].

The modified SAM operator Ŝ′ is proportional to the
helicity operator σ̂ = κ · Ŝ, whereas the OAM operator can
be written as L̂′ = r̂′ × k with

r̂′ = r̂ + k × Ŝ
k2

= i∂k + k × Ŝ
k2

. (3)

The modified position operator (3) has been considered in
the context of photon localization and Berry phase [9–11].
It describes the observable center of gravity of the field and
brings about the space noncommutativity with the monopole
term in k space:

[r̂ ′
i ,r̂

′
j ] = −iεij l σ̂

kl

k3
. (4)

The operators L̂′ and Ŝ′ do not satisfy the so(3) AM algebra
and have unusual commutation relations:

[Ŝ ′
i ,Ŝ

′
j ] = 0, [L̂′

i ,L̂
′
j ] = iεij l(L̂

′
l − Ŝ ′

l ), [L̂′
i ,Ŝ

′
j ] = iεij l Ŝ

′
l .

(5)

At the same time, the modified operators transform as vectors
under rotations: [Ĵi ,Ô

′
j ] = iεij lÔ

′
l , Ô′ = L̂′, Ŝ′, and r̂′. The

commutation relations (5) unveil the similarity of operators
L̂′ and Ŝ′ to those obtained for the second-quantized fields
in Ref. [2]. Although they do not generate rotations, it is
suggested that they do correspond to observable continuous
values of the OAM and SAM of a nonparaxial transverse
field [2].

Remarkably, in the helicity representation the matrix
components of the operators (2) and (3) become diagonal.
We introduce spherical coordinates (θ,φ,k) with basic vectors
(eθ ,eφ,κ) in k space, so that the free electric field has only
(eθ ,eφ) components. The helicity basis of circular polarizations
corresponds to the basic vectors e± = e±imφ(eθ ± ieφ)/

√
2,

where e±imφ is an arbitrary gauge factor [11]. Transition from
the global Cartesian field components (Ẽx,Ẽy,Ẽz)T to the
helicity amplitudes (Ẽ+,Ẽ−,Ẽ‖)T is realized via the local
unitary transformation Û (θ,φ) = R̂z(−φ)R̂y(−θ )R̂z(mφ)V̂ ,
where R̂a(α) = eiαŜa is the matrix of rotation by an angle
α with respect to the a axis, whereas V̂ is the constant
transformation from linear- to circular-polarization basis.
Making the transformation of operators (2) and (3) to the
helicity basis, Ô′ → Û †Ô′Û , we obtain

Ŝ′ = κ σ̂ , L̂′ = −ik × ∂k − ÂB × k, (6)

r̂′ = i∂k − ÂB, p̂ = k, ŵ = ω. (7)

Here we included the momentum and energy operators, p̂ and
ŵ (which are unaffected by the transformations), ω is the
frequency, the helicity is diagonal, σ̂ = diag(1, − 1,0), and

ÂB = −k × Ŝ
k2

− iÛ †∂kÛ = m − cos θ

k sin θ
σ̂eφ (8)

is the Berry gauge field (connection), which corresponds
to the monopole curvature F̂B = ∂k × ÂB = σ̂k/k3 [10,11].
Hereafter we choose the gauge m = 1, which corresponds to
the absence of the phase singularity (Dirac string) along the
positive z axis in Eq. (8) (see Ref. [11]), allowing a smooth
transition to the paraxial case, θ → 0.

It is worth noticing that the transformation to the helicity
basis is associated with the transition to the local coordinate
frame with the z axis attached to the current k-vector, which
induces pure gauge Coriolis-type potential Â = −iÛ †∂kÛ ,
i.e., (Â)ij = −ie∗

i · (∂k)ej , where e1,2,3 ≡ (e+,e−,κ) [10,23].
At the same time, noncanonical operators and commutation
relations (2)–(5) essentially owe their origin to the projection
onto the transversality subspace, which is equivalent to the
diagonalization of the potential Â [10,23]: ÂB = dgÂ, i.e.,

(ÂB)ij = −ie∗
i · (∂k)ej δij . (9)

While such diagonalization (which uncouples the two helicity
components) is an adiabatic approximation for a nearly trans-
verse paraxial wave beam propagating in an inhomogeneous
medium [23,24], it is exact for transverse plane waves in free
space where the helicities are truly independent.

