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Arrayed and checkerboard optical waveguides controlled by the electromagnetically
induced transparency

Yongyao Li,1,2,* Boris A. Malomed,3 Mingneng Feng,1 and Jianying Zhou1,†
1State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China

2Department of Applied Physics, South China Agricultural University, Guangzhou 510642, China
3Department of Interdisciplinary Studies, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel

(Received 5 October 2010; published 10 December 2010)

We introduce two models of quasidiscrete optical systems: an array of waveguides doped by four-level N -type
atoms, and a nonlinear checkerboard pattern, formed by doping with three-level atoms of the �-type. The dopant
atoms are driven by external fields, to induce the effect of the electromagnetically induced transparency (EIT).
These active systems offer advantages and additional degrees of freedom, in comparison with ordinary passive
waveguiding systems. In the array of active waveguides, the driving field may adjust linear and nonlinear
propagation regimes for a probe signal. The nonlinear checkerboard system supports the transmission of stable
spatial solitons and their “fuzzy” counterparts, straight or oblique.
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I. INTRODUCTION

The transmission of light in discrete arrays of evanescently
coupled waveguides is a topic of great interest in optics. The
arrays are prime examples of systems in which the discrete
optical dynamics can be observed and investigated [1]. Optical
fields propagating in such settings exhibit a great number of
novel phenomena [1–3]. However, traditional coupled arrays
or lattices, such as arrays of waveguides made of AlGaAs [4]
or periodically poled lithium niobate (PPLN) [5], virtual
lattices created in photorefractive crystals (PhCs) [6], and
liquid crystals [7] by means of optical induction, etc., are built
of passive ingredients.

On the other hand, it is well known that active elements,
such as atoms with a near-resonant transition frequency,
may lend the medium a number of specific optical char-
acteristics, such as strong dispersion, a complex dielectric
constant, and the strong variation of the dispersion relation
near the resonance. Therefore, waveguide arrays made of
active elements may offer low thresholds, in comparison
with their passive counterparts, and possibilities for the
“management” of their waveguiding characteristics. In the
one-dimensional (1D) case, active discrete systems were
previously studied in detail in the form of resonantly
absorbing Bragg reflectors (RABRs) [8], which are used to
demonstrate optical switching [9], storage [10], and nonlinear
conversion [11].

Recently, a two-dimensional (2D) “imaginary-part pho-
tonic crystal” (IPPhC, i.e., a medium with a periodic variation
of the imaginary part of the refractive index) was realized by
means of the techniques of multi-beam-interference hologra-
phy, lithography, and back-filling [12], which allow one to
create a spatially structured distribution of the active material.
For example, the active substance rhodamine B can be doped
into the homogeneous SU8 background to form an IPPhC. In
this structure, the real part of the refractive index is constant if
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the probe wavelength is far detuned from the resonance. How-
ever, the imaginary part of refractive index affects the real part,
which becomes a conspicuous effect close to the resonance.
Thus, in the vicinity the absorption window, the IPPhC also
acts as a traditional PhC. Very recently, a laser system in a
medium featuring a periodic distribution of loss, which is akin
to IPPhC, was demonstrated in an experiment [13].

In this work we propose two varieties of active light-guiding
systems. In Sec. II, we show that the introduction of an active
material into the PhC provides a way to create active structures
in the form of coupled waveguide arrays. The difference of
this system from the RABR is that it guides light not across
the periodic structure, but rather along it. In Sec. III, we
introduce a checkerboard system, which is built of alternating
linear and the nonlinear square cells in the x-z plane. These
systems may be controlled (“managed”) via the effect of the
electromagnetically induced transparency (EIT).

II. WAVEGUIDING ARRAYS CONTROLLED BY THE
ELECTROMAGNETICALLY INDUCED

TRANSPARENCY

In this section we consider the possibility of using N -type
near-resonant four-level atoms as the active dopant. The
scheme of the energy levels is shown in Fig. 1(a), where |1〉 and
|2〉 are the ground and metastable states, respectively. These
two states have the same parity as their wave functions, which
is opposite to that of states |3〉 and |4〉.

As a part of the scheme, we assume that a weak probe
wave EP with Rabi frequency �P = ℘31EP /h̄ is acting on
transition |1〉 → |3〉, with single-photon detuning �1. Here
℘31 (which is assumed real) is the matrix element of the dipole
transition between |1〉 and |3〉. Further, a traveling-wave field
with Rabi frequency �C drives the atomic transition |2〉 → |3〉
with detuning �C = �1, hence the two-photon detuning is
given by δ = �1 − �C ≡ 0. As another ingredient of the EIT
scheme, an optical-induction field with Rabi frequency �S

induces transition |2〉 → |4〉, with detuning �2. The decay
rate for level |n〉 is γn. Here we neglect γ1 and γ2, and assume
γ3 ≈ γ4 ≡ γ .
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FIG. 1. (Color online) (a) The energy-level diagram of the N -type atom. (b1) The structure of the active waveguide array: the transverse
width of the waveguide is d1, the interval between the waveguides is d2, and the density of the active atoms in the waveguide is N0.
(b2) The respective effective periodic potential with V0 = −N0℘

2
31|�S |2/2ε0h̄�2|�C |2. (c) The energy-level diagram of the �-type atom.

