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Waveguide QED: Many-body bound-state effects in coherent and Fock-state scattering
from a two-level system
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Strong coupling between a two-level system (TLS) and bosonic modes produces dramatic quantum optics
effects. We consider a one-dimensional continuum of bosons coupled to a single localized TLS, a system which
may be realized in a variety of plasmonic, photonic, or electronic contexts. We present the exact many-body
scattering eigenstate obtained by imposing open boundary conditions. Multiphoton bound states appear in the
scattering of two or more photons due to the coupling between the photons and the TLS. Such bound states
are shown to have a large effect on scattering of both Fock- and coherent-state wave packets, especially in
the intermediate coupling-strength regime. We compare the statistics of the transmitted light with a coherent
state having the same mean photon number: as the interaction strength increases, the one-photon probability is
suppressed rapidly, and the two- and three-photon probabilities are greatly enhanced due to the many-body bound
states. This results in non-Poissonian light.
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I. INTRODUCTION

Recently, there has been increasing interest in designing
quantum optical elements based on the strong coupling be-
tween light and matter [1–9]. The strong-coupling regime has
been realized in the classic cavity quantum electrodynamics
(QED) systems [10–12], as well as in circuit QED experiments
[13–16]. Several experimental systems have been proposed for
realizing devices such as a single-photon transistor [4,8] and a
quantum switch [6,7,17], including surface plasmons coupled
to a single two-level emitter [4], a superconducting transmis-
sion line resonator coupled to a local superconducting charge
qubit [6,7], and propagating photons in a one-dimensional
(1D) waveguide coupled to a TLS [18,19]. Most of the
theoretical work focuses on a single-photon coupled to a local
quantum system modeled as a TLS. The key property used
in the device proposals is that, if the energy of the incident
photon is tuned to be on resonance with the TLS, the system
will block the transmission of photons due to destructive
interference between the directly transmitted photon and the
photon re-emitted by the impurity [4,6].

A more challenging task is to study the two-photon (or
more) scattering problem in such systems. The two-photon
problem has been addressed by Shen and Fan using a gen-
eralized Bethe ansatz [18,19]. They showed that two-photon
bound states emerge as the photons interact with the TLS.
Effective attractive and repulsive interactions can be induced
depending on the energy of the photons [18]. Such effective
interactions between photons may provide new avenues for
controlling photon entanglement [20]. However, the scattering
eigenstates were not constructed explicitly in Ref. [19]: the
bound states were found by first constructing Bethe-type
scattering eigenstates and then deducing the bound states
via the completeness of the basis. It is difficult to generalize
the method in Ref. [19] to solve the three-photon (or more)
scattering problem, in which we expect more complicated and
interesting photon correlations.

*harold.baranger@duke.edu

Here, we present a method to explicitly construct exact
n-photon scattering eigenstates and then use the eigenstates
to analyze the scattering of Fock- and coherent-state wave
packets. The system consists of a 1D bosonic continuum
coupled to a local TLS as shown in Fig. 1. First, we explicitly
construct the n-photon (n = 1 to 4) scattering eigenstates
by imposing open boundary conditions while requiring that
the incoming wave functions consist entirely of plane waves
[21,22]. In addition to two-photon bound states, three-photon
bound states appear in the three-photon scattering eigenstates,
and likewise, n-photon bound states appear in the n-photon
scattering eigenstates. Second, to show the significance of
these bound states in the scattering of practical light sources,
we study the scattering of one-, two-, and three-photon Fock-
state wave packets. It is shown that the two- and three-photon
bound states dramatically enhance the transmission of two-
and three-photon wave packets, respectively. Third, we study
the scattering of coherent states to determine the impact
of the bound states on both the photon correlation and the
statistics of the transmitted and reflected photons. Strong
bunching and antibunching effects appear, and the statistics are
non-Poissonian.

The paper is organized as follows. In Sec. II, we introduce
the model, solve for the n-photon scattering eigenstates in the
n = 1 to n = 4 cases, and construct the corresponding S matrix
based on the Lippmann-Schwinger formalism [23]. In Sec. III,
the impact of bound states on photon transmission is studied

FIG. 1. (Color online) Sketch of the structure considered: a 1D
continuum of bosons coupled to a two-level system.

1050-2947/2010/82(6)/063816(10) 063816-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.063816


ZHENG, GAUTHIER, AND BARANGER PHYSICAL REVIEW A 82, 063816 (2010)

for initial Fock-state wave packets with photon numbers of
one, two, and three. In Sec. IV, we present the analysis of
photon correlation and statistics for coherent-state scattering.
Finally, we conclude in Sec. V.

II. SCATTERING EIGENSTATES

The system we study consists of a TLS coupled to photons
propagating in both directions in a 1D waveguide [9,18,19].
The system is modeled by the Hamiltonian [18]

H =
∫

dx
1

i

[
a
†
R(x)

d

dx
aR(x) − a

†
L(x)

d

dx
aL(x)

]

+
(

ε − i�′

2

)
|e〉〈e| +

∫
dxV δ(x)

×{[a†
R(x) + a

†
L(x)]S− + H.c.}, (1)

where a
†
R(x)/a†

L(x) is the creation operator for a right-going
(left-going) photon at position x, ε is the level splitting between
the ground state |g〉 and the excited state |e〉 of the TLS, �′
is the decay rate into channels other than the 1D continuum,
V is the frequency-independent coupling strength, and S− =
|g〉〈e| is the atomic lowering operator. Throughout the paper,
we set the group velocity c and Plank’s constant h̄ to 1 for
simplicity.