The measurable expectation (mean) values of the OAM,
SAM, coordinate, momentum, and energy obtained from the
diagonal operators (6)–(8) can be written as

S = 〈Ẽσ |σκ |Ẽσ 〉, (10)

L = 〈Ẽσ |L̂|Ẽσ 〉 − 〈Ẽσ |σAB × k|Ẽσ 〉, (11)

R = 〈Ẽσ |i∂k|Ẽσ 〉 − 〈Ẽσ |σAB |Ẽσ 〉, (12)

P = 〈Ẽσ |k|Ẽσ 〉, W = 〈Ẽσ |ω|Ẽσ 〉. (13)

Here AB = eφk−1(1 − cos θ )/ sin θ , convolution implies sum-
mation over σ = ±1 and integration in the k space, and we
assume normalization N = 〈Ẽσ |Ẽσ 〉 = 1 (see the appendix
for details). While the SAM is purely intrinsic (origin-
independent), the OAM, in general, has both intrinsic and
extrinsic contributions [25]:

Lext = R × P, Lint = L − Lext. (14)

Equations (10)–(14) contain all the main observable results
related to the AM and SOI of light. First, the σ -dependent
nonparaxial Berry-phase term in L should be associated with
the spin-to-orbit AM conversion [7,8,12–14]. Particular cases
of this term have appeared in Refs. [3,7,8]. Second, the orbital
[19–22] and spin [15–18] Hall effects of light are described by
the two terms in the position of the center of gravity [Eq. (12)].
Indeed, for a symmetric vortex beam propagating along the
z axis, the transverse coordinates of the center of gravity
vanish, (X,Y ) = 0, after integration over φ, but any asymmetry
of the field distribution along, say, the x axis immediately
causes an �- and σ -dependent shift along the orthogonal
y axis, Y 	= 0, together with tilt Px 	= 0 (see the example in
Sec. IV).
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We emphasize that our results (6)–(14) are exact, and no
approximations were made. They are equivalent to application
of the canonical operators L̂, Ŝ, and r̂ to the laboratory-frame
field components (Ẽx,Ẽy,Ẽz)T supplied with the transversality
condition.

III. ENERGY FLOW APPROACH

Remarkably, the same results [Eqs. (10)–(14)] can be de-
rived from an approach based on the separation of the spin and
orbital parts in the Poynting energy flow [6,7]. Let us consider
a monochromatic beam-like field propagating in the positive
z direction. Pecularities of the (2 + 1)D formalism for such a
problem are discussed in the appendix [Eqs. (A6)–(A9)].

The transverse center of gravity (A9) obtained in the mo-
mentum representation from Eq. (12) can be equally derived
from the traditional coordinate-representation definition

R⊥(z) = 1

g2

∫
r⊥|E(r⊥,z)|2d2r⊥, (15)

where r⊥ = (x,y), g = √
2ω/ε0, and we used normalization∫ |E(r⊥,z)|2d2r⊥ = g2 corresponding to N = 1 (see the ap-

pendix). Substituting here Fourier representation (A6) with the
helicity-basis expansion (A2) and using

∫
r⊥eik⊥·r⊥d2r⊥ =

(2π )2δ2(k⊥)∂k⊥ [k⊥ = (kx,ky)] together with expression (9)
for the Berry connection, we arrive at Eq. (A9) which is
equivalent to Eq. (12).

