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Steady-state ab initio laser theory: Generalizations and analytic results
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We improve the steady-state ab initio laser theory (SALT) of Türeci et al. by expressing its fundamental
self-consistent equation in a basis set of threshold constant flux states that contains the exact threshold lasing
mode. For cavities with nonuniform index and/or nonuniform gain, the new basis set allows the steady-state
lasing properties to be computed with much greater efficiency. This formulation of the SALT can be solved
in the single-pole approximation, which gives the intensities and thresholds, including the effects of nonlinear
hole-burning interactions to all orders, with negligible computational effort. The approximation yields a number
of analytic predictions, including a “gain-clamping” transition at which strong modal interactions suppress all
higher modes. We show that the single-pole approximation agrees well with exact SALT calculations, particularly
for high-Q cavities. Within this range of validity, it provides an extraordinarily efficient technique for modeling
realistic and complex lasers.
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I. INTRODUCTION

The foundation of our understanding of lasers is semi-
classical laser theory, in which the gain medium is treated
quantum-mechanically and the electromagnetic fields are
treated classically. The pioneering work of Haken [1] and
Lamb [2] showed that the Maxwell-Bloch (MB) equations, in
which the gain medium is modeled by an ensemble of two-level
atoms, successfully describe the principal properties of lasers,
including modal thresholds, lasing frequencies, output power,
the structure of the electromagnetic fields inside and outside of
the laser cavity, as well as dynamical effects such as relaxation
oscillations and mode, phase, and frequency locking. The
only properties that cannot be obtained from the semiclassical
theory are those that depend on quantum fluctuations of the
electromagnetic field, such as the laser linewidth, amplified
spontaneous emission, and photon statistics.

Because the MB equations are coupled nonlinear equations
in space and time, few purely analytic results could be obtained
from the theory. Those obtained generally relied on a number
of drastic approximations: The mode structure was assumed
to be simple (e.g., spatially uniform or low-order Gaussian
modes), the openness of the laser system was handled either
through adding phenomenological damping to closed-cavity
modes or by approximating the lasing modes as quasimodes
of the passive cavity, and the nonlinear modal interactions
were either ignored or simplified by solving the equations near
threshold. Where such approximations could not be employed,
reliable theoretical results could only be obtained from brute
force time-domain simulations of the MB equations [3] or their
multilevel generalizations.

The past 2 decades have seen the emergence of novel
laser systems based on complex resonators, driven by ad-
vances in microfabrication and motivated by applications
to integrated on-chip optics, as well as by basic scientific
interest. Examples are vertical-cavity surface-emitting lasers
[4], microdisks [5,6], spiral [7] and (wave-chaotic) deformed
disk lasers [8–11], photonic crystal lasers [12,13], and random
lasers [14,15]. The analytical theory existing at the time was
not readily applicable to these complex systems; the random
laser, in particular, poses a difficult conceptual challenge as

the corresponding laser “cavity” has finesse smaller than unity,
meaning that it has no isolated passive cavity resonances. At
the same time, the complexity of some of these structures
pushed realistic simulations of the lasing equations to the limits
of practicality. Thus, there was a need for a robust semiclassical
laser theory incorporating a more accurate treatment of the
cavity modes, including both spatial complexity and openness,
as well as the effects of nonlinear modal interactions.

Such a theory has been proposed by Türeci and Stone [16].
These authors employed one key approximation, originally
introduced by Haken [1,17,18]: the inversion is assumed
to be time independent, implying the absence of definite
phase relationships between the lasing modes (hence ignoring
phenomena such as mode and phase locking). This stationary
inversion approximation (SIA), also called the “free-running”
approximation [19,20], had been previously employed in
combination with a third-order treatment of the nonlinearity, to
arrive at the Haken-Sauermann (HS) equations of multimode
laser theory [1,21]. About a decade ago, Mandel and coworkers
[22,23] also used the SIA and went beyond the HS equations to
give an infinite-order treatment of nonlinear interactions in the
Fabry-Perot cavity with nonuniform pumping. Both the HS and
Mandel approaches neglected the effect of the openness of the
cavity on the lasing modes (we compare our theory to the Man-
del approach in Appendix B, having already compared it to the
HS equations in Ref. [16]). In contrast, the current approach is
formulated for arbitrary cavities and pump profile and treats the
openness exactly. By seeking only the steady-state solutions
of the MB equations, Türeci and Stone [16] derived a set of
self-consistent time-independent nonlinear equations for the
lasing modes and frequencies at a given pump. Subsequently,
Türeci, Stone, and Ge [24] and Ge et al. [17] developed
an iterative algorithm for solving these nonlinear equations,
eliminated the slowly varying envelope approximation, and
confirmed that the resulting solutions agreed to high accuracy
with the steady-state results of time-domain simulations of
the MB equations. In 2008, Türeci et al. [25,26] showed
that even multimode random lasing in two dimensions (2D)
could be efficiently calculated using this method. We will
refer to this approach as steady-state ab initio laser theory
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(SALT) [27]. The term ab initio refers to the fact that the
only inputs are the dielectric function for the passive cavity
and a few parameters to describe the gain medium. The SALT
method thus bridges the gap between oversimplified analytical
approaches and time-domain simulations. Unlike the former, it
describes laser cavities of arbitrary complexity and openness,
making no assumptions about the nature of the lasing modes or
frequencies or the proximity to threshold. Unlike the latter, it
yields direct semianalytic insights into the lasing solutions.
Furthermore, the SALT method is in general much more
computationally efficient than time-domain simulations; due
to the elimination of the time variable, it allows for calculations
that are impractical in the time domain due to limitations in
computer speed or memory.

In the present work, we present a significant improvement to
the SALT method by introducing a new basis set that always
contains the exact threshold lasing solution. The properties
of the new basis functions allow us to compute the lasing
solutions above threshold more efficiently than before. They
also allow us to derive an approximation to the full SALT
for high-Q lasing cavities, which we term the single-pole-
approximation SALT (SPA-SALT), which is valid well above
threshold in contrast to the HS theory [21]. The SPA-SALT
approximation yields solutions with negligible computational
effort, once the threshold lasing properties are known. From
this simplified theory, we derive several analytic results for the
lasing behavior above threshold, including relatively simple
formulas for the thresholds of higher lasing modes. These
results hold to infinite order in the nonlinear modal interactions
and are hence quantitatively reliable. Strikingly, these results
predict a “gain-clamping” transition, in which higher modes
are prevented from turning on at any pump, despite the
nonuniformity of the lasing modes.

The remainder of this article is organized as follows. In
Sec. II, we review the previous formulation of the SALT and
the solution method based on the basis set of constant-flux
states and describe the limitations imposed by this basis set.
In Sec. III, we present the new basis set and the formulation of
the SALT in terms of this basis and examine the efficiency of
the new solution method. In Sec. IV, we derive the simplified
form of the SALT equations arising from the “single-pole
approximation” (SPA-SALT). We then solve these equations
analytically and demonstrate good agreement with the exact
SALT solutions. In the appendices we derive the power
output equations of the SALT, compare the SPA-SALT to the
earlier Mandel approach [22,23], and calculate perturbative
corrections to the SPA-SALT.

II. AB INITIO LASER EQUATIONS

A. The SALT equations

The SALT description of lasing begins with the MB
equations for an ensemble of two-level atoms interacting with
a classical electromagnetic field:

∇2E+ − εc(�r) Ë+ = 4πP̈ +, (1)

Ṗ + = −i(ka − iγ⊥)P + + g2

ih̄
E+D, (2)

Ḋ = γ‖(D0 − D) − 2

ih̄
[E+(P +)∗ − P +(E+)∗]. (3)

Here, we restrict the fields to one dimension (1D) or to the
transverse magnetic (TM) polarization in 2D so the electric
and polarization fields are scalars (the generalization to TE
modes in 2D is straightforward). Their positive-frequency
components are E+(�r,t) and P +(�r,t); in these equations, we
have made use of the rotating-wave approximation (RWA).
Note that we have not used the standard slowly varying
envelope approximation, employed in most treatments to
eliminate second time derivatives; this approximation gives no
benefit in the SALT approach and is unnecessary [17]. We have
taken the speed of light in a vacuum c to be unity; wave vector
and frequency will be distinguished by the context. D(�r,t)
is the population inversion, and D0(�r) is the pump; ka is the
frequency of the gain center, γ⊥ is the gain width (polarization
dephasing rate), γ‖ is the population relaxation rate, g is
the dipole matrix element, and εc(�r) is the cavity dielectric
function, which in general is complex and includes the material
absorption inside the cavity. Arbitrary cavity elements, such as
mirrors, can be represented by an appropriate choice of εc(�r),
although we will focus on dielectric cavities in our examples
below. We assume that the E+ and P + fields obey a multimode
ansatz

E+(�r,t) =
N∑

µ=1

�µ(�r) e−ikµt ,

(4)

P +(�r,t) =
N∑

µ=1

pµ(�r) e−ikµt ,

where the indices µ = 1,2, . . . ,N label the different lasing
modes. The total number of modes, N , is not given but
increases in unit steps from zero as we increase the pump
strength D0. The values of D0 at which each step occurs
are the (interacting) modal thresholds, to be determined
self-consistently from the theory. The real numbers kµ are the
lasing frequencies of the modes, which will also be determined
self-consistently.

