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QED with a spherical mirror
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We investigate the quantum electrodynamic (QED) properties of an atomic electron close to the focus of a
spherical mirror. We first show that the spontaneous emission and excited-state level shift of the atom can be
fully suppressed with mirror-atom distances of many wavelengths. A three-dimensional theory predicts that the
spectral density of vacuum fluctuations can indeed vanish within a volume λ3 around the atom, with the use
of a far-distant mirror covering only half of the atomic emission solid angle. The modification of these QED
atomic properties is also computed as a function of the mirror size, and large effects are found for only moderate
numerical apertures. We also evaluate the long-distance ground-state energy shift (Casimir-Polder shift) and find
that it scales as (λ/R)2 at the focus of a hemispherical mirror of radius R, as opposed to the well-known (λ/R)4

scaling law for an atom at a distance R from an infinite plane mirror. Our results are relevant for investigations
of QED effects as well as free-space coupling to single atoms using high-numerical-aperture lenses.
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I. INTRODUCTION

Spontaneous emission and level shifts of atoms can be
notably altered by placing them between mirrors. By mod-
ifying the electromagnetic mode structure interacting with
the atomic electron [1], one obtains a significant change in
these quantum electrodynamic (QED) atomic properties. Most
experimental studies make use of high-finesse cavities [2–7] to
see the effects. Another way to change the properties of single
emitters is to place other identical atoms nearby, as originally
propounded by Dicke [8]. To observe large QED effects in
this case, the dipole emission patterns have to overlap, which
requires the atoms to be very close to each other. Such effects
were analyzed using two trapped ions [9], but the Coulomb
interaction between the ions restricted their distance to a few
micrometers. The interaction between two neutral atoms is
not overwhelmed, however, by the Coulomb force. Using the
large dipole moments of nearby Rydberg atoms localized in a
dipole trap, entanglement between neutral atoms was recently
demonstrated [10,11].

In general, an atom close to a single mirror already provides
a very efficient way to investigate QED effects. The resonance
fluorescence of a Doppler-cooled barium ion is reflected back
onto itself in Ref. [12], using a large-numerical-aperture (NA)
lens and a mirror that was 30 cm away from the ion. In this
experiment, the description of the interaction between the
atom and the modified electromagnetic field, or the mirror
image, is very similar to the direct dipole-dipole coupling
between two real atoms. Here, because of the high numerical
aperture of the collection lens, the mode structure was altered
significantly even if the mirror was many wavelengths away
from the ion. A 1% change in the decay rate was measured
and found to be mostly limited by the collection solid angle
and residual atomic motion. Such a system also leads to a
vacuum-induced level shift in a laser-excited atom. This has
been measured in Ref. [13] and found to be in good agreement
with theoretical work [14].

A closely related field of research investigates the ab-
sorption of photons from single atoms in free space. Theory

predicts that the best possible absorption between an incoming
field and a single atom arises when the incoming field
matches the spatial atomic radiation mode [15,16]. Recent
experiments have demonstrated substantial extinctions from
single molecules [17–19], atoms [20,21], and quantum dots
[22] in free space, thus showing the potential of free-space
coupling with high-NA optics for fundamental investigation
of light-matter interactions.

The aforementioned studies make use of the interaction of
a real photon with single atoms. The number of experiments
investigating Casimir forces between dielectric materials,
which are the result of the modification of the mode density
of virtual photons, has also rapidly increased. Such studies
are now being undertaken with an unprecedented level of
precision (see, for example, Ref. [23] and references therein).
The comparison with the theory in this field is now reaching
good agreement for some geometries and over a wide range
of materials. The possibility of using these measurements to
gain a better control over nano-mechanical systems and for
precise tests of QED has been a major force driving this
research. Although many geometries have been investigated
theoretically over the past few decades [24], there are still
many ongoing investigations into the sign of the force [25], or
the accuracy of the proximity force approximations [26], for
estimating Casimir shifts of various materials.

For atoms close to dielectrics, the modification of the
ground-state level shift (Lamb shift) yields the well-known
Casimir-Polder force [27], which is observed in Ref. [7] for
a plane mirror geometry. The Casimir-Polder force was not
reported or calculated for single well-localized atoms around
complex opened three-dimensional (3D) geometries. It is
expected that such investigations would also provide efficient
ways to test the behavior of vacuum fluctuations.

Here we demonstrate that a spherical mirror covering half
of an atomic dipole emission profile can fully suppress its
spontaneous emission and excited-state level shifts provided
that the mirror is close enough to allow temporal interference
of the field amplitudes (Markov limit). We also calculate the
shift of the ground state, the Lamb shift, as a function of mirror
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distance and find a scaling law that is more favorable than the
plane mirror geometry for observing large shifts. Because of
the development in the control of atomic motion [28] and
mirror and lens fabrication [29], these effects are now within
experimental reach.