To derive the linear and angular momenta of the field, we use
the Poynting vector, which determines the momentum density
(energy flow) [26]:

π = 1

g2
Im[E∗ × (∇ × E)]. (16)

Substituting here the Fourier decomposition (A6), we obtain

π = Re
∫ ∫

ei(k−k′)·rẼσ ′∗Ẽσ eσ ′∗ × (k × eσ )
d2k′

⊥
2π

d2k⊥
2π

,

(17)

where Ẽσ ′ = Ẽσ (k′), eσ ′ = eσ (k′), and summation over σ =
±1 is implied hereinafter. After some calculations the total
momentum density (17) can be decomposed into the orbital
and spin parts as suggested in Refs. [6,7], π = πo + π s:

πo =
∫ ∫

eiK−·rẼσ Ẽσ ′∗(eσ · eσ ′∗)
K+

2

d2k′
⊥

2π

d2k⊥
2π

, (18)

π s =
∫ ∫

eiK−·rẼσ Ẽσ ′∗(eσ × eσ ′∗) × K−

2

d2k′
⊥

2π

d2k⊥
2π

,

(19)

where K± = k ± k′. Note that in the decomposition (17)–(19)
the two helicity components are exactly separated without an
interference term [6]. Also, the “electro-magnetic democracy”
discussed by Berry [6] is accommodated, because switching to
magnetic-field plane-wave helicity amplitudes, Ẽσ → H̃ σ =
−iσ Ẽσ , keeps Eqs. (17)–(19) invariant.

The linear momentum of the beam (per unit z length)
is given by the 2D space integration of the momentum
densities (17)–(19): P = ∫

πd2r⊥. In doing so, we find that
the spin momentum density makes no contribution to the

linear momentum [7]: Ps = ∫
π sd2r⊥ = 0, while the orbital

contribution yields

Po = P =
∫

πod2r⊥ =
∫

k|Ẽσ |2d2k⊥, (20)

which obviously coincides with Eq. (13).
The SAM and OAM of the beam (per unit z length) can be

obtained by the 2D space integration of their densities, i.e.,

L =
∫

r × πod2r⊥, S =
∫

r × π sd2r⊥. (21)

Substituting Eqs. (18) and (19) into Eqs. (21) and employing
properties of Fourier integrals, we arrive at

S = i

∫
(eσ × eσ∗)|Ẽσ |2d2k⊥ =

∫
σκ |Ẽσ |2d2k⊥, (22)

L =
∫

Ẽσ∗eσ∗ · (−ik × ∂k)Ẽσ eσ d2k⊥

=
∫

Ẽσ∗(−ik × ∂k)Ẽσ d2k⊥ −
∫

σ (AB × k)|Ẽσ |2d2k⊥,

(23)

where identity eσ∗ × eσ = iσκ and Eq. (9) were used. Clearly,
the values of SAM and OAM [Eqs. (22) and (23)] derived
from the Poynting energy flows are in perfect agreement with
our operator formalism [Eqs. (10) and (11)] (see also the
appendix).

IV. APPLICATION TO BESSEL BEAMS

Our theory has a number of important directly observable
consequences. As the simplest example we take nonparaxial
vector Bessel-beam solutions, which are eigenmodes of Ĵz

constructed from plane waves with well-defined helicity
σ (see Refs. [2,7,11,27]). The angular spectrum of such
beams is

Ẽσ
� = eσ (θ,φ)Ẽσ

� (θ,φ), Ẽσ
� = Aσδ(θ − θ0)ei�φ, (24)

where Aσ is a constant amplitude, θ0 is the polar angle
of conical distribution of the k-vectors [Fig. 1(a)], and no
summation over σ is implied here.

