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Energy conservation in partially coherent wave fields from polarization and magnetization
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We present the full expression for energy conservation for partially coherent electromagnetic fields from the
randomly fluctuating and statistically stationary magnetic as well as electric sources. While the polarization
gives the dominant effect in most realistic situations, magnetization could also give a non-negligible effect in
various physical situations where the magnetic field is strong. The formula we derive contains terms not only
from electric and magnetic sources alone but also from the interference between them. We also confirm that this
conservation is valid for correlation-induced spectral changes as was proved in the previous study for the electric
source alone.
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I. INTRODUCTION

The fields generated from realistic electromagnetic sources
fluctuate randomly in space and in time as do the sources. Due
to these fluctuations, we need to consider the ensemble average
with respect to time for any relevant physical quantities such as
the Poynting vector, correlations of field vectors, and spectra
of sources and fields. Also, the source correlation induces the
coherence of the electromagnetic fields and may result in the
change of the spectrum of the radiation on propagation.

There has been significant progress in the study of the
coherence theory of electromagnetic fields with randomly
fluctuating sources since the establishment of the coherence
theory [1] and the theory of correlation-induced spectral
changes [2,3]. For electromagnetic fields, the conservation
of energy was discussed in [4–7] and the conservation of
momentum has been discussed recently in [8,9].

In the conservation of electromagnetic energy, the
correlation-induced spectral changes attracted the interest of
physicists. The spectral changes may be different at different
positions and may appear differently at each direction of
observation. Several previous works demonstrated that these
spectral changes do not violate the energy-conservation law
under various circumstances and/or in the presence of a
nonmagnetic source [4–7].

The formulation of the conservation of energy for electro-
magnetic fields has been focused on the case of a nonmagnetic
source. In this work, we also include a magnetic source in
the formulation and thus extend the previous work to more
general sources. The resulting formula can be useful when
the magnetization of the source is strong enough to have a
non-negligible contribution to that from polarization.

The extended formalism for the conservation of energy
in electromagnetic fields is discussed in detail in Sec. II. The
agreement between the source spectrum and the spectrum from
the radiated field in this generalized formulation of energy-
conservation law is shown in Sec. III. In this research, we
used the Gaussian unit system and followed the notation in [7]
unless specified otherwise.
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II. ENERGY CONSERVATION OF ELECTROMAGNETIC
FIELDS FROM ELECTRIC AND MAGNETIC SOURCES

We consider electromagnetic wave fields generated by
randomly fluctuating but statistically stationary sources in a
finite region represented as the domain D. We assume that
the source is quasimonochromatic. Let 〈F(r,ω)〉 denote the
ensemble average of the Poynting vector at frequency ω and
at a position r. With the complex electric field E(r,ω) and
the complex magnetic field H(r,ω) in the space-frequency
domain, the averaged Poynting vector can be expressed as
[10–12]

〈F(r,ω)〉 = c

8π
Re〈E∗(r,ω) × H(r,ω)〉. (1)

From Maxwell’s equations, we have the following relations
for E and H:

∇ × E(r,ω) = ik[H(r,ω) + 4πM(r,ω)],
(2)∇ × H(r,ω) = −ik[E(r,ω) + 4πP(r,ω)].

Since physical observables are real, we can drop the pure
imaginary part in the divergence of the averaged Poynting
vector. We then obtain the following result:

∇ · 〈F(r,ω)〉 = −kc

2
Im[〈E∗(r,ω) · P(r,ω)〉

+ 〈H∗(r,ω) · M(r,ω)〉]. (3)

The outgoing electric and the magnetic fields in the far region
can be expressed in terms of polarization and magnetization
[13] as

E(r,ω) = [k2 + ∇(∇·)]
∫

D

P(r′,ω)
eik|r−r′ |

|r − r′|d
3r ′

+ ik∇ ×
∫

D

M(r′,ω)
eik|r−r′ |

|r − r′|d
3r ′, (4)