It is natural to transform to modes which are either even
or odd about the origin, a

†
e(x) ≡ [a†

R(x) + a
†
L(−x)]/

√
2 or

a
†
o(x) ≡ [a†

R(x) − a
†
L(−x)]/

√
2. The Hamiltonian (1) is then

decomposed into two decoupled modes: H = He + Ho, with

He =
∫

dx
1

i
a†

e(x)
d

dx
ae(x) + (ε − i�′/2)|e〉〈e|

+
∫

dxV̄ δ(x) [a†
e(x)S− + H.c.], (2a)

Ho =
∫

dx
1

i
a†

o(x)
d

dx
ao(x), (2b)

where the effective coupling strength becomes V̄ = √
2V .

Note that the odd mode is free. The number operator for
even bosons is ne = ∫

dxa
†
e(x)ae(x), that for odd bosons is

no = ∫
dxa

†
o(x)ao(x), and the occupation number of the TLS

is ntls = |e〉〈e|. Because H commutes with certain number
operators, [H,ne + ntls] = [H,no] = 0, the total numbers of
excitations in both the even and the odd spaces are separately
conserved. We now focus on finding the nontrivial even-
mode solution and then transform back to the left (right)
representation.

An n-excitation state in the even space (n = ne + ntls) is
given by

|ψn〉 =
∫

dx1 · · · dxngn(x1, . . . ,xn)a†
e(x1) · · · a†

e(xn)|0,g〉

+
∫

dx1 · · · dxn−1en(x1, . . . ,xn−1)

× a†
e(x1) · · · a†

e(xn−1)|0,e〉, (3)

where |0,g〉 is the 0-photon state with the atom in the ground
state. From He|ψn〉 = En|ψn〉, we obtain the Schrödinger

equations[
1

i
(∂1 + · · · + ∂n) − En

]
gn(x1, . . . ,xn)

+ V̄

n
[δ(x1)en(x2,. . . ,xn) + · · ·+ δ(xn)en(x1,. . . ,xn−1)] = 0,[

1

i
(∂1 + · · · + ∂n−1) − En + ε − i�′/2

]
en(x1, . . . ,xn−1)

+ nV̄ gn(0,x1, . . . ,xn−1) = 0, (4)

where the eigenvalue En = k1 + k2 + · · · kn, and
gn(x1, . . . ,xn) is discontinuous at xi = 0,i = 1, . . . ,n.
In all the following calculations, we set gn(0,x1, . . . ,xn−1) =
[gn(0+,x1, . . . ,xn−1) + gn(0−,x1, . . . ,xn−1)]/2 [21,22]. The
scattering eigenstates gn(x1, . . . ,xn) and en(x1, . . . ,xn−1) are
constructed by imposing the boundary condition that, in the
incident region, gn(x1, . . . ,xn) is the free-bosonic plane wave.
That is, for x1, . . . ,xn < 0,

gn(x1, . . . ,xn) = 1

n!

∑
Q

hk1 (xQ1 ) · · · hkn
(xQn

), (5a)

hk(x) = 1√
2π

eikx. (5b)

For n = 1, plane-wave solutions are sufficient to satisfy
Eq. (4) with eigenenergy E = k:

g1(x) = gk(x) = hk(x)[θ (−x) + t̄kθ (x)], (6a)

e1 = i

2
√

πV
(t̄k − 1), (6b)

t̄k = k − ε + i�′/2 − i�c/2

k − ε + i�′/2 + i�c/2
, (6c)

where θ (x) is the step function and �c = V̄ 2 = 2V 2 is the
spontaneous emission rate from the TLS to the 1D continuum.
Note that t̄k is the transmission coefficient for the even prob-
lem; because the even mode is chiral, |t̄k| = 1 when �′ = 0.

For n = 2, plane-wave solutions are not sufficient to satisfy
Eq. (4). As discussed by Shen and Fan [18,19], a two-photon
bound state must be included to guarantee the completeness
of the basis. Here, instead of extracting the bound state
through a completeness check [18,19], we construct the
scattering eigenstate explicitly and find a two-photon bound-
state contribution to the solution, as has been done in the
open interacting resonant-level model [21]. We require the
two-photon solution to satisfy Eq. (5a) in the region x1,x2 < 0
and solve for the solution in other regions using Eq. (4).
This method of constructing scattering eigenstates can be
generalized to cases of three, four, and even more photons.
In the Appendix, it is shown that the two-photon eigenstate
with eigenenergy E = k1 + k2 is

g2(x1,x2) = gk1,k2 (x1,x2) = 1

2!

⎡
⎣∑

Q

gk1

(
xQ1

)
gk2

(
xQ2

)

+
∑
PQ

B
(2)
kP1 ,kP2

(xQ1 ,xQ2 )θ
(
xQ1

)⎤⎦, (7a)

e2(x) =
√

2i

V
[g2(0+,x) − g2(0−,x)], (7b)
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B
(2)
kP1 ,kP2

(
xQ1 ,xQ2

)≡−(
t̄kP1

−1
)(

t̄kP2
−1

)
hkP1

(
xQ2

)
hkP2

(
xQ2

)
× e(−�/2−iε)|xQ2−xQ1|θ

(
xQ2 − xQ1

)
. (7c)

Here, P = (P1,P2) and Q = (Q1,Q2) are permutations of
(1,2) needed to account for the bosonic symmetry of the wave
function, and � = �c + �′ is the total spontaneous emission
rate. The two-body bound-state term B

(2)
kP1 ,kP2

(xQ1,xQ2 )θ (xQ1 )
is generated when there are two photons interacting with the
same TLS, while the TLS can only absorb one photon at one
time. The binding strength of the two photons depends on the
total spontaneous emission rate �. Conceptually, two photons

have two ways of going through the TLS. One is to pass
by the TLS independently as plane waves and gain a phase
factor, which is described by the first term of g2(x1,x2). The
other way is to bind together and form a bound state, which
is described by the second term. The formation of the bound
state can be viewed as a result of stimulated emission: the first
photon excites the TLS and the passing of the second photon
stimulates emission of the first photon into the same state,
hence producing the bound state.