(d) The checkerboard system: black and white square cells depict areas which are, respectively, doped with the active material, or are left
undoped.

The Hamiltonian of the system is

H =
4∑

l=1

h̄ωl|l〉〈l| − 1

2
[�P e−iωP t |3〉〈1|

+�Ce−iωC t |3〉〈2| + �Se
−iωS t |4〉〈2| + H.c.], (1)

where ωl is the eigenfrequency of the lth level. The EIT
effect means that, when the probe is exactly at the two-photon
resonance (δ = 0), and the atoms are prepared in the ground
state, the linear absorption of the probe vanishes, irrespective
of the single-photon detuning [14].

The quasidiscrete system, which is introduced in this
section, is illustrated by panel (b1) in Fig. 1, which shows
the distribution of the concentration of the active component
in the 1D case. The transverse width of the waveguide is d1, the
interval between the waveguides is d2, and N0 is the density
of the N -type atoms inside the waveguides. Coefficients are
chosen as per experiment in the case of Y2SiO5 doped with
Pr3+ (Pr:YSO) [15]: the density of active atoms inside the
waveguides is N0 = 1.0 × 1018 cm3 (which corresponds to
the dopant concentration ≈0.1%), ℘31 = 1.18 × 10−32 C m,
and γ = 30 kHz, the probe wavelength being 605 nm. Linear
and nonlinear properties of this system are detailed below.

A. Linear properties of the system

If we set �1 = 0 and assume �2 � �C,γ , then the
absorption of the probe can be neglected. One can easily
find the one-step steady-state solution for the density-matrix
element of the transition between |1〉 and |3〉; cf. Ref. [16]:

ρ31 = |�S |2
2�2|�C |2 �P . (2)

Therefore, the contribution of the resonant atoms to the
polarization experienced by the probe is P = 2N℘31ρ31,
cf. Ref. [17] (recall N is the dopant density). The (1+1)D
paraxial propagation equation for the slowly varying envelope
of the probe field EP is

2ikP

∂

∂z
EP = − ∂2

∂x2
EP − k2

P

ε0
P, (3)

where kP = 2πn/λP is the wave number of the probe, and n

the background refractive index. The substitution of Eq. (2)

into the last term of Eq. (3) yields a scaled linear Schrödinger
equation,

i
∂

∂ζ
U = −1

2

∂2

∂η2
U + V (η)U, (4)

where ζ = kpz, η = kpx, U = �P /γ , and the effective
potential,

V (η) = − ℘2
31

2ε0h̄�2

|�S |2
|�C |2 N (η), (5)

is induced by the concentration distribution N (η), as shown in
panel (b1) of Fig. 1. This potential is induced by the giant Kerr
effect controlled by the Rabi frequency �S [18]. In fact, this
potential emulates a difference in the local refractive index
contrast between the active (doped) and passive (undoped)
regions. For �2 > 0 (here, we choose �2 = 100γ ), the shape
of the potential is shown in panel (b2) of Fig. 1, which is
similar to the Kronig-Penney potentials corresponding to the
tight-binding model in solid-state physics [19]. The depth
of local wells in the periodic potential is defined by the
intensity ratio |�S |2/|�C |2, the corresponding refractive-index
contrast between the active and passive regions being �n =
℘2

31N0|�S |2/2ε0h̄�2|�C |2.
Figure 2 displays the propagation of the probe in such

a system at different values of |�S |2/|�C |2 (i.e., differ-
ent values of �n), produced by numerical simulations of
Eq. (4). This figure demonstrates that the quasi-discrete
diffraction naturally gets suppressed when the depth of
the potential, i.e., |�S |2/|�C |2 or �n, increases, resulting
in reduced coupling between local waveguides. Thus, the
diffraction in the present setting may be efficiently controlled
by varying the magnitude of |�S |2/|�C |2.

