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Precision frequency measurements with interferometric weak values
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We demonstrate an experiment which utilizes a Sagnac interferometer to measure a change in optical
frequency of 129 + 7 kHz/+/Hz with only 2 mW of continuous-wave, single-mode input power. We describe
the measurement of a weak value and show how even higher-frequency sensitivities may be obtained over a
bandwidth of several nanometers. This technique has many possible applications, such as precision relative
frequency measurements and laser locking without the use of atomic lines.
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I. INTRODUCTION

Precision frequency measurements [1-3] of a stabilized
laser source are of great importance in the field of metrology [4]
as well as atomic, molecular [5], and optical physics [6].
Here we show that weak values [7-9] in an optical deflection
measurement experiment [10] can produce frequency shift
resolutions down to 129 + 7 kHz/+/Hz with only 2 mW
of continuous-wave optical power. By performing a weak
measurement of the deflection of an infrared laser source
that has passed through a weakly dispersive prism, we are
able to measure a change in optical frequency comparable to
precision Fabry-Perot interferometers [11-13]. This technique
is relatively simple, requiring only a few common optical com-
ponents and operating at atmospheric pressure. Additionally,
we show that this technique has low noise over a large range
of response frequencies, making it desirable for many applica-
tions, such as Doppler anemometry [14], tests of the isotropy
of light propagation [6], or laser locking without the use of
high-finesse Fabry-Perot interferometers [15] or atomic lines.

First developed as a way to understand preselected and
postselected quantum measurements and how they relate to
time-reversal symmetry in quantum mechanics, the weak value
A, of an operator A was introduced in a seminal 1988 paper
by Aharonov, Albert, and Vaidman (AAV) [7]. The weak value
is given by A, = (W |AIY:)/ (W |¥), where {|y ;)} are the
preselected and postselected states of the system, respectively.
This quantity, which is likened to the expectation value of
A, can have seemingly strange behavior, particularly in the
limit where the preselected and postselected states are nearly
orthogonal. While numerous experiments have validated the
initial claims of the AAV paper [10,16-18], there are new
developments concerning the interpretation of preselected and
postselected weak measurements [8,9,19,20].

Weak values are a result of a so-called weak measurement,
that is, a measurement which gains only partial information
about the state of a system. Unlike von Neumann measure-
ments, a weak measurement disturbs the measured state of the
system only minimally. For this reason, weak measurements
have been useful in reconsidering Hardy’s paradox [21,22]
as well as making meaningful, sequential measurements of
noncommuting observables [23]. Furthermore, due to the
denominator of A,, there can be a large amplification of the
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weak value when the preselected and postselected states are
nearly orthogonal; as a result, there have been a number of
experimental results published in the field of optical metrology
[10,18,24,25]. There is also a vast array of results, both
theoretical [9,26-28] and experimental [16,17], which have
gone a long way to further our understanding of the weak
measurement process.

II. THEORY

We describe here the frequency amplification experiment
shown in Fig. 1 by further developing the ideas of Ref. [10].
Although the actual experiment uses a classical beam, we
choose to characterize the weak value effect one photon at a
time; this is valid, owing to the fact that we consider here a
linear system with a coherent laser beam modeled as a linear
superposition of Fock states [27].

In this experiment, a single-mode Gaussian beam of
frequency w and radius o passes through an optical isolator,
resulting in linearly polarized light. We assume that the radius
is large enough to ignore divergence due to propagation. Light
then enters a Sagnac interferometer containing a 50:50 beam
splitter (BS), a mirror, and a prism. The beam travels clockwise
and counterclockwise through the interferometer, denoted by
the system states given by {|0),|O)}; we write the photon
meter states in the position basis as {|x) }, where x denotes the
transverse, horizontal direction.

Initially, the interferometer (including the prism) is aligned
such that the split photon wave function spatially overlaps
(i.e., the photons travel the same path whether by |O) or |O)).
After the interferometer is aligned, the photons traversing
each path receive a small, constant momentum kick in the
vertical direction; this vertical kick is controlled by the
interferometer mirror and results in a misalignment. Due to
its spatial asymmetry about the input BS, this momentum kick
creates an overall phase difference ¢ between the two paths.
By adjusting the interferometer mirror, we can control the
amount of light that exits the interferometer into the dark port.
While the amplified signal ultimately depends on the value of
¢, and therefore on the magnitude of the misalignment, the
signal-to-noise ratio (SNR) is unaffected (as is discussed later
in the paper).