For n = 3, a procedure similar to that used to solve the
n = 2 case yields

g3(x1,x2,x3) = gk1,k2,k3 (x1,x2,x3) = 1

3!

[ ∑
Q

gk1

(
xQ1

)
gk2

(
xQ2

)
gk3

(
xQ3

) +
∑
PQ

gkP1

(
xQ1

)
B

(2)
kP2 ,kP3

(
xQ2 ,xQ3

)
θ
(
xQ2

)

+
∑
PQ

B
(3)
kP1 ,kP2 ,kP3

(
xQ1 ,xQ2 ,xQ3

)
θ
(
xQ1

)]
, (8a)

e3(x1,x2) = 3i√
2V

[g3(0+,x1,x2) − g3(0−,x1,x2)], (8b)

B
(3)
kP1 ,kP2 ,kP3

(
xQ1 ,xQ2 ,xQ3

) ≡ 2
(
t̄kP1

− 1
)(

t̄kP2
− 1

)(
t̄kP3

− 1
)
hkP1

(
xQ2

)
hkP2

(
xQ3

)
hkP3

(
xQ3

)
e(−�/2−iε)|xQ3 −xQ1 |θ

(
xQ32

)
θ
(
xQ21

)
, (8c)

where P = (P1,P2,P3) and Q = (Q1,Q2,Q3) are permuta-
tions of (1,2,3) and θ (xQij

) = θ (xQi
− xQj

) for short. In
addition to the two-photon bound state, there emerges a
three-body bound state, B(3)

kP1 ,kP2 ,kP3
(xQ1 ,xQ2 ,xQ3 )θ (xQ1 ), in the

region x1,x2,x3 > 0. Conceptually, there are three ways for
the three photons to pass by the atom: (i) all three photons
propagate as independent plane waves; (ii) two photons form
a two-body bound state, while the other one propagates
independently as a plane wave; and (iii) all three photons
bind together and form a three-body bound state. These three
processes are described by the first, second, and third terms of
g3(x1,x2,x3), respectively.

This simple picture can be applied to a general n-photon
scattering process. For example, in the case of four-photon
scattering, there are five ways for the four photons to pass
by the atom as illustrated in Fig. 2: (i) all four propagate as
independent plane waves; (ii) two photons form a two-body
bound state, while the other two propagate independently as
plane waves; (iii) three photons form a three-body bound state,
while the other one propagates independently as a plane wave;
(iv) four photons form two independent two-body bound states;
and (v) four photons form a four-body bound state. These five
processes can be identified as the five terms of g4(x1,x2,x3,x4)
in the four-photon solution, which is given by

g4(x1,x2,x3,x4) = 1

4!

[∑
Q

gk1

(
xQ1

)
gk2

(
xQ2

)
gk3

(
xQ3

)
gk4

(
xQ4

) +
∑
PQ

gkP1

(
xQ1

)
gkP2

(
xQ2

)
B

(2)
kP3 ,kP4

(
xQ3 ,xQ4

)
θ
(
xQ3

)

+
∑
PQ

gkP1

(
xQ1

)
B

(3)
kP2 ,kP3 ,kP4

(
xQ2 ,xQ3 ,xQ4

)
θ
(
xQ2

) +
∑
PQ

B
(2)
kP1 ,kP2

(
xQ1,xQ2

)
B

(2)
kP3 ,kP4

(
xQ3 ,xQ4

)
θ
(
xQ1

)
θ
(
xQ3

)

+
∑
PQ

B
(4)
kP1 ,kP2 ,kP3 ,kP4

(
xQ1 ,xQ2 ,xQ3 ,xQ4

)
θ
(
xQ1

)]
, (9a)

e4(x1,x2,x3) = 4i√
2V

[g4(0+,x1,x2,x3) − g4(0−,x1,x2,x3)], (9b)

B
(4)
kP1 ,kP2 ,kP3 ,kP4

(xQ1 ,xQ2 ,xQ3 ,xQ4 ) ≡ −22
(
t̄kP1

− 1
)(

t̄kP2
− 1

)(
t̄kP3

− 1
)(

t̄kP4
− 1

)
hkP1

(
xQ2

)
hkP2

(
xQ3

)
hkP3

(
xQ4

)
hkP4

(
xQ4

)
× e(−�/2−iε)|xQ4 −xQ1 |θ

(
xQ4 − xQ3

)
θ
(
xQ3 − xQ2

)
θ
(
xQ2 − xQ1

)
. (9c)

The scattering eigenstates of a general n-photon problem
can be constructed recursively in a similar way: the only
unknown term in gn(x1, . . . ,xn) is the n-photon bound state,

as all the other terms can be constructed from the solutions of
the 1 − ,2 − , . . . ,(n − 1)-photon problems. We extrapolate
from the results of n = 2–4 that, in general (n �2), the n-body
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FIG. 2. (Color online) Schematic of different processes in four-
photon scattering by a two-level system. Plane waves are represented
by (green) wiggly lines, while many-body bound states are repre-
sented by (orange) ovals.

bound state assumes the form

Bk1,...,kn
(x1, . . . ,xn) = −(−2)n−2

n∏
i=1

(
t̄ki

− 1
) n−1∏

i=1

θ (xi+1 − xi)

× hk1 (xn)hk2 (x2) · · · hkn−1 (xn−1)hkn
(xn)

× e(−�/2−iε)|xn−x1|. (10)

We have verified this expression for n = 5. Thus we have
given explicit formulas for constructing the exact n-photon
scattering eigenstates.