For the z components of OAM and SAM [Eqs. (10) and (11)
or (22) and (23)] of a superposition of σ = ±1 beams (24) we
obtain [28]

Lz = � + σ̄

B

2π
, Sz = σ̄

(
1 − 
B

2π

)
, Jz = � + σ̄ . (25)

Here σ̄ = (|A+|2 − |A−|2)/(|A+|2 + |A−|2) is the averaged
helicity, and


B =
∮
C

AB · dk = 2π (1 − cos θ0) (26)

is the Berry phase associated with the contour C = {θ =
θ0,φ ∈ (0,2π )} formed by the k-vectors’ distribution on the
sphere of directions [Fig. 1(a)] [29]. The Berry phase is
equal to the flux of the monopole field FB = ∂k × AB = k/k3

through the area of the k space sphere bounded by the contour
C. In this manner, the σ̄ -dependent term in Lz represents
a monopole-flux contribution to the OAM; cf. Eq. (87) in
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FIG. 1. (Color online) (a) Bessel-beam distribution (11) on the
sphere in k space with the azimuthal phase 2π�. (b) Cylindrical
caustic in the real space, an example of the closed-orbit � on it, and
the corresponding GO rays tangent to the caustic. Scalar phases are
color coded for � = −1, θ0 = π/4. Points A and A′ on the caustic are
connected by two paths: the straight line and the Poynting-flow helix.
The phase matching yields the phase difference 2π� between the
paths and quantization of the caustic radius. For circularly polarized
waves, the helical path brings about an additional Berry phase σ
B

[Eq. (28)].

Ref. [30]. In the paraxial limit the Berry-phase terms vanish
as 
B � πθ2

0 → 0. The values (25) evidence an apparent
partial conversion from SAM to OAM in nonparaxial light
with the total AM being constant [3,7], akin to the spin-to-orbit
AM conversion upon focusing of polarized light [7,8,12–14].
Indeed, in the Richards-Wolf approximation [31], the focusing
represents a geometric conical redirection of partial plane
waves with their helicity being conserved. It is described
exactly by the same transformation operator Û (θ,φ) that
describes transition to the helicity basis [14].

Simultaneously with a σ -dependent OAM, the nonparaxial
fields exhibit σ -dependent intensity distributions related to
the modified position operator. The real-space field of the
circularly polarized Bessel beam, calculated via the Fourier
transformation (A6) of Eq. (24), is

Eσ
� ∝ Aσ

⎛
⎜⎜⎜⎜⎝

1 + σ

2
J� (ξ ) − σb ei(σ−1)ϕJ�+σ−1 (ξ )

1 − σ

2
J� (ξ ) + σb ei(σ+1)ϕJ�+σ+1 (ξ )

−iσ
√

2abeiσϕJ�+σ (ξ )

⎞
⎟⎟⎟⎟⎠ eik‖z+i�ϕ,

where (ρ,ϕ,z) are the cylindrical coordinates in real space,
a = cos2(θ0/2), b = sin2(θ0/2), ξ = k⊥ρ, k⊥ = k sin θ0, k‖ =
k cos θ0, Jn(ξ ) are the Bessel functions of the first kind, and the
field components are written in the basis [(ex + iey)/

√
2,(ex −

iey)/
√

2,ez]. This field has a cylindrically symmetric intensity
distribution, I σ

� = |Eσ
� |2 given by

I σ
� ∝ |Aσ |2[a2J 2

� (ξ ) + b2J 2
�+2σ (ξ ) + 2abJ 2

�+σ (ξ )
]
. (27)

Below we show that the polarization-dependent intensity
distributions (27) [see Fig. 2(a)] signify the SOI of light.

The � and σ dependence of the radial intensity profile (27)
can be explained via a geometrical-optics (GO) ray picture
and the quantization of caustic underlying the maximum of

FIG. 2. (Color online) (a) Intensity distributions [Eq. (28)]
marked by quantum numbers (�,σ ) for Bessel beams with θ0 = 3π/8.
The spin-dependent profiles are shown for � = 4 with σ = −1, 0
(scalar case), and 1. Dashed circles indicate the GO caustics (28).
(b) Radial intensity profiles of the scalar (σ = 0) or paraxial (θ0 → 0)
Bessel beams I|�| = J 2

� (ξ ). (c) The SOI splitting of the profile of
the polarized nonparaxial Bessel beam I σ