B. Nonlinear properties of the system

If both detunings satisfy the conditions �1,�2 � �C,γ ,
then the absorption of the probe (the losses) may be
neglected. Moreover, �1 �= 0 produces an enhanced Kerr
nonlinearity [20], provided that the density matrix element
ρ31, which accounts for transitions between |1〉 and |3〉, is
taken into account, to describe the third-order effect. The
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FIG. 2. (Color online) Simulations of the linear transmission of light in the arrays of active waveguides. Here, we choose d1 = d2 = 8,
�C = 2γ , and �2 = 100γ . The incident beam (at ζ = 0) is U = A0 exp(−η2/d2

1 ) with A0 = 0.07. (a) |�S |2 = 0.036|�C |2 (i.e., �n = 0.09).
(b) |�S |2 = 0.064|�C |2 (i.e., �n = 0.16). (c) |�S |2 = 0.100|�C |2 (i.e., �n = 0.25). (d) |�S |2 = 0.144|�C |2 (i.e., �n = 0.36).

steady-state solution for this matrix element can be obtained
in the following from Ref. [21]:

ρ31 = ρ
(1)
31 + ρ

(2)
31 + ρ

(3)
31 ≈ |�S |2

2�2|�C |2 �P − |�P |2
2�1|�C |2 �P .

(6)

With regard to this result and the above definition, U = �P /γ ,
Eq. (3) changes its form into that of the standard nonlinear
Schrödinger (NLS) equation [22]:

i
∂

∂ζ
U = −1

2

∂2

∂η2
U + V (η)U + κ(η)|U |2U, (7)

where the effective nonlinear coefficient is

κ(η) = ℘2
31

2ε0h̄�1(|�C |2/γ 2)
N (η). (8)

Thus, EP is affected by modifications of the refractive index
of two types: (1) a periodic change of the linear index induced
by �S via the giant Kerr effect; (2) the nonlinear change
under the action of EP itself, via the enhanced self-Kerr effect.
The sign of detuning �1 determines whether the latter effect
gives rise to the self-focusing (�1 < 0) or self-defocusing
(�1 > 0) sign of the nonlinearity. When the tunneling coupling
between adjacent waveguides is balanced by the nonlinearity,
quasidiscrete solitons [23] can be formed in this system, which
is similar to those in the traditional coupled arrays made of
passive materials [24].

III. SOLITONS IN THE CHECKERBOARD SYSTEM
CONTROLLED BY THE ELECTROMAGNETICALLY

INDUCED TRANSPARENCY

In this section, we assume that the active material is
doped periodically in both the transverse and propagation
directions (i.e., along the x and z axes, respectively). The
corresponding density distribution of the active material is
N (x,z) = N0R(x,z), where R(x,z) is a dimensionless struc-
tural function of the distribution. Here, we adopt for R(x,z)
the checkerboard form depicted in Fig. 1(d). The white cells,
with R(x,z) = 0, are areas that are not subject to the doping,
while black cells, with R(x,z) = 1, depict areas doped by the
active material.

Note that the formation of 2D spatial solitons in the
checkerboard-shaped linear potential was considered in
Ref. [25], assuming that the probe beam was shone along
the uniform direction in the bulk medium equipped with the
transverse checkerboard structure. Here, the difference is that
the modulation is applied to the nonlinear term, and light
propagated across the structure.

If we turn off the control field �S , the four-level N -type
atomic configuration reduces to the three-level one of the
�-type; see Fig. 1(c). In this case, the linear-refractive-index
contrast between the active and the passive areas vanishes,
which leaves only the nonlinearity modulation in action.

Again assuming that the detuning is much larger than the
decay rate, �1 � γ , the absorption of the probe may be
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(a) (b)

(d)(c)

FIG. 3. (Color online) Simulations of the evolution of the Gaussian input probe with width W = 8 in the checkerboard model. (a) With
amplitude A = 0.075, the probe propagates in a stable fashion over the distance of L = 200W 2 = 128 00. This beam may be called a stable
soliton. (b) With A = 0.065, the probe propagates, keeping a fuzzy shape, still featuring robustness against the diffractive spreading out.
(c) With A = 0.055, the probe quickly spreads out. (d) In the plane of the width and amplitude where the input Gaussian A1

C(W ) is the border
between the stable and fuzzy beams, while A2

C(W ) is the border between the fuzzy but robust beams and decaying inputs.

ignored as before. Accordingly, in the present setting Eq. (6)
is rewritten as

ρ31 = ρ
(1)
31 + ρ

(2)
31 + ρ

(3)
31 ≈ − |�P |2

2�1|�C |2 �P , (9)

and Eq. (3) changes into

i
∂

∂ζ
U = −1

2

∂2

∂η2
U + κ(η,ζ )|U |2U, (10)

where we define

κ(η,ζ ) = ℘2
31N0

2ε0h̄�1(|�C |2/γ 2)
R(η,ζ ) ≡ κ0R(η,ζ ). (11)

Therefore, the white and black cells, with κ(η,ζ ) = 0 and
κ(η,ζ ) = κ0, act as linear and nonlinear elements, respectively.