The modification of spontaneous emission and level shifts
is first calculated using a one-dimensional model where the
electron radiates along the mirror axis. We find full suppression
of the vacuum fluctuations coupling to the atomic electron,
even with a single mirror. The physical origin of this complete
cancellation lies in the high spatial and temporal interference
between the plane-wave modes going to the mirror and the
modes going to free space so that the density of vacuum
fluctuations can reach zero around this idealized atom. Similar
calculations were performed by several authors to model
more realistic scenarios (see, for example, Refs. [14,30] and
references therein) with the inclusion of free-space vacuum
modes that do not interfere with the mirror modes; therefore
full extinction of spontaneous emission was not explicitly
considered. We furthermore extend the one-dimensional (1D)
calculations to a 3D theory that goes beyond the paraxial
approximation and demonstrate that the effective coupling
to vacuum modes around an atomic electron can also reach
zero within a volume λ3 around the focus of a spherical
mirror. We show that, in the spherical basis, the effect can
be understood as the result of an ideal interference between
all the even modes. Last, the long-distance ground-state
energy shift (Casimir-Polder shift) is evaluated using the
complete set of normal modes of the spherical mirror. We
find that the Casimir-Polder shift scales as (λ/R)2 for a
half mirror of radius R and atomic transition wavelength
λ, as opposed to the well-known (λ/R)4 scaling law for
a plane mirror, where R is the mirror distance from the
atom.

A wealth of studies exists on this topic. We would like to
point out that, to the best of our knowledge, theoretical efforts
have concentrated on plane geometries [30–33], cavities in
the paraxial approximation [1,3], dielectric spheres [34–38],
or parabolic mirrors [39]. Closely related work was done,
however, for a large spherical open cavity by Daul and
Grangier [40]. Strong enhancement and inhibition of vacuum
fluctuations were found with moderate cavity finesses, and
a full set of normal modes was derived for the symmetric
geometry. The case of a single mirror was found by setting the
second mirror reflectivity to zero in a more general formula
for the density of vacuum fluctuations in an asymmetric
cavity. In Sec. IV, we present a different route toward
finding the normal mode amplitudes in the single-mirror
geometry, which we use further for the Casimir-Polder shift
calculation.

We would like to stress that all the calculations are
performed in the limit where the mirror is many wave-
lengths away from the atom (k0R � 1). This simplifies the
theoretical treatments and experimental approach greatly,
yet allows strong QED effects to be observed. Let us
also mention here that, since we use a single mirror, the
QED effects for an exited atom are easier to understand
here as a modulation of the electron coupling to cer-
tain modes rather than as a change in the mode density
[3].

II. ATOMIC DECAY AND LEVEL SHIFTS

It is well known that coupling an initially excited atom
to a reservoir of electromagnetic field modes in the vacuum
state yields a spontaneous decay to the ground state and
shifts its excited-state energy. Also, when the atom is in
the ground state, its energy is shifted because of absorption
and reemission of virtual photons, the so-called Lamb shift.
When the electromagnetic field modes are modified by
nearby dielectric boundaries, these QED properties therefore
are changed. Another picture, using radiation self-reaction
only, can also be employed to describe the modification of
QED properties [30]. To find the relative contribution of
both vacuum and self-reaction mechanisms, the dynamics
of the corresponding quantities in the differential equation one
wishes to interpret has to be Hermitian [41,42]. When this is
done, both effects are found to contribute to the same degree.

The free part of the light-atom Hamiltonian is the sum of
the atomic and optical rest energies,

Ĥ0 = 1

2
h̄ω0σ̂z +

∑
µ

h̄ωµ

(
â†

µâµ + 1

2

)
, (1)

where σ̂z = σ̂11 − σ̂22 is the population difference between the
upper and lower atomic states, and âµ is the creation operator
for a photon in a mode µ of the reservoir. Here ω0 is the atomic
transition frequency, and ωµ is the frequency of the optical
mode µ. The frequency of the optical modes is quantized
using the boundary condition on a large cavity. In spherical
coordinates we use a large quantization sphere of radius �, as
depicted in Fig. 1.

The interaction Hamiltonian in the Coulomb gauge and in
the electric dipole approximation is

Ĥint = − e

mc
Â(�r,t) · p̂ + e2

2mc2
Â2(�r,t), (2)

FIG. 1. Schematics of the mirror and notation used to calculate
the QED properties for an atomic dipole �d in region I. The mirror has
an aperture α and a radius of curvature R.
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wherep̂ is the momentum of the atomic electron, �r its position
(i.e., the position of the atomic nucleus in the electric dipole
approximation), and m its mass. Here p̂ will be written in terms
of the electric dipole matrix element �d of the two-level atom
as mω0 �d/e × σ̂y , where σ̂y := i(σ̂12 − σ̂21), and Â is the poten-
tial vector. We decompose it over a complete mode basis �eµ as

Â(�r,t) =
∑

µ

√
2πh̄c2

ωµ

�eµ(�r)âµ(t) + H.c., (3)

where the sum is to be taken over all normalized eigenfunctions
�eµ of the Helmholtz equation.