We then let k(w) represent the small momentum kick given
by the prism to the beam (after alignment) in the horizontal
x direction. The system and meter are entangled via an
impulsive interaction Hamiltonian [10] (resulting in a new
state |{;) — |W¥)) such that a measurement of the horizontal
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FIG. 1. (Color online) A Gaussian laser beam passes through a
Sagnac interferometer consisting of a 50:50 BS, a mirror, and a prism.
The prism weakly perturbs the direction of the beam as the frequency
of the laser source is modulated, denoted by the red and blue beam
paths. We monitor the position of the light entering the dark port
of the interferometer. We lock the input power to the interferometer
using a power measurement before the BS. The majority of the light
exits the interferometer via the bright port and is collected with an
isolator for use in an experiment.

To External
Experiment

position of the photon after it exits the interferometer gives us
some information about which path the photon took.

We consider a horizontal deflection that is significantly
smaller than the spread of the wave packet we are trying to
measure, that is, k(w)o <« 1. In this approximation, we find
that the postselected state of the photons exiting the dark port
is given by

(W) = (tﬁfliﬂi)/de(x)lxNXp[—iwak(w)], 6]

where the weak value, defined above, is given by A, =
—icot(¢p/2) ~ —2i /¢ for small ¢.

There are two interesting features of Eq. (1). First, the
probability of detecting a photon has been reduced to Pps =
(7 |¥:)|> = sin®(¢/2), and yet the SNR of an ensemble
of measurements is nearly quantum-limited [25] despite not
measuring the vast majority of the light. Second, the weak
value (which can be arbitrarily large in theory) appears to
amplify the momentum kick k(w) given by the prism; the
resulting average position is given by (x)y = 2k(w)o?|A,| ~
4k(w)o? /¢, where the angular brackets denote an expectation
value. We can compare this to the standard deflection caused
by a prism measured at a distance [/ which is given by
(x) =~ lk(w)/ ko, where kg is the wave number of the light.

In order to predict the deflections (x) or (x)y, we must
know the form of k(w). For a prism oriented such that it imparts
the minimum deviation on a beam, the total angular deviation
is given by 6(w) = 2sin~! [n(w) sin(y /2)] — y, where n(w) is
the index of refraction of the material and y is the angle at
the apex of the prism [29]. However, we are only interested
in the small, frequency-dependent angular deflection §(w) =
AO =2 An{[sin(y /2)]72 — [n(w)]?}~"/?, where An (A6) is
the index change in the prism (angular deflection of the beam)
for a given frequency change of the laser. The small momentum
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kick is expressed as k(w) = §(w)ko. We can then write the
amplified deflection as

_ Sko(An/g)
W= ; —2 2’
VIsin(y/2)]72 = [n(@)]

The frequency-dependent index n(w) of fused silica, which
was used in this experiment, can be modeled using the
Sellmeier equation [30]. We can therefore calculate the
expected (x)w using Eq. (2). However, to compute the ultimate
sensitivity of this weak value frequency measurement, we must

include possible noise sources. If we consider only shot noise
from the laser, the SNR for small ¢ is approximated by

R~ ‘/8?Nk008(a)), 3)

as shown in Ref. [25], where N is the number of photons used
in the interferometer. Note that N is not the number of photons
striking the detector, which is given by N Ppg. By setting R = 1
and using modest values for N, o, and w, we find that frequency
sensitivities well below 1 kHz are possible. However, other
sources of noise, such as detector dark current, radiation
pressure, and environmental perturbations, will reduce the
sensitivity of the device.

2)

III. EXPERIMENT

In our experimental setup (shown in Fig. 1), we used
a fiber-coupled 780-nm external cavity diode laser with a
beam radius of ¢ = 388 um. The frequency of the laser was
modulated with a 10-Hz sine wave using piezocontrolled
grating feedback. The frequency control was calibrated using
saturation absorption spectroscopy of the hyperfine excited
states of the rubidium D2 line [31]: F =3 — F' ={2—
4 crossover, 3 — 4 crossover, 4} transitions of rubidium 85
and the F =2 — F’ = {1 — 3 crossover, 2 — 3 crossover, 3}
transitions of rubidium 87. Linearly polarized light was divided
before the interferometer using a 50:50 BS (although an im-
balanced ratio here would be ideal for practical applications).
The light in one port was measured with a photodiode and used
to lock the power at 2 mW with an acousto-optic modulator
before the fiber. The interferometer was approximately [ =
27 cm in length; the mirror used to adjust ¢ was approximately
6 cm from the input BS (measured counterclockwise) and the
prism, made of fused silica, was approximately 5 cm from the
input BS (measured clockwise). Although the prism was not
symmetrically placed in the interferometer as described in the
theory, the results are the same aside from a global offset in
position which can be subtracted off during processing. The
interferometer was first aligned to minimize light in the dark
port and then, using the aforementioned mirror, misaligned
to allow a small percentage of the light (~2-5%) into the
dark port. The position of this light was measured using a
split detector (New Focus model 2921). The signal was passed
through two 6 dB/octave bandpass filters centered at 10 Hz
and amplified by a factor of about 10*.