The periodic modulation of the nonlinearity in Eq. (10)
places this equation in the broad class of models with nonlinear
lattices (see original works [26] and review [27]). However,
the present checkerboard pattern of the modulation in the
longitudinal and transverse directions was not studied in
previous works. More general patterns, which should be
studied separately, may be represented by arrays of isolated
black squares set against a white background, or vice versa.

Below, we choose values �1 = −100γ , �C = 0.5γ ,
with the other parameters taken as before. This yields the

nonlinearity-modulation amplitude κ0 = −10. The probe field
is launched at ζ = 0 as a Gaussian

U (η,0) = A exp[−(η − α)2/W 2], (12)

with the central point at η = α. For the simulations, we take
the checkerboard with squares of size 8 × 8, as shown in
Fig. 1(d).

The simulations of the evolution of the Gaussian in the
framework of Eq. (10) were carried out by means of the
split-step Fourier method. First, we chose the amplitude and
width of Gaussian (12) as A = 0.075, 0.065, 0.055, and
W = 8, with the center placed at the midpoint of the nonlinear
cell (α = 4). Results of the simulations are displayed in
Figs. 3(a)–3(c). In particular, Fig. 3(a) shows that the probe
field with A = 0.075 propagates without decay and distortion
over the distance longer than z = 100W 2, i.e., ∼100 diffraction
lengths. This dynamical regime may be naturally identified as a
stable soliton. On the other hand, in Fig. 3(b), with the Gaussian
amplitude A = 0.065, the probe field forms a fuzzy beam,
which, nevertheless, avoids decay over the distance exceeding
z = 100W 2.

However, for A = 0.055, Fig. 3(c) demonstrates that the
input cannot form a robust beam and rapidly decays. Therefore,
there must be internal borders (i.e., thresholds) separating the
stable solitons, fuzzy beams, and decaying ones, in the plane of
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FIG. 4. (Color online) (a) The probe with parameters A = 0.075, W = 8, and α = −4 launched at the midpoint of the linear cell. The
probe propagates in a stable fashion over distance L = 200W 2 = 128 00; therefore it is categorized as a stable soliton. (b) The probe with
A = 0.075, W = 8, α = 0 propagates obliquely if it is launched off the midpoint of a linear or nonlinear cell.

the width and amplitude of the Gaussian inputs. These borders
are plotted in Fig. 3(d).

Further simulations, displayed in Fig. 4(a), show that stable
straight solitons can be formed as well if the Gaussian is
launched at the midpoint of the linear cell. However, if the
center of the Gaussian does not coincide with the center of the
linear or nonlinear cell, the propagation of the soliton beam
becomes oblique; see an example in Fig. 4(b).

It may be interesting to consider the oblique propagation of
beams across the checkerboard, induced by the application of
a lateral kick to the input. Another issue of obvious interest is
the interaction of beams in this setting. These generalizations
will be reported elsewhere.

IV. CONCLUSION

In this work, we have proposed a method for building
systems of coupled active waveguides, and also a system with
the checkerboard pattern of the modulation of the nonlinearity
coefficient. These settings can be created using the appropriate
doping patterns of the N -type four-level and �-type three-level
resonant atoms, respectively, and driving them by means of the
EIT mechanism. Such active systems offer certain advantages,
admitting more possibilities for design and management, in
comparison to the passive media. Firstly, the nonlinearity in
the active systems can be switched via the sign of detuning �1:
the incident beam with �1 < 0 and �1 > 0 will experience the
action of the self-focusing and self-defocusing nonlinearities,

respectively. Next, it is well known that the EIT may be effi-
ciently applied to few-photon settings, especially in the non-
linear regimen [14,28]. Therefore, the systems introduced here
may, in principle, offer an advantage for handling quantum and
nonclassical light beams, composed of few photons. Further,
it is well known that the group velocity of the probe can be co-
herently controlled [29] and tuned to a very small value under
the action of the EIT [30], which implies that the probe signal
in this system can be trapped in the form of the slow light.
Thus, various applications of the EIT, such as dark-state polari-
tons [31], few-photon four-wave mixing [32], ultraweak and
ultraslow light [33], etc., may be realized in the systems pro-
posed here. Furthermore, using properly designed holographic
patterns, various complex spatial structures of the distribution
of the dopant concentration can be photoinduced in the 2D
geometry, such as quasicrystals [34], honeycomb lattices [35],
defect lattices [36], ring lattices [37], etc., in addition to the
simpler checkerboard patterns analyzed herein. Such 2D struc-
tures may have their own spectrum of potential applications.
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