In the Markov regime, which is when the reservoir and
atom are correlated only within a short time, one can define
the spontaneous emission rate and level shifts and, after solving
the Heisenberg equation, get

∂

∂t
〈σ̂ (t)〉 = −{γ (�r)/2 + i[	e(�r) − 	g(�r)]}〈σ̂ (t)〉,

where 〈·〉 denotes the expectation value over a separable atom-
vacuum product state. We write

γ (�r) = 2
∑

µ

|gµ(�r)|2δ(ωµ − ω0), (4)

	g,e(�r) =
∑

µ

|gµ(�r)|2P

(
1

ωµ ± ω0

)
, (5)

where ± holds for the ground- (excited-) state shifts, respec-
tively P denotes the principal part, and

gµ(�r) = ω0

√
2π

h̄ωµ

[ �d · �eµ(�r)] (6)

is the vacuum Rabi frequency of the mode µ. The sum over
the µ eigenmodes runs up to the Bethe momentum cutoff,
K = mc/h̄ [30].

The excited-state level shift 	e is due to the emission
of real photons, whereas the ground-state level shift arises
from absorption and emission of virtual photons from the
vacuum reservoir [30]. To obtain the correct Lamb shift in
the nonrelativistic theory, however, we have to add the term
proportional to Â2 in the interaction Hamiltonian, which was
actually discarded when obtaining Eq. (5). We return to this in
Sec. V B, where we calculate the Lamb shift in the 3D case.

We would like to emphasize that as we consider the atom
only to be far from the mirror (k0R � 1, where k0 = ω0/c),
the modification of the vacuum mode density affects the atom
only if it is in the ground state [43]. The change in the excited-
state properties here are due to a pure self-interference of the
electromagnetic modes to which the excited atom can couple
[30,43]. We will then neglect the dependence of the coupling
strength on ωk for the excited level shift, which comes down
to ignoring energy level shifts (van der Waals shifts) that are
significant only if the mirror is very close to the atom. For a
two-level atom, these shifts are identical for the excited and
ground states [43], so the total “near-field” energy shift would
remain unaffected by the presence of the mirror anyway.

Before moving to the three-dimensional results, and to gain
physical insight into the process of emission and energy shifts
in the presence of a mirror, we first perform a one-dimensional
calculation.

III. ONE-DIMENSIONAL MODEL

In this section, we assume that the atom can couple to the
electromagnetic fields only through a set of one-dimensional
spatial modes k along the mirror axis z. This means that the
other modes do not contribute to spontaneous emission. This
situation, of course, bears a similarity to the spherical mirror
case, where half of the light field is also reflected back to the
atom, and is therefore worth investigating in some detail.

A. Normal mode and quantization

The scalar, one-dimensional mode functions ek(z) of the
problem must satisfy the Helmholtz equation

∇2ek(z) + |k|2ek(z) = 0. (7)

The solutions are superpositions of plane waves traveling
in reverse directions. We assume that the (one-dimensional)
quantization domain has a length L, the atom is at z = 0, and
the mirror is at z = −R. The density of k modes is readily
found to be L/2π from the periodic boundary conditions at
z = L. From the boundary condition on the mirror ek(z =
−R) = 0, and after normalizing each mode to unity, we find
that the mode functions can be written as

ek(z) = 1√
2LA

(eikz − e−2ikRe−ikz), (8)

where A is the transverse cross-sectional area of the field
around the atom. It is clear from this relation that the wave
going to the mirror (second term) and the wave going directly
to free space (first term) will interfere perfectly provided
temporal coherence is fulfilled.

Using this mode function, we now compute the influence of
the mirror on an excited atom, i.e., on real photon processes.

B. Real photon processes and an atom in the excited state

We neglect here the modification of the mode spectral
density that couples to the excited atom and consider the
modification of the atomic state due to self-interference, as
already discussed, so we neglect the dependence of gµ on ωµ.
In the Markov regime, using Eqs. (4) and (5), we find that the
atomic coherence decay and excited-state level shift at z = 0
are then [14]

γ (0) = γFS[1 − cos(2k0R)], (9)

	e(0) = γFS sin(2k0R), (10)

where the free-space 1D spontaneous emission rate is

γFS = 2d2ω0

h̄A . (11)

For 2k0R = 2πn (where n is an integer number), we get a
complete suppression of spontaneous emission and excited
level shift. On the other hand, for 2k0R = πn, the spontaneous
emission is enhanced by a factor of 2.

The reason for such large effects is that the fields going
to the mirror and the “direct” fields can fully interfere in the
Markov regime. To find out in which regime temporal coher-
ence is not satisfied, so that the visibility of the single-photon
interference is not perfect, we would need to consider the
exact quantum dynamical evolution without making a Markov
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approximation. Such an analysis would reveal that temporal
coherence is reduced when the mirror is placed such that the
time it takes for the light field to go to the mirror and back is
longer than the atom decay time. This scenario is investigated,
for example, in Ref. [14] and studied experimentally in
Ref. [44], where signatures of non-Markovian dynamics were
analyzed using a Hanbury-Brown and Twiss setup. It was noted
that bunching appears for short time scales, similar to the
bunching that would appear for two classical sources (which
here would be the atom and its far-distant mirror image).