We insert the ansatz (4) into Eqs. (1)–(3) and employ
the stationary inversion approximation Ḋ = 0. The result is
a set of coupled nonlinear differential equations, which are the
fundamental equations of the SALT [28]:{

∇2 +
[
εc(�r) + γ⊥D(�r)

kµ − ka + iγ⊥

]
k2
µ

}
�µ(�r) = 0, (5)

D(�r) = D0(�r)

[
1 +

N∑
ν=1

�ν |�ν(�r)|2
]−1

. (6)

� and D are now dimensionless, measured in their natural
units ec = h̄

√
γ‖γ⊥/(2g) and dc = h̄γ⊥/(4πg2), and �ν ≡

γ 2
⊥/[γ 2

⊥ + (kν − ka)2] is the Lorentzian gain curve evaluated
at frequency kν . Equation (5) is simply a wave equation for the
electric field mode �µ, with an effective dielectric function
consisting of both the “passive” contribution εc(�r) and an
“active” contribution from the gain medium. The latter is
frequency dependent and has both a real part and a negative
(amplifying) imaginary part. It also includes infinite-order
nonlinear “hole-burning” modal interactions, seen in the |�ν |2
dependence of (6). In addition, we make the key requirement
that �µ must be purely out-going outside the cavity; it is
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this condition that makes the problem non-Hermitian. It is
worth noting that the stationary inversion approximation is not
needed until at least two modes are above threshold, so (6) is
exact for single-mode lasing up to and including the second
threshold (aside from the well-obeyed RWA).

Let us define a finite cavity region C, such that

D0(�r) = 0 and εc(�r) = n2
0, �r /∈ C. (7)

Although we call C the “cavity” region, εc(�r) need not be
discontinuous at its boundary. The theory applies, for instance,
to random lasers lacking any well-defined boundary [25,26].
For our purposes, C simply defines a surface of last scattering
(or last amplification), a region outside of which there is no
dielectric nor gain material to affect the free propagation of
waves.

We write the external pump as

D0(�r) = D0 F (�r), �r ∈ C, (8)

where D0 is the “pump strength” and F (�r) a fixed “pump
profile,” both real quantities. The simplest case, F (�r) = 1,
corresponds to uniform pumping within the cavity. In general
F (�r) need not be uniform, e.g., if the pump is a finite laser spot
or the gain material is distributed unevenly.

The lasing equation now becomes{
∇2 +

[
εc(�r) + γµD0F (�r)

1 + h(�r)

]
k2
µ

}
�µ(�r) = 0 (9)

in which h(�r) ≡ ∑
ν �ν |�(�r)|2 represents the spatial hole

burning effect. Here we have introduced the abbreviation

γµ ≡ γ⊥/(kµ − ka + iγ⊥). (10)

Previous treatments of the SALT [16,17,25,26] proceeded by
inverting Eq. (9) via the Green’s function to yield an equivalent
integral equation, but for our purposes it is more convenient to
retain the differential form.

B. Modal output power

Using Eq. (9) we can determine the unknown lasing
frequencies kµ and mode fields �µ(�r). From these quantities,
all other properties associated with the semiclassical steady
state can be derived. For instance, an important quantity
not treated explicitly in earlier versions of the SALT is the
time-averaged modal output power Pµ. This can be obtained
in two ways. First, it can be calculated from the asymptotic out-
going fields, which are directly calculated in some numerical
approaches [25]. Alternatively, the Poynting flux through a
loop enclosing a 2D cavity can be converted into an area
integral, which gives the convenient expression:

Pµ = kµ

2π

∫
C

d2r

{
�µD0F (�r)

1 + h(�r)
− Im[ε(�r)]

}
|�µ(�r)|2. (11)

A more detailed discussion and derivation of the modal output
power is given in Appendix A.

C. Threshold lasing modes and constant-flux states

The lasing equation (9) always admits the trivial solution
� = 0. Below the first lasing threshold, this is the only
self-consistent solution. As D0 is gradually increased from

zero, at some value there emerges an additional self-consistent
solution, consisting of a single lasing mode �(t)

µ (�r). Right at
threshold, this mode has infinitesimal amplitude, �(t)

µ (�r) → 0.
Hence, the hole-burning term h(�r) is negligible and (9) reduces
to a linear equation:

{∇2 + [εc(�r) + γµD0 F (�r)]k2
µ

}
�(t)

µ (�r) = 0. (12)

Note that the second term in parentheses, which we will refer
to as εg(�r), is simply the linear amplifying dielectric function
of the pumped gain medium. As shown in the following
sections, this equation has a discrete set of nontrivial solutions,
specified by the two positive real numbers, (Dµ

0 ,k(t)
µ ), the

threshold values of the pump and lasing frequency. Each
of these solutions would be a perfectly valid lasing mode
at threshold for that specific pump value, assuming that all
other modes are suppressed for some reason. We refer to this
set of functions with their corresponding frequencies as the
threshold lasing modes (TLMs). They can be thought of as the
noninteracting lasing modes, i.e., the modes that would turn
on in the absence of modal interactions, and their thresholds
D

µ

0 are the noninteracting thresholds.
There is another interesting interpretation of the TLMs. The

linear wave equation (12) defines an electromagnetic scattering
matrix which gives the out-going wave amplitudes in terms of
the incident wave amplitudes. The outgoing-only boundary
condition implies that the relevant solutions correspond to
poles of this S matrix, i.e., eigenvectors with eigenvalue
tending to infinity. When D0 = 0, these poles are just the
resonances of the passive cavity defined by the wave equation

[∇2 + εc(�r)k2]ψ(�r) = 0, (13)

with an out-going boundary condition. If the cavity is lossless
and D0 = 0, then the corresponding S matrix is unitary; oth-
erwise it is not flux conserving. For any cavity in equilibrium
(i.e., lossless or absorbing) these solutions exist only for
complex k, with Im(k) < 0; hence, outside C, these modes
grow exponentially toward infinity, which means that they are
not physically realizable [16]. When D0 > 0, the dielectric
function in (12) is not merely the passive εc(�r) but includes
a complex nonequilibrium amplifying contribution εg(�r) from
the gain medium, whose effect is to move the poles “upward”
toward the real axis (see Fig. 1). The noninteracting thresholds
associated with the TLMs are the values of the pump that move
the pole corresponding to each resonance onto the real axis,
making it a physically possible threshold lasing mode.

In the real system, once the pump reaches the smallest of
these thresholds the solution with D0 = Dmin

0 turns on. This
mode then begins to contribute to the hole-burning term in
(9). For all higher pump values this term induces nonlinear
interactions by reducing the inversion, raising the thresholds
for the higher modes and, in general, changing both their
frequencies and spatial distributions. Thus, above the first
lasing threshold we face a set of coupled, nonlinear differential
equations (9), for the unknown interacting lasing modes �µ(�r)
and frequencies kµ. From a practical standpoint, the most
efficient way to solve this problem is to characterize these
modes with a tractably small set of variables, by expanding
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FIG. 1. (Color online) Trajectories of scattering matrix poles
with increasing pump strength D0. (Inset) Schematic of the 1D
slab resonator used. Its length L = 1 and index n = 1.5. Gray dots
indicate that the pump covers the whole resonator. Solid curves show
the pole trajectories when the gain-induced dielectric constant εg is
given by Eq. (12), with gain parameters ka = 15/L and γ⊥ = 3/L.
Different symbols lying along each trajectory represent different
pump strengths: D0 = 0 (filled squares), 0.1 (open squares), 0.2 (filled
circles), 0.3 (open circles), and 0.4 (filled triangles). At D0 = 0, the
poles are the resonances of the passive cavity, which all have the same
imaginary part in this case. Stars indicate the real frequencies k(t)

µ

of the corresponding TLMs, which arise for different pump values,
D0 = D

µ

0 in general. In Eq. (17), we associate a basis set of TCF
states with each TLM; each TCF corresponds to adding a different
gain dielectric function to the medium, which pulls a different pole
through the same k(t)

µ . The dashed lines show this process for these
four poles; here we define an increasing dielectric constant εg by
εg = sηm,(0 � s � 1), where ηm is the TCF eigenvalue introduced
in Eq. (17) at the frequency of the first lasing mode. The dashed and
solid lines for the first mode (red) coincide.

them in an appropriate choice of basis functions. The original
formulation of the SALT employed the following basis set:

[∇2 + εc(�r)K2
n(k)

]
ϕn(�r,k) = 0, �r ∈ C

(14)[∇2 + n2
0k

2
]
ϕn(�r,k) = 0, �r /∈ C,

where Kn are complex and k dependent. The basis states
ϕn(�r,k) were called the “constant flux” (CF) states, and they
satisfy an out-going boundary condition at the cavity boundary
∂C [29]. Within C, they obey a wave equation with the
complex frequency Kn, analogous to (13). Outside, they obey
a wave equation with real frequency k and are required to
be outgoing at infinity. The total electromagnetic energy flux
outside C is conserved, as it must be for a physical mode.