±5(ξ ) [Eq. (27)] at different
values of θ0; vertical lines indicate GO caustics (28); see (a). (d) The
GO caustics (28) marked by sgn(�)(�,σ ) as functions of θ0. (e) The
SOI splitting of the maxima of intensity (27) [see (c)] as dependent
on θ0, approaching the GO limit (28) at |�| � 1.

the intensity. The rays associated with a Bessel beam are those
that form an angle θ0 with the z axis and touch a cylindrical
caustic of radius ρ = Rσ

� [32] (Fig. 1). The quantization
condition for a closed orbit � is

∮
�

k · dr = 2π�. Using the
underlying position (7), r′σ = r − σAB , we observe that the
Berry phase changes the effective optical length of a closed
orbit on the cylindrical surface [Fig. 1(b)]. For the orbit � =
{ρ = Rσ

� ,ϕ ∈ (0,2π )} it becomes k⊥[2πsgn(�)Rσ
� − σ 
B],

which yields

k⊥Rσ
� =

∣∣∣∣� + σ

B

2π

∣∣∣∣. (28)

Similar Berry-phase effects appear in quantum quantization
problems [33], e.g., the half-integer Hall effect in graphene
[34]. Note also the exact correspondence between the GO caus-
tic (28) and the wave OAM (25), |Lz| = k⊥Rσ

� , which reflects
the OAM interpretation as r × k for the rays. Figure 2 shows
�- and σ -dependent intensity distributions (27) of the Bessel
beams versus the GO caustics (28). Spin-dependent splitting
of caustics and intensity maxima are the optical analogs of the
fine spin-orbit splitting of levels in quantum systems. The σ

dependence in radial distributions of nonparaxial vortex fields
can be observed experimentally by tightly focusing paraxial
light with different polarizations; see Ref. [35].
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FIG. 3. (Color online) Transverse intensity distributions at z = 0
of the asymmetric Bessel beams with δ = π/2 and θ0 = 3π/8
marked by quantum numbers (�,σ ). Dashed lines indicate the �- and
σ -dependent transverse shifts of the centers of gravity [Eq. (29)], i.e.,
orbital and spin Hall effects of light in free space. We have verified
that the centers of gravity calculated numerically from the intensity
distributions and theoretically from Eq. (29) coincide.

Finally, we consider the Hall effects of light, which are
described by the position (12). For this purpose we break
the symmetry of the Bessel beams (24) along the kx axis
and assume that the plane-wave components are distributed in
the range φ ∈ (−δ,δ), 0 < δ < π . (Such truncated azimuthal
distributions can be generated via focusing by the correspond-
ing sector of a lens [17].) Substitution of this distribution in
Eqs. (12) and (13) or (20) and (A9) shows mutually orthogonal
tilt and displacement of the beam:

Px = γ k⊥, k⊥Y σ
� = −γ

(
� + σ̄


B

2π

)
. (29)

Here γ = (sin δ)/δ, X(z) = zPx/Pz (Pz = k‖), and the second
expression (29) closely resembles Eqs. (25) and (28). The
�- and σ -dependent parts of the transverse shift of the
center of gravity of the beam Y σ

� describe the orbital and
spin Hall effects of light in free space (Fig. 3). A related
spin-Hall effect has been observed upon focusing of light
with a “half-lens” (� = 0 for δ = π/2) [17], whereas the
orbital-Hall effect can be measured in a similar manner by
focusing vortex beams with broken symmetry. The values of
Lz and Sz for the asymmetric beam are given by the same
Eq. (25), but in this case the OAM has an extrinsic contribution,
Lext

z = −PxY
σ
� (14):

Lext
z = γ 2Lz, Lint

z = (1 − γ 2)Lz. (30)

Hence, the Hall effects of light can be interpreted as an
intrinsic-to-extrinsic OAM conversion [15,19], which is also
accompanied by generation of a transverse OAM component
Lext

x = PzY
σ
� = −γ cot θ0Lz [18]. The total conversion is

achieved at δ → 0, γ → 1.