The exact scattering eigenstates can be used to construct
the scattering matrix. According to the Lippmann-Schwinger
formalism [23], one can read off the “in” state (before
scattering) and the “out” state (after scattering) of a general
n-photon S matrix from gn(x1, . . . ,xn) in the input re-
gion (x1 < 0, . . . ,xn < 0) and in the output region (x1 >

0, . . . ,xn > 0), respectively. The in and out states of one- and
two-photon scattering matrices are given by

∣∣φ(1)
in

〉
e

=
∫

dxhk(x)a†
e(x)|0〉, (11a)

∣∣φ(1)
out

〉
e

=
∫

dxt̄khk(x)a†
e(x)|0〉, (11b)

and

∣∣φ(2)
in

〉
e

=
∫

dx1dx2
1

2!

[∑
Q

hk1

(
xQ1

)
hk2

(
xQ2

)]
a†

e(x1)a†
e(x2)|0〉,

∣∣φ(2)
out

〉
e

=
∫

dx1dx2
1

2!

[ ∑
Q

t̄k1 t̄k2hk1

(
xQ1

)
hk2

(
xQ2

)

+
∑
PQ

BkP1 ,kP2

(
xQ1 ,xQ2

)]
a†

e(x1)a†
e(x2)|0〉, (12)

and similarly for three and four photons. The corresponding
S matrices are

S(n)
e =

∫
dk1 · · · dkn

1

n!

∣∣φ(n)
out

〉
ee

〈
φ(n)

in

∣∣. (13)

Note that the unitarity of the S matrix is automatically satisfied
since the incoming state |φ(n)

in 〉e is a complete basis set in the
even space [19,23].

The S matrix in the odd space is just the identity operator
because the odd mode is free and decoupled from the impurity
and the even mode,

S(n)
o =

∫
dk1 · · · dkn

1

n!

∣∣φ(n)
in

〉
o o

〈
φ(n)

in

∣∣, (14a)

∣∣φ(n)
in

〉
o

=
∫

dx1 · · · dxn

1

n!

∑
Q

n∏
i=1

hki
(xQi

)a†
e(xi)|0〉. (14b)

Finally, we wish to construct the scattering matrix in
the right-left representation based on the S matrices in the
even-odd representation. For a general n-photon scattering
problem, the possible scattering channels are that i photons
undergo scattering in the even space and n − i photons undergo
scattering in the odd space, with i running from 0 to n. In
addition, the even and odd spaces are decoupled from each
other. Therefore, the n-photon S matrix is

S(n) =
n∑

i=0

S(i)
e ⊗ S(n−i)

o . (15)

We use this S matrix to study the scattering of Fock states
and coherent-state wave packets in the right and left spaces in
subsequent sections.

III. SCATTERING OF FOCK STATES

To show the significance of the many-body bound states,
we study the scattering of a Fock state off of a TLS. We
assume that the incident mode propagates to the right and the
TLS is initially in the ground state. We use the S matrices
defined in Eq. (15) to evaluate the transmission and reflection
coefficients. In practice, any state that contains a finite number
of photons must have the form of a wave packet. Thus, we
start with the definition of the continuous-mode photon wave-
packet creation operator in momentum space [24],

a†
α =

∫
dkα(k)a†(k)|0〉, (16)

with the normalization condition
∫

dk|α(k)|2 = 1. The corre-
sponding continuous-mode n-photon Fock state is

|nα〉 = (a†
α)n√
n!

|0〉, (17)

and the output state after it scatters off the TLS is∣∣out(n)
α

〉 = S(n)|nα〉. (18)

To obtain the scattering probabilities of a Fock state
from the S matrix found in Sec. II, we use the following
general procedure. (i) First, we write an n-photon input
Fock state traveling to the right in momentum space: |nα〉 =
(1/

√
n!)

∫
dk1 · · · dkn α(k1) · · · α(kn)|k1, . . . ,kn〉. (ii) Next,

we apply the S matrix to the input state and find
the output state |out(n)

α 〉 = S(n)|nα〉 = (1/
√

n!)
∫

dk1 · · · dkn

α(k1) · · · α(kn)S(n)|k1, . . . ,kn〉 in the even-odd basis. (iii) We
transform back to the right-left basis. Then we project
the output state onto the n-photon (right- and left-
going) momentum basis |k1, . . . ,kn〉R, . . . ,|k1, . . . ,ki〉R ⊗
|ki+1, . . . ,kn〉L, . . . ,|k1, . . . ,kn〉L and take the absolute value
square to obtain the probabilities P (k1, . . . ,kn) of finding
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FIG. 3. (Color online) Single-photon transmission (P (1)
R ) and

reflection (P (1)
L ) probabilities as a function of coupling strength V . The

incident photon is on resonance with the two-level system (k0 = ε)
and we have considered the lossless case �′ = 0. 
 = 0.1.

the output state in |k1, . . . ,kn〉. (iv) Finally, we integrate
P (k1, . . . ,kn) over k1, . . . ,kn to obtain the total transmission
and reflection probabilities. Here, a right-going (left-going)
state is defined by a positive (negative) momentum; that is,
k1 > 0, . . . ,kn > 0 for |k1, . . . ,kn〉R and k1 < 0, . . . ,kn < 0
for |k1, . . . ,kn〉L.