The “constant-flux” condition outside C can be satisfied by
a variety of complete non-Hermitian basis sets. The specific
CF basis (14), used in Refs. [16,24–26], was chosen because of
its similarity to the equation defining the resonances; it differs
from (13) only by having real k outside the cavity. If the cavity
dielectric εc is constant and the pump is uniform (F = 1),
then each TLM is a CF state; and (ii) the complex frequency
Kn(k) of the CF state is very close to the complex frequency
of a passive cavity resonance [16,24]. To be precise, the CF

frequency corresponding to a TLM is

Kn=µ

[
k(t)
µ

] =
[

1 + γ⊥D0/εc

k
(t)
µ − ka + iγ⊥

]− 1
2

k(t)
µ . (15)

If we define Kn = qn − iκn (suppressing k dependence) and
assume that the the lasing frequency is close to the atomic
frequency, it is easily shown [24] that

k(t)
µ = ka + γ⊥qµ

γ⊥ + κµ

, (16)

which is the familiar line-pulling formula for the single-mode
lasing frequency [1], with qµ,κµ playing the role of the cavity
frequency and linewidth. This emphasizes the relationship of
the SALT to earlier theories that identified lasing modes with
passive cavity resonances.

When the cavity dielectric function εc and/or the pumping
profile F is nonuniform, the TLMs are not given by a single CF
state, and each must be written as a superposition of CF states.
In Ref. [25], it was found that practical SALT calculations
can be performed using a basis of 20–50 CF states. However,
when the pumping is nonuniform, the rate of convergence of
the CF basis set is poorer. Although the CF state definition (14)
takes εc(�r) into account, it does not include the pump profile
F (�r) as an independent parameter; effectively, these CF states
correspond to a pump profile proportional to εc(�r).

The above drawbacks motivate us to introduce a new basis
set for the SALT equations. These basis functions are still
CF states in the sense that they obey the real-k out-going
boundary conditions. However, their definition accounts for
nonuniformity in both the cavity dielectric function and the
pump profile, allowing us to assign a basis set to each TLM,
with one of the basis functions exactly equal to the TLM. We
will see that the nonlinear above-threshold solutions can be
expanded with a minimum number of these basis functions,
resulting in a marked improvement in the performance of the
SALT.

To avoid confusion, we henceforth refer to the original CF
states (14) as uniform constant flux (UCF) states, and the new
basis states as threshold constant flux (TCF) states.

III. THRESHOLD CONSTANT FLUX STATES AND
SALT EQUATIONS IN CF BASES

A. Threshold constant flux states

We define the TCF states by:

{∇2 + [εc(�r) + ηn(k) F (�r)]k2}un(�r,k) = 0, �r ∈ C
(17)[∇2 + n2

0k
2]un(�r,k) = 0, �r /∈ C,

where ηn are complex and k dependent, and un(�r,k) are
outgoing with frequency k at infinity. F (�r) is the spatial pump
profile defined in (8). For each k, there exists a discrete set
{un(�r,k),ηn(k) | n = 1,2, . . .} of solutions to (17). We refer to
ηn as the TCF eigenvalue, for reasons that will become clear.

Like the UCF frequencies Kn, the TCF eigenvalues ηn(k)
are complex, and not real, due to the open (non-Hermitian)
boundary condition. One can show that Im[ηn(k)] < 0, which
implies amplifying behavior similar to the condition Im[Kn] <

0 for the UCF states. In (17), ηn(k)F (�r) plays the role of a
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complex amplifying dielectric function with the same spatial
profile as the pump, so ηn(k) physically is the scale of the
amplifying dielectric constant necessary for that TCF to reach
threshold and emit at wave vector k. As previously stated, if
we choose k = k(t)

µ , then one of the basis functions matches
the solution �(t)

µ for the threshold lasing equation (12):

un

[�r,k(t)
µ

] = �(t)
µ (�r) (18)

for index n such that

ηn

[
k(t)
µ

] = γ⊥D
µ

0

k
(t)
µ − ka + iγ⊥

. (19)

Note that TLMs and TCF states both satisfy linear equations
and hence have no overall scale, so the same normalization
must be assumed in (18). Thus each infinite TCF basis set
is associated with one true TLM, indexed by µ. Slightly
above threshold, this one TCF state serves as a very good
approximation for the first lasing mode. Well above threshold,
the lasing mode must be constructed from a superposition that
includes the other TCF states (the lasing frequency kµ will also
change slightly from its threshold value as the pump increases,
and the TCF states will adjust accordingly). As noted, these
other TCF states correspond to different values of εg that would
also lead to lasing at kµ, values that are not realized by the
two-level gain medium of the MB equations. In the S-matrix
picture, they correspond to moving a different pole through the
real axis at k(t)

µ , as indicated in Fig. 1. Higher lasing modes can
likewise be expanded using TCF states with different kµ.

The TCF states are not power-orthogonal but obey a self-
orthogonality relation:∫

C

ddr F (�r) un(�r,k) un′ (�r,k) = δnn′ . (20)

We use the superscript d to indicate the dimensions of the
system here and in the following discussion. We assume
degenerate ηn’s are handled, as usual, by choosing the basis
so that (20) is satisfied. It follows that any sufficiently regular
function having the same out-going boundary condition (with
frequency k) can be expanded in the TCF basis {un(�r,k)}. For
the uniform case, the UCF and TCF states are the same, with
eigenvalues related by

ηn(k) = εc

(
K2

n

/
k2 − 1

)
. (21)

Interestingly, basis states of the UCF type were first defined
and used by Kapur and Peierls [30] in the context of nuclear
decay, long before their introduction to optical physics by
Türeci et al. [16]. The k dependence of the Kapur-Peierls
basis set was considered inconvenient, and it was largely
superseded by the use of S-matrix resonances, which do
not form a complete basis set but are useful when single-
pole approximations are valid (and the amplifying behavior
at infinity is ignored) [31]. In our present situation, the
appearance of internal amplifying eigenvalues is much more
natural, for there is truly a gain medium within the cavity!
The Kapur-Peierls (CF) approach, and not the resonance
approach, is thus the natural one for describing the laser;
and with the availability of modern computers, the fact
that the basis is k dependent does not pose any serious
difficulty.

B. Threshold lasing conditions

We have seen that the first TLM, having frequency k = k(t)
µ ,

corresponds exactly to a single TCF state un[�r,k(t)
µ ] and that

the other TCF states must be included above threshold, even
though they are not possible TLMs for the actual system.
We can find the first TLM by computing the TCF states and
{ηn(k)} over a range of frequencies close to the gain center
ka . For a fixed choice of (ηn,k), Eq. (19) will yield a complex
(unphysical) value for D0, but when D0 passes through the real
axis at k = k(t)

µ , the value of ηn=µ defines a TLM according
to (18) (19) (see Fig. 2). The first lasing mode is then the
TLM with the smallest D

µ

0 . The other TCFs for that TLM are
{um[�r,k(t)

µ ] | m �= n}.
To identify which ηn will generate low threshold TLMs, for

real D0, we can rewrite (19) explicitly as

k = ka − Re[ηn(k)]

Im[ηn(k)]
γ⊥, (22)

D0 = −Im [ηn(k)] γ⊥

[
1 +

(
k − ka

γ⊥

)2
]

, (23)

with k = k(t)
µ . From the expression in brackets in (23), |k − ka|

should be as small as possible—and hence, via (22), so
should |Re(ηn)|. From the prefactor in (23), Im(ηn)| should
also be small, and this condition becomes relatively more
important than the first when γ⊥ is large, i.e., the gain curve is
broad. Thus, the relevant TCF states are those lying within
a “window” around Re(η) ≈ 0 of width ∼γ⊥; within this
window, states with Im(η) closest to zero (i.e., requiring the
least gain) are favored. This analysis agrees with the numerical
results shown in Fig. 2.
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µ

µ

FIG. 2. (Color online) Relation between TCF eigenvalues ηn and
the threshold inversion D

µ

0 . Dots show the complex TCF spectrum
ηn(k) for a random laser. Dashed curves show the k dependence of
four of these TCF eigenvalues, with arrows indicating increasing k.
Solid curves show the corresponding D

µ

0 (k) obtained from Eq. (19),
with γ⊥ = k/60. A TLM occurs when one D

µ

0 (k) hits the real axis,
as indicated here by stars. The green colored TCF eigenvalue has a
small imaginary part and a real part fairly close to zero; thus it leads
to the lowest threshold (smallest D