In the “extreme” non-Markovian regime, where the mirror
is placed far away from the atom, a multimode field with
width 1/γFS is emitted toward the mirror with 50% probability.
The other half goes to free space. The atom is completely
in the ground state when this field returns from the mirror.
It will reexcite the atom after a time τ = 2R/c, but only
partially since its temporal envelope is not the time-reversed
spontaneously emitted field [16] and its amplitude is half as
large. After such a (partial) reexcitation, another field will
be emitted along the mirror so that the atom will again be
reexited later. Eventually, the photon will leave after a complex
dynamical process that resembles that of a multimode cavity
[14,45]. In this paper, we always assume Markovian dynamics,
where a linear decay and level shifts can be defined. We will
be concerned only with spatial decoherence, by assuming
ideal temporal overlap of the single photon with itself, i.e.,
τ � 1/γFS.

We have assumed here that the atom couples only to the
longitudinal modes along the mirror axis, which is not realistic
for an atom in free space. We will now calculate the effects
of polarization and use a spherical mirror, and we will show
that similar behavior appears for a full hemisphere; that is,
in the Markovian regime, spontaneous emission and excited-
state level shifts can be suppressed. We also calculate the far-
field Casimir-Polder shift and compare it with the well-known
calculations of the Casimir-Polder shift for an atom close to
an infinite plane mirror.

IV. THREE-DIMENSIONAL MODEL

In this section, the space will be divided into a part inside a
sphere of radius R (region I) and the annular region between
the sphere of radius R and the quantization sphere (region II).
See Fig. 1.

A. Normal modes

In spherical coordinates, µ = (l,m,σ ), where σ denotes the
transverse electric (TE) or transverse magnetic (TM) modes,
and (l,m) are the quantum numbers for the angular momentum
and spin, respectively. The solution of the Maxwell equation
for the electric field can be written as a superposition of the
electric and magnetic multipoles [46]:

�eTM(�r) = gl(kµr) �Xl,m( ��), (12)

�eTE(�r) = i

kµ

�∇ × [fl(kµr) �Xl,m( ��)], (13)

where �Xl,m( ��) = �LYl,m( ��)/
√

(l + 1) is the vectorial spherical
harmonic, fl,gl are superpositions of spherical Bessel or
Hankel functions, �� is the vectorial solid angle along the

radial direction �r , and �L = �r × �p is the angular momentum
operator. The magnetic induction �B is a superposition of the
two multipoles:

�bTM(�r) = −i

kµ

�∇ × [gl(kµr) �Xl,m( ��)], (14)

�bTE(�r) = fl(kµr) �Xl,m( ��). (15)

The radial functions are written as

gl(kµr) = cljl(kµr) in region I,
= alh

(1)
l (kµr) + bljl(kµr) in region II,

(16)

where h
(1)
l (kµr) is the spherical Hankel function and jl(kµr) is

the spherical Bessel function of the first kind. It is clear that,
in the absence of the mirror, the bl modes are the vacuum field
from region II. We will show next that, in the single-mirror
geometry, we need only to quantize these modes.

B. Quantization

We will not solve the full quantum mechanical problem
by quantizing the electromagnetic field in the presence of the
spherical mirror. This can be done exactly in the case of a full
sphere [35] by solving the eigenvalue equation derived from
the boundary conditions. To the best of our knowledge, such
a treatment has not been done for an open geometry such as
a hemispherical mirror. As is shown in Ref. [40], the problem
is not so difficult, however, if one assumes that the boundary
condition lies in the far field (k0R � 1), as we assume here,
so that the mode density is close to that of free space. We are
then mostly dealing with a continuum of modes, such as in the
1D calculations.

Using the boundary condition on the large quantization
sphere, we find that

kl� = l
π

2
. (17)

The density of free-space vacuum modes is then 2�/π . From
a point close to the focal point, the bl modes are nondegenerate
if the mirror is large enough, so they are all orthogonal to each
other. We normalize them so that each contains one photon.
For the magnetic multipole we then require that∫ �

0
r2dr|gl(kr)|2

∫
4π

d ��| �Xl,m(�)|2 = 1. (18)

In free space, al = 0, and we thus get the condition

|bl|2 ≈ k2

2�
, (19)

where we use the fact that the main contribution to the vacuum
fluctuations stems from the far field. The same relation holds
for the vacuum modes of the electric multipole.

C. Free-space decay

Having normalized the vacuum modes bl , and the normal
modes of the system, we can calculate the distribution of
vacuum fluctuations and atomic properties in region I and
associate the eigenmodes bl to the continuous set �k, so that∑

µ → (�/π )
∫

dk
∑

l,m. For a dipole oriented along �r , for
example, we can check that we get the usual free-space
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spontaneous decay. Using Eq. (4), the formula for the field
component along the radial direction (see the Appendix), and
setting al to zero in Eq. (16), we indeed find that

γFS = �

π

∫
dk

∑
l,m

|bl|2l(l + 1)
j 2
l (kr)

(kr)2
|Yl,m|2

×2πω2
0d

2

h̄ωk

δ(ωk − ω0) (20)

= d2ω3
0

3πh̄c3
, (21)

which is the standard spontaneous decay rate of an atom in
free space. In the last step, we used the addition formula
for spherical harmonics

∑
m |Yl,m|2 = (2l + 1)/4π and the

addition formula∑
l=1

l(l + 1)(2l + 1)
j 2
l (kr)

(kr)2
= 2

3
. (22)

One can show that the spontaneous decay rate is the same for
a tangential dipole orientation.