For convenience, we choose Gaussian-type wave packets
with the spectral amplitude

α(k) = (2π
2)−1/4 exp

(
− (k − k0)2

4
2

)
. (19)

For all of the numerical examples in this paper, we choose k0 =
ε: the central frequency of the wave packet is on resonance with
the TLS, a condition which makes the interaction between the
photons and the TLS strongest. We take the central momentum
k0 � 
 so that the narrow-band condition is satisfied. In
particular, we choose 
 = 0.1. However, we emphasize that
all the conclusions we draw are independent of the choice of 
.
That is because all the transmission and reflection probabilities
are functions of �c/
 and �′/
, where �c = 2V 2. A different
choice of 
 does not change any of the qualitative results, but
merely rescales the spontaneous emission rates.

A. Single-photon Fock-state scattering

The probabilities of transmission (P (1)
R ) and reflection (P (1)

L )
for a single-photon Fock state are found as

P
(1)
R =

∫
k>0

dk
∣∣〈k∣∣out(1)

α

〉∣∣2 =
∫

k>0
dk α(k)2|tk|2, (20a)

P
(1)
L =

∫
k<0

dk
∣∣〈k∣∣out(1)

α

〉∣∣2 =
∫

k>0
dk α(k)2|rk|2, (20b)

where tk = (t̄k + 1)/2, rk = (t̄k − 1)/2, and t̄k is the transmis-
sion coefficient already defined for the even mode [Eq. (6a)].

Note that the propagation of a single photon is strongly
modulated by the TLS as we turn on the coupling, as shown
in Fig. 3. In the strong-coupling limit, a single photon is
perfectly reflected and the two-level atom acts as a mirror. This
perfect reflection is due to destructive interference between the
directly transmitted state and the state re-emitted from the TLS.

A single-photon transistor [4] and a quantum switch [6] have
been proposed based on this perfect reflection.

B. Two-photon Fock-state scattering

For two incident photons, following the general procedure
already outlined, we find that the transmission and reflection
probabilities are

P
(2)
RR =

∫
k1>0,k2>0

dk1dk2
1

2!

∣∣〈k1,k2

∣∣out(2)
α

〉∣∣2
, (21a)

P
(2)
RL =

∫
k1>0,k2<0

dk1dk2

∣∣〈k1,k2

∣∣out(2)
α

〉∣∣2
, (21b)

P
(2)
LL =

∫
k1<0,k2<0

dk1dk2
1

2!

∣∣〈k1,k2

∣∣out(2)
α

〉∣∣2
, (21c)

where P
(2)
RR , P

(2)
RL, and P

(2)
LL are, respectively, the probability

for two photons to be transmitted (right-going), one to be
transmitted and one reflected, and two photons to be reflected
(left-going).

To show the significance of the bound state in the prop-
agation of multiphoton Fock states, we separate each of the
probabilities P

(2)
RR , P

(2)
RL, and P

(2)
LL into two parts. One part is

the contribution from only the plane-wave term (labeled PW),
which is the direct transmission or reflection. The other is the
contribution from all the other terms (labeled BS), including
the bound-state term as well as the interference term between
the plane wave and the bound state. Note that the BS part
vanishes in the absence of the bound state, as in the case of
single-photon scattering. Therefore, it is a manifestation of the
nonlinear effect caused by the interaction between the TLS
and two or more photons. As an example, P

(2)
RR split into the

plane-wave and bound-state parts is

P
(2)
RR =

∫
k1>0,k2>0

dk1dk2|t(k1,k2) + B(k1,k2)|2 (22a)

= (
P

(2)
RR

)
PW + (

P
(2)
RR

)
BS, (22b)(

P
(2)
RR

)
PW =

∫
k1>0,k2>0

dk1dk2|t(k1,k2)|2, (22c)

(
P

(2)
RR

)
BS =

∫
k1>0,k2>0

dk1dk2[t∗(k1,k2)B(k1,k2)

+ t(k1,k2)B∗(k1,k2) + |B(k1,k2)|2], (22d)

t(k1,k2) = α(k1)α(k2)tk1 tk2, (22e)

B(k1,k2) =
[

−i/2π

k1 − ε + i�
2

+ −i/2π

k2 − ε + i�
2

]

×
∫

k
′
>0

dk
′
α(k

′
)α(k1 + k2 − k

′
)rk

′ rk1+k2−k
′ .

(22f)

Figure 4 shows the three transmission probabilities P
(2)
RR ,

P
(2)
RL, and P

(2)
LL for our standard parameters, with the contribu-

tions from the plane wave and bound state plotted separately in
Figs. 4(a)–4(c). Note that the presence of the bound state has a
very substantial effect on these transmission probabilities. As
shown in Figs. 4(a) and 4(b), P (2)

RR and P
(2)
RL are enhanced by the

formation of the bound state. This is mainly due to constructive
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FIG. 4. (Color online) Two-photon transmission and reflection
probabilities as a function of coupling strength V . (a) Probability
that both photons are transmitted (and hence are right-going; P

(2)
RR).

(b) Probability that one photon is transmitted and one reflected
(right-left; P

(2)
RL). (c) Probability that both photons are reflected (both

left-going; P
(2)
LL). (d) The three processes in a single plot. The label

PW refers to the contribution from the plane-wave term only, while
BS refers to all the other contributions involving bound-state terms.
Incident photons are on resonance with the TLS (k0 = ε), we consider
the lossless case �′ = 0, and 
 = 0.1. Note the large effect of the
bound state on these quantities.

interference between the plane wave and the bound state. In
contrast, Fig. 4(c) shows that P

(2)
LL is strongly reduced in the

presence of the bound state because of destructive interference
between the plane wave and the bound state (change from ∼0.8
to ∼0.4 at V = 0.5). Therefore, the presence of the bound state
tends to increase one-photon and two-photon transmission,
while decreasing two-photon reflection.