µ

0 ), consistent with the discussion
in the text.
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We can also express the threshold lasing mode in terms of
the UCF modes (14). As noted in Sec. II C, for nonuniform εc

and/or F it is necessary to use a superposition of UCF modes:

�µ(�r) =
∑

n

αµ
n ϕn(�r),

(24)

αµ
n = γµD0k

2

K2
n − k2

∑
n′

∫
C

ddr F (�r) ϕn(�r) ϕn′ (�r)αµ

n′ ,

with k = k(t)
µ . This formulation of the SALT was used in

Ref. [25] to analyze 2D random lasers.
To illustrate the advantage of the TCF basis for nonuniform

cavity dielectric function εc and pumping profile F , we study
a 1D resonator of length L = 1. The refractive index is
n = 1.5 for 0 < x < 0.25 and n = 3 for 0.25 < x < 1. Only
the left half of the cavity is pump, i.e., F (x) = 1 (0 < x <

0.5),0 (0.5 < x < 1). The TCF state corresponding to the first
TLM, with threshold D0 = 0.611, is plotted in Fig. 3(a), along
with the UCF state, making the largest contribution to this
TLM. The TCF state is tailored to the pump profile and is only
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FIG. 3. (Color online) (a) Spatial profile of the first threshold
lasing mode of a 1D slab resonator of length L = 1 (solid blue curve).
This TLM corresponds exactly to a TCF state. The matching UCF
state, having the largest overlap with this lasing mode, is shown for
comparison (red dashed curve). (Inset) Schematic of the resonator.
The refractive index is n = 1.5 for 0 < x < 0.25, and n = 3 for
0.25 < x < 1. The gain center is ka = 15/L, and only the left half
of the cavity is pumped (indicated by the gray dots). Both states
are normalized to unity at x = 0. (b) Lasing frequencies k(t)

µ and
noninteracting threshold values D

µ

0 of the six TLMs with the lowest
thresholds. (Crosses) TCF solutions (squares) the UCF solutions with
20 UCF states.

amplified in the pumped region, whereas, as already noted, the
UCF states have no knowledge of the pump profile and exhibit
amplification within the entire cavity, including the unpumped
region. The UCF state shown in the figure represents only
54.0% of the total weight in this superposition [32].

In order to reproduce the actual TLM, we must superpose
many UCF states to cancel the amplification in the unpumped
region. In Fig. 3(b) we plot the lasing frequencies k(t)

µ and
(noninteracting) thresholds D

µ

0 of the six TLMs with the lowest
thresholds obtained by solving (19) and (24) with 20 UCF
states, respectively. The largest deviation between the TCF
and UCF thresholds is 0.68%, and the frequency differences
are below 0.1%.

In more complex lasers, e.g., the 2D random lasers of
Ref. [25], a still larger UCF basis set is required to achieve
results comparable with the TCF basis. In Fig. 4, the cavity C is
defined by a disk of radius R = 1, in which we randomly place
600 dielectric particles of radius ∼R/80 and index n = 1.2. In
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FIG. 4. (Color online) Comparison of TCF and UCF results for
2D random lasers. (a) Lasing frequencies k(t)

µ and noninteracting
threshold values D

µ

0 of the 12 lowest TLMs, for a white-noise pump
covering the whole cavity. The pump profile is given by Eq. (25).
(Crosses) TCF solutions for (22) and (23) and (squares) the UCF
solutions for (24) with 50 UCF states. (b) Spatial intensity profiles
for the first threshold lasing mode of a partially pumped random
laser, with F = 1 for r < R/2 and F = 0 for r > R/2. The intensity
is plotted along the line θ = 225◦. The solid curve shows the TCF
solution, and the dashed curve shows the UCF solution computed
from 200 UCF states. (Inset) False-color intensity plot from the
superposition of 200 UCF states; the TCF intensity plot, which is
not shown, looks similar.
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Fig. 4(a), we subject the entire cavity to a white noise pump,

F (�r) = 1 + ξ (�r), (25)

with max|ξ (�r)| = 0.3. We find that 50 UCF states must be
included in the UCF expansion in order to achieve good
agreement between the threshold solutions of (24) and the
TCF predictions (22) and (23). When we pump only part
of C (keeping the scatterer configuration fixed), more UCF
states are needed to correctly reproduce the TLMs, even in
the absence of the pump noise. In Fig. 4(b), the pump covers
a central area of radius R/2. We find that a superposition
of 200 UCF states is required to generate a TLM whose
false-color intensity plot (inset) is indistinguishable by eye
from the corresponding TCF state (not shown). Even with this
many UCF states, the computed TLM intensity profile still
differs significantly from the exact (TCF) profile when plotted
along any arbitrary direction, as shown in the main figure.
The reason so many UCF states are required is that the TLM
(and the corresponding TCF state) is amplified only up to the
boundary of the pump region, whereas each UCF state, like
the uniform pumped system, is amplified up to the boundary
of C [25]. Using these 200 UCF states, the calculated mode
threshold and frequency are D0 = 0.142 and k = 30.011; the
exact TCF results, from (22) and (23), are D0 = 0.140 and
k = 30.006.

C. Above-threshold lasing modes

Above threshold, each lasing mode can be efficiently
expanded as a superposition of TCF states:

�µ(�r) =
∑

n

aµ
n un(�r,kµ). (26)

This expansion automatically satisfies the appropriate out-
going free wave equation outside C. By inserting the above
expansion into (9), we write the latter as

D0�µ(�r)

1 + h(�r)
=

∑
n

ηn

γµ

aµ
n un(�r). (27)

Following the procedures used in Ref. [28], we multiply both
sides of (27) by F (�r)un′ (�r), integrate �r over C, and invoke the
self-orthogonality property (20) to find the SALT equation in
the TCF basis:

D0

∑
n′

Tnn′a
µ

n′ = aµ
n ,

(28)

Tnn′ ≡ γµ

ηn

∫
C

ddr
F (�r) un(�r) un′ (�r)

1 + h(�r)
.

Equation (28) is a set of nonlinear fixed-point equations above
threshold, one for each lasing mode. In general, the complex
matrix Tnn′(k), which we refer to as the lasing map, has
complex eigenvalues. Because the pump strength D0 is a real
variable, the unknown lasing frequency kµ must be such that
one of its (nonlinear) eigenvalues is real and equal to 1/D0.
This is achieved by tuning kµ to find the values at which
the different eigenvalues corresponding to the different modes
cross the real axis, as follows. (This procedure is the same as
for the UCF basis, and was described in Ref. [26].) The first
threshold and lasing frequency are found simply by solving
(22) and (23) self-consistently, as described in the previous

section; these equations are the diagonal form of (28) at
threshold. The associated TLM is proportional to this solution,
with vanishing overall amplitude. We then increase D0 in small
increments and use the solution for the smaller pump value
as a starting point for the nonlinear solver. At each step, the
nonlinear solver adjusts the frequency kµ so the corresponding
eigenvalue of Tnn′ (kµ) is real. From the modified lasing map,
which includes the hole-burning term, we can determine if a
second mode has reached its (interacting) threshold [26]. A
similar procedure works for third and higher modes and has
been shown to work for systems as complex as a 2D random
laser with eight modes turned on [25].

In earlier works, the lasing map was written in the UCF
basis. This has the same form as (28), with a slightly different
matrix operator:

Tnn′ ≡ γµ k2
µ

K2
n − k2

µ

∫
C

ddr
F (�r) ϕn(�r) ϕn′ (�r)

1 + h(�r)
. (29)

At threshold (h → 0), we recover the threshold lasing
equation (24). The solution algorithm is identical to that for
the TCF map, except that the full matrix solution must be
performed even at the first threshold since the UCF map is not
diagonal.

Figure 5 compares the lasing modes obtained from (28) and
(29) for the 1D slab resonator that we studied earlier in Fig. 3.
For D0 = 1.264, there are two lasing modes. (This value of
D0 is approximately twice the first lasing threshold, D

µ=1
0 =

0.611.) Using 20 basis functions for both methods, we find
good agreement in the predicted spatial profiles. Figure 5(b)
shows the largest expansion coefficients of the two modes
in the TCF and UCF bases. We find that both modes retain a
dominant component in the TCF basis, even when the system is
significantly above threshold. As the pump strength increases,
the spatial hole burning term changes εg(�r), so the weights of
the dominant components in the TCF basis gradually decrease,
but they remain larger than 80% in the calculated range. In
contrast, the largest components of the two modes in the UCF
basis are less than 60%.

We remark that we could in principle absorb the hole-
burning denominator 1/[1 + h(r)], calculated at the pump
strength (D0 − δD0), into the profile function F (�r) to produce
an even better set of modified TCF states for the nonlinear
calculation at D0. This is essentially an alternative means of
solving the nonlinear problem by keeping the self-consistent
equation almost diagonal in an evolving basis; however, it is
usually too computationally expensive to recompute the TCF
states this way.