V. CONCLUSION

To summarize, we have revisited the problem of the
identification of the spin and orbital angular momenta of
nonparaxial light in free space. It has been shown that this
issue is closely related to the determination of the position of

the center of gravity of a light beam or a wave packet. We
have given an exact self-consistent solution to these problems
in terms of quantum-operator formalism and using classical
Poynting energy flows. In the helicity representation, taking
into account the transverse nature of the electromagnetic
fields, the operators of the OAM, SAM, and position become
diagonal but exhibit noncanonical commutation relations.
We have shown that the unusual features of these operators
originate from the Berry-phase terms and can be associated
with manifestations of the spin-orbit interaction of light.
Indeed, anomalous Berry terms in the OAM and position
operators describe spin-dependent part of OAM (responsible
for spin-to-orbital AM conversion) and spin-dependent shift
of the center of gravity of light (i.e., the spin-Hall effect
of light). We have applied the general theory to symmetric
and asymmetric vector Bessel beams and found that our
noncanonical operators indeed correspond to the observable
quantities. The obtained Bessel-beam intensity distributions
exhibit fine SOI splitting of caustics and Hall effects of light
in perfect agreement with the derived OAM and position
operators. These effects can be observed experimentally in
tightly focused fields.
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APPENDIX A: OPERATOR FORMALISM
FOR WAVE PACKETS AND BEAMS

One can separate two basic situations for which the operator
formalism of Sec. II can be adopted in a slightly different way.
The first one is evolution of a wave-packet-like field localized
in 3D space. Obviously, such a field is nonmonochromatic and
time dependent. The plane-wave Fourier decomposition of the
complex electric field can be written as

E(r,t) = g

(2π )3/2

∫
Ẽ(k)eik·r−iω(k)t d3k, (A1)

where d3k = dkxdkydkz = k2 sin θdkdθdφ, ω(k) = k is the
dispersion relation, factor g = √

2ω/ε0 (ε0 is the vacuum
permittivity) is introduced for proper normalization of energy,
and the real-wave electric field is given by E(r,t) = ReE(r,t).
In the helicity basis one has

Ẽ(k) = Ẽ+(k)e+(k) + Ẽ−(k)e−(k). (A2)

The energy of the wave-packet field is given by the 3D space
integral of the intensity (we omit inessential constant factors)
and can be written as

W = 1

2

∫
(ε0|E|2 + µ0|H|2) d3r

= 1

4

∫
(ε0|E|2 + µ0|H|2) d3r

=
∫

ωẼσ∗Ẽσ d3k ≡ 〈Ẽσ |ω|Ẽσ 〉. (A3)
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Here H(r,t) = Re H(r,t) is the magnetic field, µ0 is the vac-
uum permeability, d3r = dxdydz, summation over σ = ±1 is
implied hereinafter, and we performed some standard calcula-
tions with Maxwell equations and the Fourier transform (A1).
Thus, the convolution implies 3D integration of the field
spectral amplitudes over the k space. At the same time, to
determine properly the state vector |Ẽσ 〉, one has to take into
account the temporal dependence of the field, namely:

|Ẽσ 〉 = Ẽσ (k)e−iω(k)t . (A4)

We assume normalization, which has the meaning of the unit
number of photons in the wave packet: N = 〈Ẽσ |Ẽσ 〉 = 1.
Substituting the state vector (A4) with the definition of
convolution (A3) into Eq. (12), we obtain the time-dependent
position of the center of gravity of the wave packet moving in
space:

R(t) = −Im
∫

Ẽσ∗∂kẼ
σ d3k −

∫
σAB |Ẽσ |2d3k + Vt,

(A5)

where the velocity of the wave-packet motion is given by

V =
∫

(∂kω)|Ẽσ |2d3k =
∫

κ |Ẽσ |2d3k.