H(r,ω) = [k2 + ∇(∇·)]
∫

D

M(r′,ω)
eik|r−r′ |

|r − r′|d
3r ′

− ik∇ ×
∫

D

P(r ′,ω)
eik|r−r′ |

|r − r′|d
3r ′. (5)
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We then substitute Eqs. (4) and (5) into Eq. (3) to obtain the
expression for the divergence of the Poynting vector in terms
of polarization and magnetization:

∇ · 〈F(r,ω)〉

= −kc

2
Im

[〈
k2

∫
D

P(r,ω) · P∗(r′,ω)
e−ik|r−r′ |

|r − r′| d3r ′
〉

+
〈

P(r,ω) · ∇
∫

D

P∗(r′,ω) · ∇ e−ik|r−r′ |

|r − r′| d3r ′
〉

+
〈
k2

∫
D

M(r,ω) · M∗(r′,ω)
e−ik|r−r′|

|r − r′| d3r ′
〉

+
〈

M(r,ω) · ∇
∫

D

M∗(r′,ω) · ∇ e−ik|r−r′|

|r − r′| d3r ′
〉

+
〈
ikP(r,ω) ·

∫
D

M∗(r′,ω) × ∇ e−ik|r−r′ |

|r − r′| d3r ′
〉

−
〈
ikM(r,ω) ·

∫
D

P∗(r′,ω) × ∇ e−ik|r−r′ |

|r − r′| d3r ′
〉]

. (6)

Now, we introduce the cross-spectral density tensors
W

(PP )
ij (r1,r2,ω), W

(MM)
ij (r1,r2,ω), W

(PM)
ij (r1,r2,ω), and

W
(MP )
ij (r1,r2,ω) from the polarization and the magnetization

of the source, which we will denote as W
(X)
ij (r1,r2,ω) with X =

PP, MM, PM, or MP. Here, we change slightly the notation
of the cross-spectral density tensors to avoid confusion of
the contributions from the polarization and the magnetization
and their interference. The cross-spectral density tensors are
defined as

W
(PP )
ij (r1,r2,ω) ≡ 〈P ∗

i (r1,ω)Pj (r2,ω)〉,
W

(MM)
ij (r1,r2,ω) ≡ 〈M∗

i (r1,ω)Mj (r2,ω)〉,
(7)

W
(PM)
ij (r1,r2,ω) ≡ 〈P ∗

i (r1,ω)Mj (r2,ω)〉,
W

(MP )
ij (r1,r2,ω) ≡ 〈M∗

i (r1,ω)Pj (r2,ω)〉.
The first four terms of the right-hand side of Eq. (6) with these
definitions can be simplified in exactly the same way as done
in [7], and the remaining two terms can also be simplified
similarly. Therefore, Eq. (6) simply becomes

∇ · 〈F(r,ω)〉 = −kc

2
Im

∫
D

[
W

(PP )
ij (r′,r,ω) + W

(MM)
ij (r′,r,ω)

]

× (k2δij + ∂i∂j )
e−ik|r−r′|

|r − r′| d3r ′

− kc

2
Im

∫
D

[
W

(MP )
ik (r′,r,ω) − W

(PM)
ik (r′,r,ω)

]

× ikεijk∂j

e−ik|r−r′ |

|r − r′| d3r ′. (8)

Here and throughout the paper, unless specified otherwise, we
use the Einstein summation convention in which the repeated
indices are summed over.

Applying the divergence theorem on Eq. (8) with the
volume V, which enclosed the source domain D, we obtain∫

�

〈F (r,ω)〉 · n d�

= −kc

2
Im

∫
D

∫
D

[
W

(PP )
ij (r′,r,ω) + W

(MM)
ij (r′,r,ω)

]
× (k2δij + ∂i∂j )

e−ik|r−r′|

|r − r′| d3r d3r ′

− kc

2
Im

∫
D

∫
D

[
W

(MP )
ik (r′,r,ω) − W

(PM)
ik (r′,r,ω)

]
× ikεijk∂j

e−ik|r−r′ |

|r − r′| d3r d3r ′, (9)

where � denotes the surface, which encloses the source
domain D, and n denotes the normal unit vector to � at
r. Note that W

(X)
ij (r′,r,ω) = 0 for r /∈ D.