In the following discussion, we will see how the mirror
imposes a fixed phase relation between the even and odd l

modes appearing in Eq. (22) used in the spontaneous decay
calculation and how this modifies it. This can be seen by noting
that ∑

l even or odd

l(l + 1)(2l + 1)
j 2
l (kr)

(kr)2

= 2

3

∫ π/2

0
dθ sin3 θ

[
sin2(kr cos θ )

cos2(kr cos θ )

]
, (23)

where the odd (even) modes correspond to the sine (cosine)
functions. Depending on whether the atom is at the node or
the antinode of the standing wave, it couples preferentially
to the even or odd modes. Without a defined phase relation
between even and odd l modes, as is the case for free space,
their spectral densities always add up to 2/3 as we just saw,
but they can otherwise cancel or add up coherently. This will
allow suppression or enhancement of the even or odd vacuum
mode fluctuations and thus create significant changes in the
decay and shifts.

D. Boundary conditions

The boundary conditions on the electric and magnetic fields
are

�n × �EI|r=R = �n × �EII|r=R, (24)

�n × �BI|r=R = �n × �BII|r=R, (25)

for θ ∈ [α,π ] and φ ∈ [0,2π [ (see Fig. 1), where �n is the
normal to the mirror. We write �EI,II, the electric field in regions
I and II. Assuming that the mirror is a perfect conductor, as
we always do in this paper, we also have

�n × �EI|r=R = �0, (26)

�n · �BI|r=R = 0, (27)

for θ ∈ [0,α[ and φ ∈ [0,2π [.

Two sets of equations for the transverse electric and
magnetic multipoles can then be obtained and solved for cl

to calculate the total field in region I.

E. System of equations

We use the symmetry along φ by projecting the boundary
conditions over the m modes (multiplication by eimφ and
integration over φ). From Eq. (26) we get, for example, for
the θ component of the TM mode, the relation

∞∑
l=1

gI
l (kR)Al,m(θ ) = 0 for θ ∈ [0,α[, (28)

where

Al,m(θ ) =
√

(2l + 1)(l − m)!

(l + m)!

P m
l (cos θ )√
l(l + 1)

(29)

and P m
l is the associated Legendre polynomial. After project-

ing over m and l, and using the orthogonality of the spherical
modes, we require

cljl(kR) = alh
(1)
l (kR) + bljl(kR). (30)

Last, we use Eq. (25) and obtain
∞∑
l=1

∂[rgI
l (kr)]

∂r
Al,m(θ ) =

∞∑
l=1

∂[rgII
l (kr)]

∂r
Al,m(θ ) (31)

for θ ∈ [α,π ] and r = R. Using the Wronskian for spherical
Bessel functions, we then get two sets of equations:

∞∑
l=1

(cl − bl)
Al,m

h
(1)
l (kR)

= 0, θ ∈ [0,α[, (32)

∞∑
l=1

cljl(kR)Al,m = 0, θ ∈ [α,π ], (33)

for the coefficients of the magnetic multipole. Similarly, we
get

∞∑
l=1

(dl − el)
A′

l,m[
rh

(1)
l (kr)

]′ = 0, θ ∈ [0,α[, (34)

∞∑
l=1

dl[rjl(kr)]′A′
l,m = 0, θ ∈ [α,π ], (35)

for the electric multipole, where [rjl(kr)]′ =
∂[rjl(kr)]/∂r|r = R, and A′

l,m = ∂Al,m/∂θ . Here el and
dl are the amplitude coefficients for fl(kr), equivalent to cl

and bl for gl(kr). Each set of equations can be written as a
Fredholm equation that can be solved numerically [47].

Here we will show that an analytical solution can be found
in the limit where k0R � l(l + 1), i.e., using a large mirror
and/or looking at the field fluctuations close to the focus. We
note that the field is orthogonal to �n far from the origin [see
Eq. (A1)]. The condition (27) is then satisfied automatically.
In this case, the solutions of the two sets of equations will be
identical for both the TE and TM modes, so that the reflection
off the mirror will preserve polarization.

The solution can then be found using scalar fields. We will
include the polarization dependence of the dipole emission
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later, after having identified far-field plane-wave modes. We
will write

φb(�r) =
∑
l,m

cljl(kr)Yl,m (36)

for the total field amplitude in region I and solve for cl as a
function of bl using two equations:

∞∑
l=0

(cl − bl)
Yl,m

h
(1)
l (kR)

= 0, θ ∈ [0,α[, (37)

∞∑
l=0

cljl(kR)Yl,m = 0, θ ∈ [α,π ]. (38)

We simply removed the l(l + 1) dependence of the field modes,
which, as can be found from Eq. (23), is equivalent to ignoring
the polarization dependence of the dipole emission (sin2 θ in
the integral). Note that the summation now starts at l = 0, as
is allowed for scalar fields. This is not true for the general
solution of the (vectorial) Maxwell equation, which does not
have spherically symmetric solutions.

F. Full-hemispherical mirror

We first assume that the mirror covers 2π sr, so α = π/2.
Furthermore, since k0R � l(l + 1), we expand the Bessel
functions in the far field:

h
(1)
l (kR) ≈ (−i)l+1eikR/kR, (39)

jl(kR) ≈ sin(kR − lπ/2)/kR. (40)

Using the relation∫ 1

0
P m

l (x)P m
l′ (x)[1 + (−1)l+l′ ] = 2

δl,l′

2l + 1

(l + m)!