IV. APPROXIMATE ANALYTIC SOLUTION OF THE
SALT EQUATIONS

A. Alternative fixed-point equation

Analyses of the MB equations, either in the single-mode
or multimode lasing regime, almost always employ the near
threshold approximation, in which the infinite-order nonlinear-
ity of Eqs. (5), (6), and (28) is truncated at cubic order to give
a near-threshold approximation to the solution. (An exception
to this is the work of Mandel and coworkers [22,23] discussed
in Appendix B.) Based on this cubic approximation, and the
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FIG. 5. (Color online) (a) Spatial profiles of two lasing modes
above threshold in a 1D slab resonator. (Inset) Schematic of the
resonator. The properties of the resonator are given in the caption of
Fig. 3. The pump strength D0 = 1.264 is slightly higher than twice
the first threshold. The solid lines and circles are the results of (28)
and (29), respectively, both using 20 basis functions. (b) Weights of
the largest expansion coefficients of both modes in the TCF (solid
curves) and UCF (dashed curves) bases. The second mode has an
interacting threshold D0 = 0.89.

approximation of a closed cavity, Haken and Sauermann (HS)
long ago derived a set of constrained linear equations for
the modal intensities in the multimode regime [21]. The HS
equations have been studied further [1,33] and have been used
to analyze random and complex lasers in recent years [34,35].
However, the results are unsatisfactory, as shown by Türeci
et al. [16]. The cubic nonlinearity in the HS equations leads to a
saturation of modal intensities, in disagreement with the linear
increase expected on general grounds and found by more exact
treatments [17,24]. It also allows many more modes to turn on
than in the more exact treatments [17,35]. These failures are
unsurprising, as the HS theory is being applied to a regime
well above the first threshold, where the cubic approximation
is poor. Generalizing the equations from cubic to higher orders
rapidly becomes unmanageable, since higher powers of the
intensity generate many more interaction coefficients to take
into account.

In Ref. [16], it was shown that in the limit of large
hole burning, h(�r) � 1, the SALT correctly predicts mode
intensities growing linearly with D0, within the single-pole
approximation to be discussed below. In this current section,
we will derive an alternative lasing map which, in the same
approximation, allows a more complete analytic solution

that demonstrates linear behavior for all values of h(�r) and
for multimode lasing. This approximation also provides a
quantitative solution for the modal intensities, slopes, and
interacting thresholds, in good agreement with the exact
solutions of the SALT equations. To our knowledge, these
are the first results of this type, valid for arbitrarily complex
cavities, to appear in the literature.

In order to develop the desired approximation, we first
reexpress the lasing equations in terms of the inverse of the
map Tnn′ (k) defined in (28). This inverse map has the same
fixed points but is much more convenient to work with. We
multiply both sides of (27) by [1 + h(�r)] and repeat the steps
leading to (28), i.e., projecting the two sides onto the TCF basis
and using the self-orthogonality property (20). The result is∑

n′
τnn′a

µ

n′ = D0 aµ
n , (30)

τnn′ = ηn′

γµ

[δnn′ + hnn′ ] , (31)

where hnn′(k) = ∫
C

ddr F (�r) h(�r) un(�r,k) un′ (�r,k). Note that
(30) has the same form as (28), but with the quantity D0,
which plays the role of the eigenvalue, inverted. This implies
that τ = T −1, which can be confirmed by multiplying the two
operators and using the completeness and self-orthogonality
of the TCF states.

The operator τ , through the term hnn′(k), contains only
a second-order dependence on the lasing modes, in contrast
to the infinite-order dependence occurring in T . Thus, (30)
possesses only a cubic nonlinearity, but this is not the same
cubic nonlinearity that appears in the HS theory. No Taylor
expansion has been performed; the inverse lasing map is exact
at all pump values, and we are still working with infinite-order
nonlinearity in the conventional sense of using a dielectric
function which contains the field to infinite order.

We could, in principle, use the inverse map τ to solve the
SALT equations, in the same way that we used T . Preliminary
investigations show that such an approach is possible, and may
have some interest, but we will not pursue this further here. Our
aim is instead to introduce the “single-pole approximation”
(SPA) into (30). This gives a simple approximate solution that
is very easy to implement and yields important analytic results.

B. Single-pole SALT equations

The single-pole approximation was introduced in Ref. [16]
to show the connection between the SALT equations, which
solve the MB equations with minimal approximations (prin-
cipally the RWA and the stationary inversion approximation)
[17], and the HS equations which employ many more approxi-
mations. Aside from the aforementioned cubic approximation,
the HS theory assumes that the lasing mode is accurately
described by a passive cavity mode. As we have seen, even
the threshold lasing mode is not a passive cavity mode: It
is neither a closed cavity mode (as assumed by HS), nor a
passive cavity resonance, as is often assumed in the literature.
Furthermore, above threshold the nonlinearity mixes in other
TCF states, which changes the spatial distribution, amplitude,
and frequency of the lasing mode. This effect is quite important
in low-Q cavities, such as the random lasers treated in Ref. [25],
and the full SALT theory describes this effect very well. In
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high-Q cavities, the mixing in of other TCFs is much weaker,
because the scattering from the gain medium is so much
weaker than the scattering from the cavity itself. Therefore, it
is reasonable to assume that the lasing modes above threshold
have the same spatial profile as the TLM, with an amplitude
that can increase with D0. This is equivalent to taking only
one term in the expansion of the cavity Green’s function in
the CF basis; since each term has a single pole in the complex
plane, Türeci et al. [16] called this approach the single-pole
approximation (SPA).

To be precise, the SPA assumes that

�µ(�r) =
∑

n

aµ
n un(�r,kµ) ≈ aµ

n0
un0

(�r,k(t)
µ

) ≡ aµuµ(�r), (32)

where un0 (�r) is the TCF which is equal to the TLM at threshold
and k(t)

µ is the threshold value of the lasing frequency. With
this approximation the additional index n is redundant and
can be omitted, as we do henceforth. Thus the SPA assumes
both that the lasing modes are fixed as TLMs and that the
lasing frequencies are fixed to be their threshold values. The
remaining quantities to be calculated are just the number of
modes and their amplitudes aµ(D0) at a given pump value [36].
This also necessitates finding the interacting thresholds D

µ

0,int.
With this approximation the nonlinear matrix equation (30),

after canceling a common factor aµ, is linear for the modal
intensity Iµ ≡ |aµ|2:

D0

D
µ

0

− 1 =
∑

ν

�νχµνIν (33)

χµν ≡
∫

ddr F (�r) u2
µ(�r) |uν(�r)|2. (34)

Here D
µ

0 = ηµ/γµ are the noninteracting thresholds for the
TLMs, which are obtained together with k(t)

µ at threshold
using (22) and (23). Because the frequencies of the modes
are assumed to be fixed, the spectral gain factor �ν and the
“interaction constants” χµν are pump-independent quantities.
Note also that every quantity in Eq. (33) is real except for
χµν , which must have some imaginary part if the cavity is
open. This inconsistency is a consequence of the single-pole
approximation; however, the higher Q the cavity, the smaller
is the imaginary part, and for most cavities of interest it is
acceptable to neglect this imaginary part. Henceforth we will
use the approximation χµν ≈ Re[χµν] and simply denote the
real part with the same symbol. With this approximation, the
matrix χµν is real and has positive elements.

The above result, which we will term the SPA-SALT, bears a
remarkable resemblance to the HS equations. Those equations
take the form

1 − κµ

D0
=

∑
ν

�νχµνIν. (35)

It can be shown that the cavity decay rate κµ, a quantity inserted
by hand in that theory, is simply D

µ

0 in the SALT, which is
calculable once the cavity and pump profile are given. The
coupling matrix in the HS equations has exactly the same form
as in the SPA-SALT, except that HS used closed cavity modes
(not the real part of of the open cavity TLMs) and did not take
into account the pump profile, F (�r). However, the different
dependence of (35) on D0 in comparison to (33) leads to very

different behavior at large pump values. For pumps near the
first threshold, the two equations are approximately the same,
but at large pump it is easy to show that the modal intensities in
the HS theory saturate to a constant, whereas in the SPA-SALT
they are proportional to D0. (It should be noted that D0 in the
MB equations, which we refer to as the pump, is actually
the equilibrium value of the inversion in the absence of laser
emission. When one has a multilevel laser with a true pump
between upper and ground levels which are distinct from the
lasing transition, the quantity D0 is a function of the pump
which is linear at small pumps, but saturates eventually, and is
bounded by the value corresponding to complete steady-state
inversion of the lasing levels.)