For later use, we will rewrite Eq. (9) with the help of the
following property of cross-spectral density tensors:

W
(PM)
ij (r′,r,ω) = W

(MP )∗
ji (r,r′,ω), (10)

and e−ik|r−r′ |/|r − r′| has the mutual sign difference to the
partial derivatives with respect to r and r′. Therefore, Eq. (9)
can now be written as∫

�

〈F (r,ω)〉 · n d�

= k2c

2

∫
D

∫
D

[
W

(PP )
ij (r′,r,ω) + W

(MM)
ij (r′,r,ω)

]
× (k2δij + ∂i∂j )

sin k|r − r′|
k|r − r′| d3r d3r ′

− k3c

∫
D

∫
D

Im
[
W

(MP )
ik (r′,r,ω)

]
× εijk∂j

sin k|r − r′|
k|r − r′| d3r d3r ′. (11)

This is the integral form of the energy-conservation law in
Eq. (8). We can see from the equation that the total energy
rate over a surface � radiated from the source depends
on the second-order correlation properties from the source
polarization, magnetization, and the interference between
polarization and magnetization, which are represented by
the above cross-spectral density tensors. The cross term in
Eq. (11) may bring an interesting interference effect in partially
coherent wave fields. Also, we want to emphasize that this
interference does not appear in the conservation of momentum
as in [9].

III. SPECTRA OF THE SOURCE AND
THE RADIATED FIELD

Now, let us examine the correlation-induced spectral
changes and see if the field spectrum satisfies the energy-
conservation law. We consider electric and magnetic fields
in the far zone from the source, at which the position is
expressed as Ru, where u is a unit vector pointing outward.
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After imposing this condition on the electric and the magnetic
fields, these fields can be expressed as [7,14]

Ei(Ru,ω) ≈ (2π )3k2 eikR

R
(δij − uiuj )P̃j (ku,ω)

− (2π )3k2 eikR

R
εijkuj M̃k(ku,ω), (12)

Hi(Ru,ω) ≈ (2π )3k2 eikR

R
(δij − uiuj )M̃j (ku,ω)

+ (2π )3k2 eikR

R
εijkuj P̃k(ku,ω), (13)

where P̃ and M̃ are the spatial Fourier transforms of the
source polarization and the source magnetization, respectively,
defined as

P̃(k,ω) ≡ 1

(2π )3

∫
D

P(r,ω)e−ik·r d3r, (14)

M̃(k,ω) ≡ 1

(2π )3

∫
D

M(r,ω)e−ik·r d3r. (15)

As we defined the cross-spectral density tensor
W

(X)
ij (r1,r2,ω) in Eq. (7), we can similarly introduce the cross-

spectral density tensors W
(E)
ij (r1,r2,ω) and W

(H )
ij (r1,r2,ω) of

the fields as

W
(E)
ij (r1,r2,ω) ≡ 〈E∗

i (r1,ω)Ej (r2,ω)〉, (16)

W
(H )
ij (r1,r2,ω) ≡ 〈H ∗

i (r1,ω)Hj (r2,ω)〉. (17)

It is straightforward to show that the field correlations in the
far zone have the following forms by substituting Eqs. (12)
and (13) into Eqs. (16) and (17):

W
(E)
ij (Ru1,Ru2,ω)

= (2π )6k4

R2

[
(δim − u1iu1m)(δjn − u2ju2n)

× W̃ (PP )
mn (−ku1,ku2,ω) + εimpεjnqu1mu2n

× W̃ (MM)
pq (−ku1,ku2,ω) − εjnqu2n(δim − u1iu1m)

× W̃ (PM)
mq (−ku1,ku2,ω) − εimpu1m(δjn − u2ju2n)

× W̃ (MP )
pn (−ku1,ku2,ω)

]
, (18)

W
(H )
ij (Ru1,Ru1,ω)

= (2π )6k4

R2

[
(δim − u1iu1m)(δjn − u2ju2n)