A particularly interesting aspect of the results in Fig. 4 is
that the effect of the bound state is most prominent in the
intermediate-coupling regime, not at the strongest coupling.
This is because, first, in the weak-coupling limit, the interaction
is too weak to produce a pronounced bound state for two-
photon scattering, and, second, in the strong-coupling limit, the
TLS responds to the first photon too quickly (over a duration of
order 1/� with � = 2V 2) for the second photon to produce a
significant nonlinear effect. (The formation of the bound state
requires the presence of both photons in the TLS.) The optimal

coupling strength Vm for producing nonlinear (bound-state)
effects lies at intermediate coupling, when the spontaneous
emission rate � is of the order of the wave-packet width 


(Vm ∼ 0.4 when 
 = 0.1).

C. Three-photon Fock-state scattering

Following the general procedure for obtaining scattering
probabilities, the transmission and reflection probabilities for
three-photon Fock-state scattering are defined as

P
(3)
RRR =

∫
k1>0,k2>0,k3>0

dk1dk2dk3
1

3!

∣∣〈k1,k2,k3

∣∣out(3)
α

〉∣∣2
,

P
(3)
RRL =

∫
k1>0,k2>0,k3<0

dk1dk2dk3
1

2!

∣∣〈k1,k2,k3

∣∣out(3)
α

〉∣∣2
,

(23)

P
(3)
RLL =

∫
k1>0,k2<0,k3<0

dk1dk2dk3
1

2!

∣∣〈k1,k2,k3

∣∣out(3)
α

〉∣∣2
,

P
(3)
LLL =

∫
k1<0,k2<0,k3<0

dk1dk2dk3
1

3!

∣∣〈k1,k2,k3

∣∣out(3)
α

〉∣∣2
,

where P
(3)
RRR , P

(3)
RRL, P

(3)
RLL, and P

(3)
LLL are the probabilities

of three photons being transmitted (all right-going), two
being transmitted and one reflected, one being transmitted
and two reflected, and all three being reflected (left-going),
respectively. As in the two-photon scattering case, we separate
each probability into two parts: the contribution from only the
plane-wave term and the contribution from all the other terms,
including the bound states as well as the interference between
the plane wave and the bound states. The probabilities and
the decomposition into plane-wave and bound-state parts are
plotted in Fig. 5 for our usual parameters.

Figure 5 shows that the bound-state contribution to the
transmission probabilities is, as for two photons, very substan-
tial. In Figs. 5(a) and 5(b), the bound-state parts of P

(3)
RRR and

P
(3)
RRL are positive; thus, these probabilities are enhanced by

the bound states. Figure 5(d) shows that P (3)
LLL is suppressed by

the bound-state contribution for an arbitrary coupling strength.
In contrast, as we increase the coupling strength, P

(3)
RLL is first

suppressed and then enhanced by the bound-state part as shown
in Fig. 5(c). Tuning the coupling strength changes the relative
phase between the plane-wave and the bound-state parts; for
P

(3)
RLL, the interference between them happens to change from

destructive to constructive as the coupling strength increases.
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FIG. 5. (Color online) Three-photon transmission and reflection probabilities as a function of coupling strength V. (a) Probability of all
three photons being transmitted (P (3)

RRR). (b) Probability of two photons being transmitted and one reflected (P (3)
RRL). (c) Probability of one

photon being transmitted and two photons reflected (P (3)
RLL). (d) Probability of all three photons being reflected (P (3)

LLL). (e) P 3 values
shown all together. The label PW refers to the contribution from only the plane-wave term, while BS refers to all the other contributions,
involving bound-state terms. Incident photons are on resonance with the TLS (k0 = ε), we consider the lossless case �′ = 0, and 
 = 0.1.
Note the large bound-state effects.
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Finally, as in the two-photon case, the most pronounced
bound-state effects occur in the intermediate-coupling regime
instead of the strong-coupling limit.

To sum up this section, we point out that all the curves
plotted in Figs. 3–5 are universal in terms of the choice of 
.
Because 
 appears in the scattering probabilities (P (1)

R , etc.)
only in the ratio �c/
 and �′/
, a different choice of 
 (i.e.,
other than the 0.1 used in Figs. 3–5) is equivalent to rescaling
V and does not change the shape of the curves. Therefore, the
substantial bound-state effects observed here are intrinsic for
multiphoton scattering processes in this system, independent
of the details of the wave packets.

IV. SCATTERING OF COHERENT-STATES

We now turn to studying the scattering of coherent states,
to show, first, the strong photon-photon correlation induced
by the the TLS and, second, the change in photon number
statistics. The incident coherent-state wave packet is defined
by [24]

|α〉 = ea
†
α−n̄/2|0〉, (24)

with a†
α = ∫

dkα(k)a†(k)|0〉, and mean photon number n̄ =∫
dk|α(k)|2. A Gaussian-type wave packet is chosen,

α(k) =
√

n̄

(2π
2)1/4
exp

[
− (k − k0)2

4
2

]
; (25)

for numerical evaluations, we use, as before, 
 = 0.1 and
k0 = ε � 
. The output state |outα〉 is then

|outα〉 =
∑

n

S(n)|α〉. (26)

We assume that the incident coherent state is right-going and
the TLS is in the ground state initially. We present the analysis
of second-order correlation and photon number statistics in the
transmitted field.