C. General solution of the SPA-SALT equations

Let us rewrite the SPA-SALT equation (33) as

D0

D
µ

0

− 1 =
∑

ν

Aµν Iν, Aµν ≡ �νχµν. (36)

This seems to be simply an inhomogeneous linear system to
be solved by inversion, but in fact it is more complicated, for
we have not indicated the number of modes to be summed
over. Let us suppose that we have solved the noninteracting
threshold conditions (22) and (23) for a given εc(�r) and
F (�r), obtaining a subset of M TLMs {uµ(�r) | µ = 1,2, . . . M},
with real noninteracting thresholds D

µ

0 less than some cut-off
value, D0,c (taken to be much higher than the first lasing
threshold). For a given D0, the indices µ,ν occurring in (36)
are those corresponding to lasing modes that have turned on.
We have used this fact in deriving (33), where we divided out
the common factor aµ, which is valid only if aµ is nonzero.
Hence (33) is a constrained inversion problem; for each value
of D0, we must construct the matrix Aµν from the correct
subset of the M TLMs at our disposal.

We wish to find an ordered set of matrices
A(1)

µν,A
(2)
µν, . . . A

(Nmax)
µν , as well as the associated interacting

thresholds D
µ

0,int, which are the values of D0 at which
the µ-th mode turns on. Because the SPA-SALT includes the
effects of nonlinear modal interactions, these differ from the
noninteracting thresholds D

µ

0 . In fact, Nmax often is less than
M , since some of the candidate modes may never turn on at
any pump value, as we will see below. For a given D0, let us
suppose that N lasing modes have turned on. Without loss of
generality, we assume that the indices for these lasing modes
are µ = 1, . . . ,N . We now have a nonsparse N × N matrix
Aµν and can invert (33) to obtain

Iµ = cµD0 − bµ, µ = 1,2, . . . ,N
(37)

cµ =
N∑

ν=1

(A−1)µν

Dν
0

, bµ =
N∑

ν=1

(A−1)µν.

From this, we see that the intensity of each lasing mode
increases linearly with D0, between each threshold, no matter
how many modes are lasing or how far the laser is above
threshold.

To find the next matrix A(N+1)
µν we must find the lowest

interacting threshold DN+1
0,int for the remaining set of M − N
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modes. To do this, we note that (37) is valid for DN
0,int � D0 �

DN+1
0,int (the lasing intensities are continuous at each threshold

although their slopes are not). At the upper limit of this range,
D0 = DN+1

0,int , we can equally well add mode (N + 1) to this
matrix equation. The resulting equation would yield identical
solutions for I1, . . . ,IN , plus the solution IN+1 = 0. Thus we
can evaluate (36) for all choices µ = N + 1, . . . M:

D
µ

0,int = D
µ

0

[
1 +

N∑
ν=1

Aµν

(
cνD

µ

0,int − bν

)]
, (38)

which gives N − M explicit linear relations for the possible
N + 1st threshold. Evaluating these relations, one simply
chooses the lowest value, which is then the correct N + 1st

interacting threshold. This defines a recursive procedure to
find all the interacting thresholds and uniquely determine the
ordered set of A matrices required to compute Iµ(D0) for the
entire desired range of D0.

Note that we always assume the “nontrivial zero” solution
at each (interacting) threshold, i.e., that the physical solution
switches from the trivial zero for IN+1 to the nonzero lasing
solution, giving rise to a bifurcation with discontinuous slope.
When this happens, all the modes which are already turned
on experience a negative kink in their slopes at higher thresh-
olds. This behavior is characteristic of lasers when higher
modes turn on, and the SPA-SALT captures it in a simple
manner.

Once the constraints on Eq. (36) are implemented in this
manner, the solution of the SPA-SALT equations requires just
Nmax inversions of relatively small matrices generated from the
input parameters, {χµν},{�ν},{Dν

0 }. Thus the computational
time for solving the SPA-SALT equations is negligible once
the TLMs have been calculated. When the single-pole approx-
imation is good, the nonlinear multimode problem becomes
only minimally harder than the linear TLM problem, which
can be adapted for efficient solution using finite element or
boundary element methods [37,38]. In Sec. IV F we compare
the SPA-SALT lasing solutions to the exact SALT calculations,
finding good agreement. Note that it has already been shown
[17] that the exact SALT solutions agree to within a few
percentage points with exact time-dependent MB simulations
for simple 1D edge-emitting lasers, as long as the conditions
for the stationary inversion approximation are well satisfied.

D. Gain-clamping transition

Equation (37) gives a linear relation determining each of
the Nmax interacting thresholds of the form

D
µ

0,int = fµ

({χµν},{�ν},
{
Dν

0

})
D

µ

0 ≡ 1

1 − λµ

D
µ

0 , (39)

where the function fµ ≡ (1 − λµ)−1, is the threshold en-
hancement factor which increases the µth threshold from
its noninteracting value, due to the spatial hole-burning of
lower threshold modes, which depletes the gain. In simplified
treatments of the laser rate equations, in which the cavity
mode is assumed perfectly uniform in space, these interactions
actually clamp the effective gain so that it no longer increases
with the external pump, predicting that no additional modes
turn on [1]. In reality, the incomplete spatial overlap of modes

prevents perfect gain-clamping and typically additional lasing
modes can and do occur. The SPA-SALT gives a much more
rigorous criterion for gain clamping at the level of the N th

lasing mode. If λN → 1, then all higher thresholds are pushed
off to infinity and no more modes can turn on for any value of
the pump.

Note the analogy here to mean-field phase transitions,
for example, where a strong-enough magnetic interaction
causes the susceptibility to diverge. Here strong interactions,
meaning large values of the coefficients χµν(µ �= ν), suppress
“ordering” of higher modes. Conversely, spatially disjoint or
weakly overlapping modes will not be suppressed and their
interacting threshold will be approximately equal to their
noninteracting thresholds. In addition, higher modes with
substantially lower modal gain and Q values with respect to
the first mode(s) will be more easily suppressed. Calculations
for various examples indicate that this gain-clamping “phase”
of the laser can be reached for realistic lasers. We calculate
and discuss the coefficient λ2 below.

E. One- and two-mode solutions

To get a feeling for the SPA-SALT solutions, we now
present explicit results for one- and two-mode lasing, which
illustrate most of the qualitative features of the theory.
The single-mode result is trivial. The lowest noninteracting
threshold, D(1)

0 , is found as part of the calculation of the initial
set of N TLMs and of course is the correct first threshold.
Eq. (36) is just a scalar equation for the first mode intensity,
yielding

I1 = 1

�1χ11D
(1)
0

[
D0 − D

(1)
0

]
, (40)

where χ−1
11 ≡ V1 plays the role of the mode volume, enhancing

the power slope if mode one is more evenly distributed over the
gain volume. We should point out that I1 should be thought
of as the intensity within the cavity. The emitted power is
found by integrating the photon flux associated with the TLM
uµ(�r) over a surface at infinity [16]; the transmissivity of the
cavity is implicitly contained in the calculation of the TLM.
In Appendix A we show that this power output can be related
to a volume integral of the TLM over the gain region of the
cavity and that for single-mode lasing within the SPA-SALT
one finds

P1 = k1

2π

∫
ddrF (�r)|u1|2∫

ddrF (�r)u2
1|u1|2

[
D0 − D

(1)
0

]
. (41)

Recently this equation was found to agree very well with the
output power of a novel surface-emitting photonic crystal laser
calculated using nonlinear FDTD methods [39].

Using the procedure described above we now determine the
mode ν with the lowest interacting threshold and the correct
2 × 2 matrix A(2)

µν above this threshold. The second threshold
is found to be

D
(2)
0,int = χ11 − χ21

χ11 − D
(2)
0

D
(1)
0

χ21

D
(2)
0 ≡ 1

1 − λ2
D

(2)
0 , (42)
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where the interaction coefficient

λ2 =
[

D
(2)
0

D
(1)
0

− 1

]
χ21

χ11 − χ21
� 0. (43)

Note that, as D
(2)
0 > D

(1)
0 , as long as the modal interaction coef-

ficient χ21 is nonvanishing, the interacting second threshold is
higher than the noninteracting threshold. The gain-clamping
limit is reached when λ2 → 1 ⇒ χ21 → χ11D

(1)
0 /D

(2)
0 , and

the first mode suppresses any second mode for all values of
the pump. One sees that strong overlap χ21 ≈ χ11 leads to
gain clamping as we expect. Also if the second mode has
significantly lower Q value or is away from the center of
the gain curve, the ratio D

(1)
0 /D

(2)
0 is reduced leading to gain

clamping for smaller values of χ21. One way to achieve this
limit is in a microcavity laser with passive cavity modes spaced
more widely than the gain bandwidth.