(l − m)!
(41)

in Eqs. (37) and (38) and then solving for cl , we obtain after
some algebra the two relations

cl′ = eikR cos(kR)

(
bl′ − i

∑
m,o

blIl′,l,m

)
for l′ even,

(42)

cl′ = ieikR sin(kR)

(
bl′ + i

∑
m,e

blIl′,l,m

)
for l′ odd,

where

Il′,l,m = (−1)(l+l′+1)/2
∫

φ

∫
θ=[0,π/2]

Yl,mYl′,md ��. (43)

We denote
∑

o,e as the sum over odd (even) l modes. The two
terms on the right-hand side of each equation are the reflected
and incoming vacuum amplitude contributions to the field in
region I.

At the focus, only the l′ = 0 mode is predominant since the
radial amplitudes [given by jl′(kr)] are negligible for higher
l′. The total field φb(�r) at the center will then be zero for
kR = nπ , as can be seen from Eqs. (42) and (36). If we draw
any standing wave from the mirror through the origin to the
other free-space boundary with the condition that kR = nπ ,
it is then invariant under rotation upon θ . It follows that to
completely describe the field in region I when the total field
is zero at the focus, we need only even modes [as is apparent

from Eq. (42)]. For the case where kR = nπ/2, however, we
will need the odd modes to find the total field in region I.
These two extremal conditions explain why even and odd l′
modes behave differently with respect to mirror positions, as
we already anticipated in Sec. IV C.

We also note that, contrary to what one would find for a
mirror covering 4π (which would behave as a cavity), the
angular asymmetry of the hemisphere does not yield a one-to-
one mapping of the free-space modes bl′ of region II to the cl′

modes of region I. The total far-field amplitude that can enter
region I here is necessarily a superposition of even and odd
modes.

We have already showed that the total field at the focal
point φb(�r = �0) will be zero at a node. Spontaneous emission
and level shifts will then certainly cancel. To demonstrate this
result, and treat the case of a finite mirror size, it is useful
to introduce relations between the plane waves and spherical
harmonics.

G. Plane-wave decomposition

Let us first write the far-field amplitude in region I as∑
l,m

bljl(kr)Yl,m = if o( ��)
cos(kr)

kr
+ f e( ��)

sin(kr)

kr
, (44)

where

f e or o( ��) :=
∑

m,e or o

bli
lYl,m( ��) (45)

is the scattering amplitude for the even or odd mode. It is easy
to show that the superpositions

f in( ��) = i

2
(f o − f e), f out( ��) = i

2
(f o + f e) (46)

correspond to incoming and outgoing angular amplitudes,
respectively, and that they are connected via

f out( ��) = −f in(−��) := P̂ f in, (47)

where P̂ is the parity operator. This relation shows the Gouy
phase shift acquired by the incoming field as it turns after
focusing into an outgoing field. The same relations also hold
for the far-field amplitude g( ��) of the field in region I, where
one can define

ge or o( ��) :=
∑

m,e or o

cli
lYl,m( ��). (48)

The total field amplitude at any point of region I can in fact
be written as a superposition of plane waves weighted by the
far-field amplitudes g( ��). Using the expansion of the plane
waves in spherical harmonics,

∑
m,e or o

il(2l + 1)jl(kr)Yl,m =
[

cos(�k · �r)

sin(�k · �r)

]
, (49)

and Eqs. (48) and (36), we obtain

φb(�r) = 1

2π

∫
2π

d ��[ge cos(�k · �r) + igo sin(�k · �r)], (50)

where we write
∫

2π
:= ∫

φ

∫
θ=[0,π/2] for simplicity. The field

inside region I is uniquely given by the coefficients ge or o,
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which are linked to the incoming vacuum modes f in via the
boundary conditions. This treatment is also used in Ref. [40]
for an open cavity.

H. Finite-size mirror

To treat the case of finite mirror size, we decompose
the boundary conditions into three interfaces: the mirror
(θ ∈ [0,α[), the opposite free-space interface between regions
I and II (θ ∈ [π − α,π ]), and the remaining free space (θ ∈
[α,π − α[). As before, we project Eqs. (37) and (38) over the
m modes and using the results of Sec. IV G obtain the results

[1 − e2ikRT (θ )]go = −2eikR sin(kR)[f in + T (θ )f out],
(51)

[1 + e2ikRT (θ )]ge = −2ieikR cos(kR)[f in − T (θ )f out],

where T (θ ) is a function that is zero for θ ∈ [0,α[ and unity
for θ ∈ [α,π/2[. One can check that by setting T (θ ) to zero
for θ ∈ [0,π/2[, and going back to the spherical basis, we find
again Eq. (42).