× W̃ (MM)
mn (−ku1,ku2,ω) + εimpεjnqu1mu2n

× W̃ (PP )
pq (−ku1,ku2,ω) + εjnqu2n(δim − u1iu1m)

× W̃ (MP )
mq (−ku1,ku2,ω) + εimpu1m(δjn − u2ju2n)

× W̃ (PM)
pn (−ku1,ku2,ω)

]
,

where uαi (i = 1,2,3) is the ith component of the unit
vector uα . The six-dimensional Fourier transforms of the
cross-spectral densities of polarization, magnetization, and the
interference between them of the source can be defined as

W̃
(X)
ij (k1,k2,ω) ≡ 1

(2π )6

∫
D

∫
D

W
(X)
ij (r1,r2,ω)

× e−i(k1·r1+k2·r2)d3r1 d3r2. (19)

Let us denote the power spectrum of the field at the far
distance R from the source in the direction u as S∞(Ru,ω) ≡
c〈U (∞)(Ru,ω)〉, where 〈U 〉 is the ensemble average of the
energy density. The spectrum then becomes

S(∞)(Ru,ω) = c

16π
〈E∗

i (Ru,ω)Ei(Ru,ω)〉

+ c

16π
〈H ∗

i (Ru,ω)Hi(Ru,ω)〉

= c

16π

[
W

(E)
ii (Ru,Ru,ω) + W

(H )
ii (Ru,Ru,ω)

]
.

(20)

By using the expressions of the fields in Eqs. (12) and (13) and
the definition in Eq. (19), the spectrum in the far zone can be
written as

S(∞)(Ru,ω)

= 8π5k4c

R2

{
(δij − uiuj )

× [
W̃

(PP )
ij (−ku,ku,ω) + W̃

(MM)
ij (−ku,ku,ω)

]
+ εijkuj

[
W̃

(PM)
ki (−ku,ku,ω) + W̃

(MP )
ik (−ku,ku,ω)

]}
.

(21)

From the usual definition of spectrum, we define the extended
spectral densities as

S
(X)
i (r,ω) ≡ W

(X)
ii (r,r,ω) (i; no summation). (22)

Accordingly, the spectral degree of coherence can also be
defined as

µ
(X)
ij (r1,r2,ω) ≡ W

(X)
ij (r1,r2,ω)√

S
(X)
i (r1,ω)

√
S

(X)
j (r2,ω)

(i,j ; no summation), (23)

where 0 � |µ(X)
ij | � 1 and X = PP, MM, PM, or MP as we

mentioned earlier.
By considering the six-dimensional Fourier transforms in

Eq. (21), the spectrum in the far zone is given by the expression

S(∞)(Ru,ω) = 1

8π

k4c

R2

{
(δij − uiuj )

∫
D

∫
D

[
W

(PP )
ij (r′,r,ω)

+W
(MM)
ij (r′,r,ω)

]
e−iku·(r−r′)d3r d3r ′

+ εijkuj

∫
D

∫
D

[
W

(PM)
ki (r′,r,ω)

+ W
(MP )
ik (r′,r,ω)

]
e−iku·(r−r′)d3r d3r ′

}
. (24)
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Equation (24) can be expressed in terms of the spectral degrees
of coherence µ in Eq. (23) from

W
(X)
ij (r1,r2,ω) = µ

(X)
ij (r1,r2,ω)

√
S

(X)
i (r1,ω)

√
S

(X)
j (r2,ω)

(i,j ; no summation). (25)

Equations (24) and (25) show that the spectra of the fields in the
far zone depend on both the source spectra and the correlations
of Cartesian components of polarization, magnetization, and
their interference. Thus, we once again find that the spectrum
of the far field is different from the source spectrum and
depends on the position of observation as was found in [7].