When the pump exceeds the second threshold D
(2)
0,int, the

modal intensities I1 and I2 are obtained from Eq. (36),

I1 = χ22/D
(1)
0 − χ12/D

(2)
0

�1(χ11χ22 − χ12χ21)

[
D0 − D

′(1)
0

]
, (44)

I2 = χ11/D
(2)
0 − χ21/D

(1)
0

�2(χ11χ22 − χ12χ21)

[
D0 − D

(2)
0,int

]
. (45)

where the modified intercept D
′(1)
0 is given by

D
′(1)
0 = χ22 − χ12

χ22 − D
(2)
0

D
(1)
0

χ12

D
(1)
0,int. (46)

The change in intercept indicates that the first mode intensity
has a negative kink at the second mode threshold [D′(1)

0 <

D
(1)
0,int], as can also be seen directly from the slope of I1, which

is reduced from its value of 1/[�1χ11D
(1)
0 ] in the interval

below the second threshold. This kink is always negative
because the turning on of a second mode reduces the slope
efficiency of the laser in the first mode but vanishes when
the interaction coefficient χ12 → 0 and the two lasing modes
act independently.
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FIG. 6. (Color online) Modal intensity versus pump strength in
a 1D slab resonator. The description of the resonator is given in the
caption of Fig. 3. Open symbols show the numerical solutions of (28)
and solid lines are the results of single-pole approximation [Eqs. (40),
(44), and (45)]. The color scheme is as follows: blue (Mode 1),
red (Mode 2), and black (total intensity in the two-mode regime).

F. Tests of the SPA-SALT

To test the results derived above, we first revisit the 1D
laser studied in Sec. III B. Figure 6 shows the growth of
modal intensities with D0. In the single-mode regime, the
result given by (40) agrees very well with the numerical
solution of (28), indicating that the single-pole approxima-
tion is almost exact. Consequently, the second threshold
D

(2)
0 = 0.892 is also accurately predicted by (42), which

gives D
(2)
0 = 0.899. In the two-mode regime we still find

good agreement, but the SPA-SALT slightly overestimates
the suppression of the second mode. Nevertheless, the
total intensity is in good agreement with the full SALT
solution.

To demonstrate the accuracy of the SPA-SALT in cases
where the mode density is high, we study a uniformly pumped
2D disk laser of radius R = 1 and index n = 3.3 + 10−5i. The
gain is assumed to center at Re[nkaR] = 66 with width γ⊥ =
ka/40. Now there exist high-Q whispering gallery modes, and
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FIG. 7. (Color) (a) Modal intensity versus pump strength in a
2D disk laser of uniform index n = 3.3 + 10−5i, uniformly pumped.
Squares show the numerical solutions of (28) and solid lines are the
results of the single-pole approximation (37). (Inset) Zoomed view
near the first two thresholds. (b) Modal gain versus pump strength for
the first 10 TLMs, calculated with the full SALT, indicating that the
10th TLM will never turn on due to modal interactions, as predicted
by the SPA-SALT. The dashed line indicates the fully suppressed 10th
mode. The first two modes are too close together to be distinguished
in this plot. Modal gain is defined in terms of eigenvalues of the
modified lasing map and a mode reaches threshold when the modal
gain reaches unity [26].
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we find that first two thresholds are very closely spaced [see
inset; Fig. 7(a)] and are four orders of magnitude smaller
than those in the 1D example just treated. The SPA-SALT
correctly captures the intensity crossover of the first two modes
shortly after the second one turns on, and its prediction for
the first three modes remains impressively accurate, even
after the onset of the seventh mode. As we have seen in
Fig. 5(b), the higher-order mode(s) are less single-pole-like
compared to the lower-order ones. Thus we expect the SPA-
SALT not to work as well for higher-order modes; this can
be seen from the noticeable differences in the fifth (black)
and seventh (cyan) thresholds given by the SPA-SALT and
the full SALT results in Fig. 7(a). Nevertheless, the slopes
of all the higher-order modal intensities are still largely
correct.

As noted, Eq. (39) gives a criterion for a complete
suppression of modes after a certain number of modes N have
turned on. Typically if a mode is completely suppressed this
equation gives a negative (unphysical) result. This happens for
the 10th TLM in the current example. Indeed, the full SALT
calculation, using the modified threshold matrix [26], confirms
the prediction that the 10th TLM will never turn on [dashed
gray curve in Fig. 7(b)].

The SPA is better satisfied the less open is the laser cavity.
The random laser is a system in which there is no conventional
cavity, only multiple scattering to slow escape. In the most
challenging case of a weakly scattering RL, it has no sharp lin-
ear resonances at all, only the presence of the gain medium al-
lows strong preference for certain frequencies [25]. In Ref. [25]
the modal intensities for a 2D RL were found within the full
SALT theory to be a nonlinear function of the pump, unlike
all other cases studied. Thus we do not expect the SALT to
apply there. Even when the disorder scattering is increased
in the RL in order to increase the Q, and the intensities
are linear in the pump, we find that the SPA-SALT, while
it still gives good qualitative results, does not give good quan-
titative agreement with the exact SALT solutions, as shown
in Fig. 8.
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FIG. 8. (Color) Modal intensity versus pump strength in a random
laser. The cavity is a disk of radius R, uniformly pumped with
ka = 60/R and γ⊥ = 1/R. The scattering mean free path is � =
R/3, significantly shorter than the systems studied in Ref. [25].
(Solid curves) The exact SALT solution, and (dashed curves) the
SPA-SALT solutions.

V. SUMMARY AND CONCLUSIONS

We have presented an improvement of steady-state ab initio
laser theory based on the TCF basis that allows one to solve the
self-consistent SALT equations more efficiently for resonators
which are spatially inhomogeneous (as is usually the case)
and/or with inhomogeneous pumping. This completes the
development of the ab initio theory based on the stationary
inversion approximation, originally proposed in 2006 [16]
and improved in several subsequent articles [17,24–26]. This
theory takes into account the openness of the cavity exactly in
terms of TCF or UCF basis states and includes the nonlinear
hole-burning interactions to infinite order. In addition to
predicting interacting thresholds and intensities, the theory
captures subtle effects such as the change in shape of the
lasing modes, and the variations in their frequencies as the
pump is increased well above threshold.

Using the TCF basis and the single-pole approximation
[16], we have derived a simplified version of the theory,
the SPA-SALT, which predicts a linear increase of all lasing
intensities. The relevant slopes and interacting thresholds
can be found with negligible computational effort, once the
linear problem of the noninteracting threshold lasing modes
is solved. Explicit analytic solutions were for the few-mode
lasing regime, illustrating important qualitative features of
multimode lasing with modal interactions. In particular, an an-
alytic condition was found for the “gain-clamping” transition,
in which higher modes are completely suppressed by modal
interactions. For nontrivial examples, the SPA-SALT agrees
well with the full SALT, although its breakdown for very low-Q
systems, such as random lasers, was also found. Although
further work is needed to determine the regime of quantitative
validity of the SPA-SALT, there is already evidence that it will
be possible to dramatically improve the modeling of realistic
and complex laser structures in two and three dimensions [39]
by reducing the nonlinear lasing computation to almost the
same level of difficulty as the linear problem of finding
the threshold lasing modes. Even when the SPA-SALT is
not a good approximate theory, the full SALT equations in
the TCF basis will improve steady-state lasing calculations
by many orders of magnitude compared to brute force
time-domain simulations.
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APPENDIX A: MODAL OUTPUT POWER

In this appendix we derive the modal output power of a 2D
cavity from the (internal) modal intensity. The output power
is the total flux of the Poynting vector, taken across a loop �

enclosing the cavity:

P = 1

4π

∮
�

ds n̂[ �E × �B]. (A1)
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In (4), the (out-of-plane) electric field is written as a sum over
the modal fields �µ(�r), and a similar expression may be written
for the (in-plane) magnetic field. We find the time-averaged
total output power 〈P〉 = ∑

µ Pµ, with the modal power Pµ

given by

Pµ = i

4πkµ

∮
�

ds n̂[�µ∇�∗
µ − c.c.] (A2)

= i

4πkµ

∫
C

d2r [�µ∇2�∗
µ − c.c.]. (A3)

In the last step we have used Gauss’s law. Here �µ and Pµ are
measured in their natural units ec and e2

c , introduced when
deriving Eq. (6). Using Eq. (A3), together with the wave
equation (9) and its complex conjugate, gives us Eq. (11),
which we reproduce here for convenience:

Pµ = kµ

2π

∫
C

d2r

{
�µD0F (�r)

1 + h(�r)
− Im[ε(�r)]

}
|�µ(�r)|2. (A4)

This result states that the total power radiated by each lasing
mode equals the power that the gain medium delivers into that
mode, minus the power that the mode loses through material
dissipation (described by Im[ε]).