For Fig. 2, we measured the peak of the deflection in each
100-ms cycle, repeated 25 times; we computed the average and
the standard deviation of this set as we varied the change in
the optical frequency. We find that the amplified deflection is a
linear function of oscillating optical frequency given by about
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FIG. 2. The position of the postselected beam profile is measured
as we modulate the input laser frequency of the interferometer. The
modulation oscillates as a sine wave at 10 Hz and the signal from the
split detector is frequency-filtered and amplified. The error bars are
given by the standard deviation of the mean. The minimum frequency
change measured here is around 743 kHz with an effective integration
time of 30 ms. The weak value amplification is approximately 79.

720 £ 11 pm/MHz. Compared to the unamplified deflection
of about 9.1 pm/MHz given by the expression for (x), this
gives an amplification factor of 79 £ 1.2 and a computed Ppg
of 1.3%; this agrees with the measured Pps of 2-5% if we
include the extra light present in the signal due to phase front
distortions from imperfect optics.

A characteristic noise scan was taken and plotted in
Fig. 3 with and without frequency modulation. The signal was
passed directly from the split detector into the oscilloscope
before performing a fast Fourier transform. Data were taken
with and without a 7.4-MHz optical frequency modulation
to show the noise floor over a large bandwidth. The noise
at higher frequencies was similarly flat. Second, to test the
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FIG. 3. (Color online) We show the noise spectrum for a passive
system (green, solid trace) and for a driven system (blue, dashed
trace), where the laser frequency modulation is 7.4 MHz at 10 Hz.
We see that the first harmonic of the signal is about 5 dB down
from the fundamental and the third harmonic is nearly 25 dB down.
For a 7.4-MHz change in laser frequency, we see that the noise is
approximately 35 dB below the signal, demonstrating the low-noise
nature of this measurement.
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range over which this device could function, we optimized
the interferometer at the low-frequency end of the laser’s
tuning range and obtained a SNR of approximately 19 with
the 7.4-MHz optical frequency modulation. We then tuned
to the high-frequency end of the laser’s tuning range (Af ~
141 GHz), without adjusting or recalibrating the interferom-
eter, and obtained a SNR of 10. In fact, this range can be
much larger so long as the weak value condition k(w)o < 11is
satisfied; for our beam radius and optical frequency, we could,
in principle, measure over a range of 5 THz, or about 10 nm.

For our experimental parameters, we can measure below
1 MHz of frequency change with a SNR around 1, as
shown in Fig. 2. It should be noted that, although the time
between measurements is a full 100 ms, our filtering limits
the laser noise to time scales of about 30 ms. For analysis,
we take this as our integration time in estimating N for each
measurement. The resulting sensitivity for our apparatus is
129 4 7 kHz/~/Hz; for example, if we had integrated for
1 s instead of 30 ms, this device could measure a 129-kHz
shift in frequency with a SNR of 1. The error in frequency
comes from the calibration described above. Using Eq. (3),
we find that the ideal ultimate sensitivity is approximately
67 kHz/+/Hz. This implies that this apparatus, operating at
atmospheric pressure with modest frequency filtering, is less
than a factor of 2 away from the shot-noise limit in sensitivity.
This is no longer surprising since we now understand the fact
that weak value experiments amplify the signal, but not the
technical noise [24,25].

IV. CONCLUSION

With only 2 mW of continuous-wave input power, we have
measured a frequency shift of 129 + 7 kHz/+/Hz; we have
shown that the system is stable over our maximum tuning
range of 140 GHz without recalibration and is nearly shot-
noise-limited. With more optical power, longer integration,
and a more dispersive element such as a grating or a prism with
sin(y /2)n(w) ~ 1, the sensitivity of this device can measure
frequency shifts lower than 1 kHz, although a higher sensitivity
comes at the cost of maximum tuning range. Compare this
to commercially available Fabry-Perot interferometers, which
report typical resolutions down to 5 MHz and free spectral
ranges of only 1-5 GHz. More sensitive Fabry-Perot interfer-
ometers exist, yet they require a host of custom equipment
to reduce environment noise, including vacuum systems and
vibration damping. Moreover, an important advantage of this
technique is that a large percentage (~90%) of the light used in
the interferometer can then be sent off to another experiment
(as indicated in Fig. 1), allowing for real-time frequency
information during data collection. While this device cannot
compare to the absolute frequency sensitivity of frequency
combs [3], we believe that this method is a simple solution for
high-resolution, relative frequency metrology and will serve
as a valuable laser-locking tool.
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