Since source correlations induce spectral changes, we
should examine whether they also obey the energy-
conservation law. The total spectrum in the far zone can
be obtained by integrating S(∞) over all the surface �(∞).
The infinitesimal surface element at a distance R is d�(∞) =
R2 d�. After the integration of Eq. (24), we have∫

�(∞)
S(∞)(Ru,ω) d�(∞)

= 1

8π
k4c

{∫
d�(δij − uiuj )

∫
D

∫
D

[
W

(PP )
ij (r′,r,ω)

+W
(MM)
ij (r′,r,ω)

]
e−iku·(r−r′)d3r d3r ′

+
∫

d� εijkuj

∫
D

∫
D

[
W

(PM)
ki (r′,r,ω)

+W
(MP )
ik (r′,r,ω)

]
e−iku·(r−r′)d3r d3r ′

}
. (26)

Since the exponential function, differentiated by position,
brings a component of u multiplied by k, then kui and kuj

can be replaced by differential operators ∂i and ∂j . Therefore,
this equation becomes∫

�(∞)
S(∞)(Ru,ω) d�(∞)

= 1

8π
k2c

∫
d�

∫
D

∫
D

[
W

(PP )
ij (r′,r,ω)

+W
(MM)
ij (r′,r,ω)

]
(k2δij + ∂i∂j )e−iku·(r−r′)d3r d3r ′

+ i

8π
k3c

∫
d�

∫
D

∫
D

[
W

(PM)
ki (r′,r,ω)

+W
(MP )
ik (r′,r,ω)

]
εijk∂j e

−iku·(r−r′)d3r d3r ′. (27)

We need to verify the equivalence of Eqs. (11) and (27). The
obtained expression for the conservation of energy in Eq. (11)
contains a sine function instead of an exponential function. We
have a useful identity for that purpose, i.e.,

sin k|r − r′|
k|r − r′| = 1

4π

∫
d� e−iku·(r−r′). (28)

We can reduce the interference terms in Eq. (27) into a term by
using the property of spectral-density tensors in Eq. (10) and
the fact that r and r′ are dummy variables and, thus, we can
exchange them in the integration of W

(PM)
ik . Note that there

is a sign change when we apply the differentiations ∂j and

∂ ′
j to the exponential function in Eq. (27). In the process of

the calculation, the real and imaginary parts should be traced
carefully:

∫
�(∞)

S(∞)(Ru,ω) d�(∞)

= k2c

2

∫
D

∫
D

[
W

(PP )
ij (r′,r,ω) + W

(MM)
ij (r′,r,ω)

]
× (k2δij + ∂i∂j )

sin k|r − r′|
k|r − r′| d3r d3r ′ − k3c

×
∫

D

∫
D

Im
[
W

(MP )
ik (r′,r,ω)

]
εijk∂j

sin k|r − r′|
k|r − r′| d3r d3r ′.

(29)

As shown here, this result is identical to the one in Eq. (11).
In other words, although source correlation induces spectral
changes, the total sum of energy passing the closed surface per
unit time is always conserved.

IV. CONCLUSIONS

We extend the previous work [7] on the conservation of
energy for electromagnetic fields from a randomly fluctuating,
statistically static, and quasimonochromatic electric source
to an electric and non-negligible magnetic source. The full
expressions have been derived for the conservation of energy.
The expressions from the polarization and the magnetization
alone are similar to those of the previous work for the
electric source. However, there is an additional term from
the interference between polarization and magnetization while
such interference does not appear in the case of momentum
conservation [9]. As shown in the previous work, we find
that the energy-conservation law for electromagnetic fields
for the more generalized source is also consistent with the
correlation-induced spectrum.

Magnetization is usually negligible in ordinary materials
in the optically visible region. However, unusual magnetic
(meta)materials have been investigated recently [15–19],
although the frequencies of the electromagnetic waves could
be mostly in the infrared or the far-infrared regions. For
some cases in astronomy, the magnetization effect may be
comparable or even dominant. Strongly magnetized neutron
stars (so-called magnetars) produce a very strong magnetic
field. (An observed exceptionally bright flare is thought to
provide evidence of the existence of magnetars [20].) However,
the magnetization and its interference effect might be hard to
detect in this case. In these respects, the effect of magnetization
still needs to be explored experimentally.
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