A. Correlation

The second-order correlation function of the transmitted
field is defined as [24]

g
(2)
R (x2−x1) = 〈outα|a†

R(x1)a†
R(x2)aR(x2)aR(x1)|outα〉

〈outα|a†
R(x1)aR(x1)|outα〉2

. (27)

We consider the mean photon number n̄ � 1.0. In this case,
the probability of finding n � 3 number states is much lower
than that of finding n = 2 number states. Moreover, the
contributions from n � 3 states to g(2) are at least 1 order
of 
 (=0.1) smaller than that from the n = 2 state. Therefore,
we neglect the contributions from n � 3 number states. The
second-order correlation function simplifies to

g
(2)
R (x2 − x1)

=
∣∣ ∫ dk1dk2α(k1)α(k2)

(
tk1 tk2 − rk1rk2e

− �(x2−x1)
2

)∣∣2∣∣ ∫ dk1dk2α(k1)α(k2)tk1 tk2

∣∣2 . (28)

The contributions from the directly transmitted state and
the bound state can be identified as the first term and second
term in the numerator of g

(2)
R (x2 − x1) in Eq. (28). In the

0 5 10
0.9

0.95

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

g R(2
) (x

2−
x 1)

0 5 10
0

0.5

1

0 5 10
0

1

2

Γ(x
2
−x

1
)

0 5 10
0

5

10

(a) V=0.16 (b) V=0.26

(c) V=0.34 (d) V=0.38

(e) V=0.40 (f) V=0.45

FIG. 6. (Color online) Second-order correlation of the transmitted
field, given an incident coherent state with n̄ � 1 at various coupling
strengths V , with the 1D continuum. (a) V = 0.16, (b) V = 0.26,
(c) V = 0.34, (d) V = 0.38, (e) V = 0.40, and (f) V = 0.45. The
spontaneous emission rate to channels other than the 1D continuum
is set to �′ = 0.10. Note that the correlation behavior is very sensitive
to the coupling strength to the 1D continuum, showing both bunching
and antibunching.

absence of the bound state, g
(2)
R (x2 − x1) is always equal to

unity. As we turn on the interaction, the interference between
the directly transmitted state and the bound state will give
rise to interesting correlation behavior. Figure 6 shows the
second-order correlation as a function of �(x2 − x1) at various
coupling strengths, V , with the 1D mode with �′ = 0.1. In
the weak-coupling limit (V = 0.16), as shown in Fig. 6(a),
the directly transmitted state dominates and g

(2)
R (0) is slightly

smaller than 1. We observe a slight initial antibunching. As V

increases [Figs. 6(b) and 6(c)], g
(2)
R (0) decreases further and

the initial antibunching gets stronger; it is strongest at V =
0.34 when g

(2)
R (0) = 0. Note that the antibunching is getting

weaker as one moves away from the origin for V � 0.34.
Further increase in V starts to change the initial antibunching
[V = 0.38, g

(2)
R (0) < 1] to bunching [V = 0.45, g

(2)
R (0) > 1]

as shown in Figs. 6(d)–6(f). In this case, the bound state starts
to dominate the correlation behavior. It is remarkable that,
for V > 0.34, the initial antibunching (V < 0.40) or bunching
(V > 0.40) is followed by a later antibunching g

(2)
R (0) = 0,

which is caused by the cancellation of the directly transmitted
state and the bound state. The formation of the bound state
gives rise to a rich phenomenon of photon-photon correlation,
which is very sensitive to the coupling strength V to the 1D
mode. Effective attractive or repulsive interaction between
photons is induced by the presence of a single TLS [18].

Our findings agree with the results obtained by Chang
et al. [4] using a very different approach. In the lossless �′ = 0
case, as we increase the coupling strength, the transmission
of individual photons is reduced rapidly [see, e.g., Figs. 3
and 4(a)]. But the two-photon bound state can strongly
enhance the transmission. Therefore, we will observe a strong
initial bunching followed by a later antibunching, similar
to Fig. 6(f).
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B. Photon number distribution

Given the output state |outα〉, we measure the photon
number distribution in the transmitted field following the
general procedure described in Sec. III.

P0 = |〈outα|(|0〉R ⊗ |I 〉L)|2,
P1 =

∫
k>0

dk|〈outα|(|k〉R ⊗ |I 〉L)|2,
(29)

P2 =
∫

k1,k2>0
dk1dk2

1

2!
|〈outα|(|k1,k2〉R ⊗ |I 〉L)|2,

P3 =
∫

k1,k2,k3>0
dk1dk2dk3

1

3!
|〈outα|(|k1,k2,k3〉R ⊗ |I 〉L)|2,

where |I 〉L is the complete basis set in the left-going photon
space. We consider a mean photon number n̄ � 1.0 in the
incident coherent state. In this case, the probability of finding
the four-photon state is negligible (�1.6%). We compare the
photon number distribution Pn of the output state with the
(Pn)Poisson of a coherent state having the same mean photon
number.

Figure 7 shows the ratio between (Pn)Poisson and Pn as a
function of the coupling strength V and the mean photon num-
ber n̄ of the incident coherent state. The 0-photon probability
does not deviate much from that of a coherent state in the entire
parameter region we considered. The one-photon probability
is lower than the corresponding probability in a coherent state.
In contrast, the two- and three-photon probabilities are much
higher than those in a coherent state, especially in the strong-
coupling regime. That is, the interaction between photons
and the TLS redistributes the probabilities among different
photon numbers. The one-photon probability is reduced and is
redistributed to the two- and three-photon probabilities. This
is mainly because the bound states enhance the transmission of
multiphoton states, as we have shown in Secs. III B and III C. In
conclusion, we obtain a non-Poissonian light source after the
scattering. It is perhaps possible to use this strongly correlated
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FIG. 7. (Color online) Photon number distribution of the trans-
mitted field compared with a coherent state. We considered the
lossless case �′ = 0. The statistics is non-Possonian, with the two-
and three-photon content enhanced.

light source to perform a passive decoy-state quantum key
distribution to raise the key generation rate [25–28].