Using Eq. (47), and the fact that T is only zero or one, we
can rewrite Eq. (51) as

go = i{T (θ )(1 − P̂ ) + 2i[1 − T (θ )]eikR sin(kR)}f in,

(52)
ge = i{T (θ )(1 + P̂ ) − 2[1 − T (θ )]eikR cos(kR)}f in,

which uniquely relates the incoming field from region II to the
far-field modes in region I. With the use of the relation (50),
we finally obtain the result

φb(�r) =
∑
l,m

bli
lTl,m, (53)

where

Tl,m = 2i

∫
2π

d ��
4π

{T (θ )(ei�k·�r + e−i�k·�r P̂ )

+ 2[1 − T (θ )]eikR cos(kR + �k · �r)}Yl,m. (54)

The total field in region I is a superposition of waves that
travel through the point of coordinate �r without being reflected
by the mirror [first term in Eq. (54)] and waves that are reflected
by the mirror (second term), as one can easily figure out.
A similar result is found for an open cavity with variable
reflectivity in Ref. [40], where the density of modes of a single
mirror is calculated by setting one of the mirror reflectivities
to zero. Here we derived the normal-mode amplitudes for the
case of a single mirror by using a Neumann condition between
regions I and II (through continuity of the �B field).

This mode function can now be used to calculate the density
of fluctuations around the focal point, to obtain the change in
excited level shifts and spontaneous emission rates, and to
find the ground-state Casimir-Polder shifts as a function of the
mirror’s numerical aperture.

V. QED EFFECTS CLOSE TO THE FOCUS OF
A SPHERICAL MIRROR

We can now calculate the QED effects on the atomic
electron from Eqs. (4), (5), and (54). The modified decay and
level shifts are given by

γ (�r) = 2d2ω0�

h̄c
|φ�k0

(�r)|2 (55)

and

	e,g(�r) = 2d2�ω2
0

h̄c

∫
dk

k
|φ�k(�r)|2P

(
1

k ± k0

)
, (56)

where

|φ�k(�r)|2 = k2

�

∫
2π

d ��
4π

{1 − ρ( ��) cos[2(kR + �k · �r)]}. (57)

The dependence of the function φ on the b modes is now
explicitly given by �k. In the last equation, we use the fact that
the spherical harmonics form an orthonormal set of modes.
We also introduce ρ = 1 − T , the reflectivity of the mirror.

We can now also include polarization and get

|φ�k(�r)|2 = k2

�

∫
2π

d ��
4π

3

2

(
1 −

∣∣∣∣ �d · ��
d

∣∣∣∣
2)

×{1 − ρ cos[2(kR + �k · �r)]}. (58)

If we set ρ to zero everywhere, we recover the density of
vacuum fluctuations in free space.

A. Real photon processes

The spontaneous decay, normalized to the free-space decay
rate γFS, is

γ (�r) = 3

2

∫
2π

d ��
4π

(
1 −

∣∣∣∣ �d · ��
d

∣∣∣∣
2)

×{1 − ρ cos[2(k0R + �k0 · �r)]}. (59)

This quantity is plotted in Fig. 2 as a function of the numerical
aperture [defined as NA= sin(α)], for a linearly polarized
dipole positioned at �r = �0, and orthogonal to the mirror axis.
Spontaneous emission is found to vanish for a mirror position
such that cos(2k0R) = 0, i.e., at the node. A twofold increase in
the spontaneous emission rate is found when cos(2k0R) = 1,
at the antinode. We note that for the numerical aperture used
in Ref. [12] (NA = 0.4, i.e., 4% of solid angle), a spontaneous
emission rate change of 24% is predicted. Such a, perhaps
unexpectedly, large change of a decay rate may be understood
by noting that the factor of 2 due to the interference between
the reflected and direct amplitudes translates into a factor
of 4 in density (for “small” numerical apertures). Together
with the inclusion of the polarization properties of the dipole
emission, another factor of 3/2 is gained, which in total
gives (3/2 × 4) × 0.04 = 0.24. The difference between the
observed 1% change of the excited-state population in Ref.
[12] and the 24% modification of the spontaneous emission
predicted here can be partly explained by residual atomic
motion, finite spatial overlap, finite temporal coherence, or
multilevel effects in the experiment.
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FIG. 2. (Color online) Spontaneous decay rate as a function of the
spherical mirror numerical aperture for an atom at the mirror focus.
Top curve: The atom is at the antinode of the standing wave formed
by its retroreflected field. Bottom curve: The atom is at the node of
the standing wave. Large changes in the spontaneous emission rate
are already expected for moderate numerical apertures.

We can compute the modification of the decay rate as a
function of distance from the focus to estimate the sensitivity
to mirror, or lens, positioning. Figure 3 shows the dependence
of γ for an atom that is displaced away from the focus of a
hemispherical mirror and where the mirror is positioned such
that |φ�k(�r = �0)|2 = 0. The spontaneous emission rate is close
to zero within a volume λ3 around the focus and oscillates for
a few wavelengths until it reaches the free-space value. More
precise formulas must be used, however, when the atom is
far from the focus, as the approximation kR � l(l + 1) is no
longer valid for large distances from the focus [40].