It is instructive to consider the modal power in the
single-pole approximation. Let us suppose that Im [ε] = 0.
Combining the general expression for Pµ in (A3) with the
SPA-SALT expression �µ ≈ √

Iµ uµ, we obtain

Pµ = iIµ

4πkµ

∫
d2r[uµ∇2u∗

µ − c.c. ] (A5)

= kµ

2π
�µD

µ

0 Iµ

∫
d2rF (�r)|uµ|2. (A6)

Here we have used (19) to express Im[ηµ] in terms of the SPA
laser threshold D

µ

0 . As noted in the main text, in the single-
mode regime (µ = 1), the modal power has a particularly
simple form: using (33), we can write Iµ in terms of the pump
D0, to obtain

P1 = k1

2π

∫
d2rF (�r)|u1|2∫

d2rF (�r)u2
1|u1|2

[
D0 − D

(1)
0

]
. (A7)

APPENDIX B: COMPARISON TO MANDEL APPROACH

In Refs. [22,23] Mandel and coworkers treated the infinite-
order modal interactions in a Fabry-Perot cavity in the single-
mode and two-mode regimes. They used the approximations
of stationary inversion, and pump-independent lasing modes
and frequencies, similar to the SPA-SALT (the SALT of
course includes the pump dependence of the lasing modes and
frequencies [25]). Unlike the SPA-SALT, they assumed that the
fixed lasing modes were Hermitian closed cavity modes (sine
waves of real wave vectors). They did not derive a version of
the basic constrained linear equation (33) of the SPA-SALT,
but instead they derived a single-pole closed-cavity version of
Eq. (28). For the single-mode case, Eq. (5) of Ref. [22] is of
exactly the same form as Eqs. (43) and (54) of Ref. [16],
the earliest version of the SALT, except for their use of
closed-cavity modes. Reference [16] applies the single-pole
approximation to the direct map but treats the openness of

the cavity exactly using non-Hermitian constant flux states;
this approximation is not exactly equivalent to the SPA-SALT,
which uses the SPA on the inverse map, but gives very similar
results to the SPA-SALT at large pump strength.

It is interesting to compare the two methods for the simple
case of a uniformly pumped 1D dielectric slab laser of the
type considered in Refs. [16,17,24] [see Fig. 1(inset)]. We
will compare Mandel’s approach to the full SALT, the most
complete form of our theory. Thus our approach differs from
Mandel in two major ways. First, we take into account the
openness of the cavity exactly and, second, we allow for
the change in the lasing modes and modal frequencies above
threshold. To vary the quality factor of the cavity, we choose
four sets of parameters {n,ka} = {1.5,40},{3,20},{5,20}, and
{10,20} (ka is the frequency of the gain center). We have shown
in Ref. [17] that for the first two sets of parameters the SALT
and numerical solutions of the MB equations agree very well,
so we can take the SALT results as correct.

The rescaled model intensity (I ′
µ ≡ �µIµ) in the single-

mode regime in Mandel’s approach is given in our notation by

I ′(D0) = 1

4

[
4

D0

D
(1)
0

− 1 −
√

8
D0

D
(1)
0

+ 1

]
. (B1)

The dependence on the refractive index of the cavity is
contained in the first threshold, D

(1)
0 , which is not calculated

in the Mandel approach but is assumed known and used to
normalize the pump. The gain parameters (ka and γ⊥) only
enter in the scale factor (�µ) and implicitly again through D

(1)
0 .

Note that the Mandel single-mode result has an additional
square-root dependence on the pump, which is not present
in the SPA-SALT. This difference arises because, as already
noted, the single-pole approximation is made at a different
point in the two derivations. The full SALT theory does not
predict a universal linear dependence on pump and indeed for
very low-Q lasers, such as random lasers, the dependence can
be nonmonotonic [25].

In Fig. 9 we compare the result given by Eq. (B1) to
the SALT. As one might have expected, the two approaches
agree well for the higher-Q cases (n = 10,5) but a significant
disagreement in the slope of the intensity curves appears for the
lower-Q (n = 1.5,3) cases. Nonetheless, the Mandel approach
for the single-mode case is qualitatively better than HS, which
shows an unphysical saturation [16,17]. .

Next we compare the value of the interacting second
threshold D

(2)
0,int given implicitly in Mandel’s method by

I ′[D(2)
0,int

] [
D

(1)
0

D
(2)
0

+ 2 − 2
D

(2)
0,int

D
(2)
0

]2

= 4
D

(1)
0

D
(2)
0

[
D

(2)
0,int

D
(2)
0

− 1

]

(B2)

and the result of the SALT in the four cases listed above.
We find that Mandel’s approach consistently underestimates
the strength of the modal interactions and deviates relatively
little from the noninteracting threshold values (see Fig. 10).
The highest-Q case agrees most closely with the SALT, but
there is some nonmonotonic behavior of the thresholds with
Q value in the SALT which we did not analyze in detail. We
conclude that the effect of openness accounts for the main
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FIG. 9. (Color online) Rescaled intensity I ′
µ ≡ �µIµ of the first

mode in a 1D slab resonator. The cavity is open on both sides and
the pump is taken to be spatially uniform. D0 is the pump intensity
and D

(1)
0 is its threshold value. The solid line is produced using

Eq. (B1), which has no dependency on the cavity index or length.
The four dashed lines are the results of the SALT with different
cavity indices and atomic transition frequecies. The upper bound of
single-mode lasing in the n = 10 (high-Q) case is near D0/D

th
0 ≈

1.15, and the intensity overlaps with the solid curve. As the cavity
index/Q factor is reduced, the black curve differs more and more from
the SALT result, whose accuracy has been proven by comparing with
the time-dependent simulation of the steady-state solutions of the MB
equations (Ref. [17]).

difference between the SALT and the Mandel approach, in a
Fabry-Perot cavity in which both can be applied. Mandel’s
approach is qualitatively better than that of HS but is not as
accurate as the SALT and the SPA-SALT, both of which are
based on general computational algorithms applicable to
arbitrary cavities

APPENDIX C: PERTURBATIVE CALCULATION OF
CORRECTIONS TO THE SPA-SALT

The major approximation in the SPA-SALT is replacing
the expansion (26) with a single term, �µ = a

µ

1 uµ ≡ aµuµ.
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FIG. 10. Second interacting threshold in a 1D slab resonator. The
cavity and parameters used are the same as in Fig. 9. D(2)

0 is the second
threshold value in the absence of modal interaction. The solid line and
crosses are the solution of Eq. (B2), and the dotted line indicates the
noninteracting case (γ = 1/w). The results of the SALT are indicated
by the different symbols explained in the legend.

5 10 15

10
0

10
-1

10
-2

10
-3

10
-4

10
-5

TCF state no.
5 10 15

TCF state no.

a
=

1
nµ

 |
 | µ |a
=

2
n

µ a
=

2
2

|
 |  

|

FIG. 11. Expansion coefficients of the first lasing mode (left) and
the second lasing mode (right) at the second threshold in a 1D slab
resonator. The solid curve is the solution of (28) and the dashed
line is given by the approximation (C2) and (C3), respectively. The
expansion of the first/second mode is dominated by the first/second
UCF state with a weight of 90%/84%.

In this Appendix we derive the first-order expression for
the nondominant expansion coefficients a

µ
m in the single-

mode regime. Assuming the dominant component is a1, we
approximate h(�r) by |a1u1(�r)|2 = I1|u1(�r)|2. Equation (30)
for an(n>1) is then

D0 an = an

λn

+ �1I1

∑
m

χ
(1,1)
nm1

λm

am,

(C1)
χ

(µ,ν)
nmn′ ≡

∫
ddrF (�r)un

(�r,k(t)
µ

)
um

(�r,k(t)
µ

)∣∣un′
(�r,k(t)

ν

)∣∣2
.

By inserting the expression (40) for I1, derived in the single-
pole approximation, into Eq. (C1), we reduce the latter to a set
of inhomogeneous linear equations of an(n>1). Equation (C1)
can be further simplified by keeping only the a1 term in the
sum, which leads to

an = χ
(1,1)
n11

χ
(1,1)
111

D0 − D
(1)
0

D0 − ηn

(
k

(t)
1

)
γ1

a1. (C2)

Note that ηn(k(t)
1 )/γ1 is not D

µ=n

0 , which is ηn=µ(k(t)
µ )/γµ. In

Fig. 11(a) we compare (C2) to the numerical solution of (28)
and they agree very well. The system is the inhomogenous 1D
resonator considered in the main text, and the pump is tuned
to the second threshold (D0 = 0.892).

We can also derive an analytical expression to evaluate the
nondominant expansion coefficients of the second mode when
it turns on. We assume that its dominant component is a

µ=2
2

and derive

a
µ=2
n

a
µ=2
2

= χ
(2,1)
n21

χ
(1,1)
111

D
(2)
0,int

D
(1)
0

− 1

D
(2)
0,int

D
(2)
0

− ηn

(
k

(t)
2

)
γ2D

(2)
0

(C3)

in the same way (C2) is derived. It is easy to check using
(36) that the ratio becomes 1 when n = 2 as it should. The
result above is compared with the multipole expansion (28)
in Fig.11(b).
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