V. CONCLUSION

In this paper, we have presented a general method for
constructing the exact scattering eigenstates for the problem
of n photons interacting with a TLS. Many-body bound states
appear in the presence of the coupling between photons and the
TLS. Furthermore, the scattering matrices are extracted using
the Lippmann-Schwinger formalism. We emphasize that the
completeness of the S matrices is guaranteed by imposing
open boundary conditions and requiring the incident field
to be free plane waves. Based on the S matrices, we study
the scattering of the Fock states and coherent states. Bound
states are shown to enhance the transmission of multiphoton
states and suppress the transmission of single-photon states.
In the transmitted field of coherent-state scattering, photons
exhibit strong bunching or antibunching effects depending
on the coupling strength. This is a manifestation of the
many-body bound states. Finally, we determine the photon
number distribution and find that the one-photon state is
transferred to two- and three-photon states. This results in
a non-Poissonian light source which might have applications
in quantum information.
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APPENDIX: TWO-PHOTON SCATTERING EIGENSTATE

In this appendix, we show in detail how we obtain the
two-photon scattering eigenstate [Eq. (7)] by imposing the
open boundary condition, Eq. (5). The equations of motion for
the two-photon case read[

1

i
(∂1 + ∂2) − E2

]
g2(x1,x2)

+ V̄

2
[δ(x1)e2(x2) + δ(x2)e2(x1)] = 0, (A1a)(

1

i

d

dx
− E2 + ε − i�′/2

)
e2(x) + 2V̄ g2(0,x) = 0, (A1b)

which can be cast into the following set of equations:[
1

i
(∂1 + ∂2) − E2

]
g2(x1,x2) = 0, (A2a)

e2(x) = 2i

V̄
[g2(0+,x) − g2(0−,x)], (A2b)(

1

i

d

dx
− E2 + ε − i�′/2

)
e2(x)

+ V̄ [g2(0+,x) + g2(0−,x)] = 0, (A2c)

e2(0+) = e2(0−). (A2d)
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Here, g2(x1,x2) is discontinuous at x1 = 0,x2 = 0 and we set
g2(x,0) = [g2(x,0+) + g2(x,0−)]/2. We eliminate e2(x) from
the preceding equations and obtain[

1

i
(∂1 + ∂2) − E2

]
g2(x1,x2) = 0, (A3a)(

1

i

d

dx
− E2 + ε − i�′/2 − i�c/2

)
g2(0+,x)

=
(

1

i

d

dx
− E2 + ε − i�′/2 + i�c/2

)
g2(0−,x), (A3b)

g2(0+,0+) − g2(0−,0+) = g2(0−,0+) − g2(0−,0−). (A3c)

Because of the bosonic symmetry, we can solve for g2(x1,x2)
by first considering the half-space x1 � x2 and then extending
the result to the full space. In this case, there are three quadrants
in real space: �1 x1 � x2 < 0, �2 x1 < 0 < x2, and �3 0 < x1 �
x2. Equation (A3b) can be rewritten as two separate equations:(

1

i

d

dx
− E2+ε − i�′/2 − i�c/2

)
g�2

2 (x,0+)

=
(

1

i

d

dx
−E2+ε − i�′/2+i�c/2

)
g�1

2 (x,0−) for x < 0,

(A4a)(
1

i

d

dx
− E2 + ε − i�′/2 − i�c/2

)
g�3

2 (0+,x)

=
(

1

i

d

dx
− E2+ε − i�′/2+i�c/2

)
g�2

2 (0−,x) for x > 0.

(A4b)

Substituting g�1

2 (x1,0−) [Eq. (5)] into Eq. (A4a), we solve to
find

g�2

2 (x,0+) = 1

2!

[
t̄k2

eik1x

2π
+ t̄k1

eik2x

2π

]
+ Ae[−�/2+i(k1+k2−ε)]x,

(A5)

where A is a constant to be determined. Applying the constraint
Eq. (A3a) to g�2

2 (x,0+), we obtain

g�2

2 (x1,x2) = 1

2!

[
t̄k2

ei(k1x1+k2x2)

2π
+ t̄k1

ei(k2x1+k1x2)

2π

]

+Ae(�/2+iε)(x2−x1)ei(k1+k2)x1 . (A6)

From Eq. (A6), we can identify A to be 0: otherwise, the

solution is not normalizable [e�(x2−x1)/2 is divergent when
x2 − x1 → ∞]. Hence, g2(x1,x2) in region �2 is given by

g�2

2 (x1,x2) = 1

2!

[
t̄k2

ei(k1x1+k2x2)

2π
+ t̄k1

ei(k2x1+k1x2)

2π

]
. (A7)

Substituting Eq. (A7) into Eq. (A4b) yields

g�3

2 (0+,x) = 1

2!
t̄k1 t̄k2

[
eik2x

2π
+ eik1x

2π

]
+ Be[−�/2+i(k1+k2−ε)]x,

(A8)

where B is a constant to be determined. Again, applying the
constraint Eq. (A3a) to g�3

2 (0+,x), we obtain

g�3

2 (x1,x2) = 1

2!
t̄k1 t̄k2

[
ei(k1x1+k2x2)

2π
+ ei(k1x2+k2x1)

2π

]

+Be(−�/2−iε)(x2−x1)ei(k1+k2)x2 . (A9)

Finally, B is found by substituting Eqs. (5), (A7), and (A9)
into the continuity condition, Eq. (A3c), yielding

B = − (t̄k1 − 1)(t̄k2 − 1)

2π
. (A10)

Extending these solutions from the half-space to the full space
using the bosonic symmetry gives rise to the two-photon
scattering eigenstate given in Eq. (7) in the text.
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