Note that the same expression for the wave-packet center
can be obtained by convolution of the canonical coordinate
operator r̂ = i∂k with the vector state |Ẽσ 〉 = Ẽσ (k)e−iω(k)t .
The Berry-connection term arises in this case from the ∂k
derivatives of the helicity basic vectors eσ [Eq. (9)]. The linear
and angular momenta of the field [Eqs. (10), (11), and (13)]
can be calculated in a manner similar to Eqs. (A3)–(A5).

The second typical problem that arises in optics deals with a
beam-like monochromatic field (ω = k = const) propagating
in the positive z direction and localized only in the transverse
(x,y) dimensions. In this case, it is natural to use the (2 +
1)D version of a quantum-like formalism, where z instead
of time plays the role of the independent variable, whereas
r⊥ = (x,y) is the effective 2D space allowing normalization
of the transverse field distributions [36]. Because of the
monochromaticity, only two components of the k-vector
are independent, and the z component can be expressed
as kz = kz(k⊥) =

√
ω2 − k2

⊥, k⊥ = (kx,ky). This determines
the following 2D plane-wave Fourier decomposition of the
complex time-independent electric field [36]:

E(r⊥,z) = g

2π

∫
Ẽ(k⊥)eik⊥·r⊥+ikz(k⊥)zd2k⊥, (A6)

where the real-wave electric field is given by E(r,t) =
Re [E(r)e−iωt ] and the element of the 2D area of integration is
d2k⊥ = dkxdky . Alternatively, one can use Ẽ = Ẽ(θ,φ) and
d2k⊥ = k2 cos θ sin θdθdφ in spherical coordinates with two
independent dimensions (θ,φ). The characteristic energy of
the wave beam is, in fact, the energy per unit z length, which is
obtained by the 2D integration of the time-averaged intensity
over d2r⊥ = dxdy:

W = 1

2

∫
(ε0|E|2 + µ0|H|2)d2r⊥

= 1

4

∫
(ε0|E|2 + µ0|H|2)d2r⊥

=
∫

ωẼσ∗Ẽσ d2k⊥ ≡ 〈Ẽσ |ω|Ẽσ 〉 = ω. (A7)

Here H(r,t) = Re [H(r)e−iωt ], the overline stands for the
time averaging, and we assumed the unit number of photons
per unit z length in the beam: N = 〈Ẽσ |Ẽσ 〉 = 1. Thus, the
convolution for beam-like fields implies 2D integration over
(kx,ky) or (θ,φ) in the k space (these are equivalent unless we
consider evanescent modes). To determine properly the state
vector |Ẽσ 〉, one has to take into account the z dependence of
the field [Eq. (A4)]:

|Ẽσ 〉 = Ẽσ (k⊥)eikz(k⊥)z. (A8)

Substituting definitions (A7) and (A8) into Eq. (12), we obtain
the z-dependent transverse position of the center of gravity of
the propagating wave beam [36]:

R⊥(z) = −Im
∫

Ẽσ∗∂k⊥Ẽσ d2k⊥ −
∫

σAB |Ẽσ |2d2k⊥ + Vz,

(A9)

where the “velocity” of the motion along z is given by

V = −
∫

(∂k⊥kz)|Ẽσ |2d2k⊥ =
∫

κ

kz

|Ẽσ |2d2k⊥.

The linear and angular momenta (more precisely, their values
per unit z length) are calculated from Eqs. (10), (11), and (13)
in a similar manner (see also Secs. III and IV). Note that
despite the (2 + 1)D quantum-like formalism, they are vectors
in 3D space. This does not cause any difficulties if one uses
ẑ = i∂kz

= z, which yields Z = z in the 3D calculations (see
Ref. [18]).

It should be emphasized that, despite our using the same
letters for the unifying formalism, quantities E, Ẽ, W , R, etc.,
have different meanings for the 3D-localized wave-packet
polychromatic fields [Eqs. (A1)–(A5)] and 2D-localized
monochromatic beams [Eqs. (A6)–(A9)].
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