The excited-state level shift will also be altered in the
same way because of a modified coupling to the retroreflected
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FIG. 3. (Color online) Spontaneous decay rate of an atom as it is
displaced from the focus, in the case of a full-hemispherical mirror.
Here the mirror is positioned such that a node of the standing wave
is at the focus. Trace (i) corresponds to a scenario where the atom
is displaced along the mirror axis. Trace (ii) is when the atom is
displaced perpendicular to the mirror axis.

modes. We find after contour integration that the excited-state
shift, normalized to the free-space decay rate, is

	e(�r) = 3

2

∑
b

|φb(�r)|2P

(
1

ωb − ω0

)

= 3

2

∫
2π

d ��
4π

(
1 −

∣∣∣∣ �d · ��
d

∣∣∣∣
2)

ρ sin[2(k0R + �k0 · �r)].

(60)

This gives an oscillatory level shift of amplitude ρ at the focus.
For a full half mirror, the level shift completely cancels for
mirror positions such that k0R = nπ , where the decay rate is
also zero. Its evolution with numerical aperture is similar to
the spontaneous emission rate change. Such large level shift
variations can yield a strong confining potential and would
be interesting to study experimentally with large-numerical
apertures, similarly to what is done in Ref. [48].

B. Virtual photon processes

The Lamb shift of the ground state can be computed in the
same way as the excited-state shift. In the simple case of a full
half mirror, and with the atom at the mirror focus, we get

	g(0) = γFS

k0

∫ mc/h̄

0
dk

k

k0 + k
sin2(kR). (61)

We can write this result as a sum of three terms that can be
easily integrated: the electron self-energy, the free-space Lamb
shift, and the Casimir-Polder shift. The electron self-energy is

	SE
g = γFS

K

2k0

[
1 + sin(2KR)

2KR

]
, (62)

where we write K = mc/h̄. This quantity is identified by
setting k0 to zero in Eq. (61) and in fact cancels with the shift
from the Â2 part of the Hamiltonian, as can be easily checked.
This procedure is known as mass renormalization [30]. The
free-space Lamb shift is

	FS
g = γFS ln

(
k0

K + k0

)
. (63)

The modified Lamb shift (or Casimir-Polder shift), the only
observable quantity, is

	CP
g = γFS

∫ 2k0R

2KR

dx

x
cos(x − 2k0R). (64)

The Casimir-Polder shift goes to zero for very large mirror-
atom distances (2k0R � 1) as expected and can be approxi-
mated by

	CP
g = γFS

(k0R)2
, (65)

closer to the mirror (but always at the focus). We note that
	CP

g drops more slowly with distance than in the plane mirror
case, where it decreases as γFS/(k0R)4 [27]. The difference
lies in the fact that there the mirror does not cancel as many
electromagnetic modes, which yields a faster decay of the QED
effects with distance.

As an example, using a decay rate of 15 MHz, a wavelength
of 493 nm (the S1/2 to P1/2 transition of 138Ba+), and a mirror
distance of 1 cm gives a Lamb shift of 100 Hz, which is
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FIG. 4. (Color online) Normalized spontaneous decay rate and
excited- and ground-state shifts of an atom as a function of the mirror-
atom distance, in the case of a full-hemispherical mirror. Atom at the
mirror focus.

experimentally measurable using modern spectroscopic tools
[49]. The complete level structure will have to be used for a
precise estimation of the total shift [32,43], but this result is
encouraging for experimental investigations of Casimir-Polder
shifts using trapped atoms.

The force on a trapped atom associated to the Casimir-
Polder shift may be computed easily from this formula [40]. It
would also be interesting to study how Casimir photons created
by an oscillating mirror [50], as well as real photons “modu-
lated” by the mirror [51], affect the center-of-mass motion of
a trapped atom with a high-numerical-aperture mirror.

To summarize these results, the modified decay and both
ground and excited level shifts are plotted in Fig. 4 for a full
hemispherical mirror. The decay rate shows undamped oscil-
lations between full suppression and maximum enhancement
as a function of mirror distance (or mirror radius of curvature).
The excited-state level shift oscillates between −γFS and γFS,
whereas the ground-state shift damps out as a function of
mirror distance.

VI. CONCLUSION

In conclusion, we have demonstrated that a single spherical
mirror reflecting only half of the emitted field of a single
atomic electron can be used to completely suppress the
atom’s spontaneous emission and excited level shift. We first
presented a one-dimensional treatment that explained the un-
derlying physics behind the full-spherical mirror scenario. The
modification of QED atomic properties was then calculated as
a function of the spherical mirror’s numerical aperture beyond
the paraxial approximation. Large effects were found for
moderate numerical apertures and with mirror-atom distances
of several wavelengths when the atom is located at the mirror
focus.

This result is also relevant for the growing field of free-space
coupling to single absorbers, where full absorption of a
single photon field requires a large coverage of the spatial
dipole emission with the incoming spatial mode. The single
hemispherical mirror system may serve here as an efficient
quantum memory that can release a stored excitation on

demand on a two-level atom transition by controlling the
mirror position in a dynamical fashion. As an application of
our calculations, one also expects full super- or subradiance
with two atoms interacting via large lenses covering only half
of their respective dipole emission profiles; see, for example,
Refs. [33,45] for studies of this effect. Last, atom trapping
using the dipole force can be very efficient here, because of
the steep spatial dependence of the level shift across the atom.

Finally, we calculated the Lamb shift and showed a favor-
able scaling of the spherical geometry over the plane mirror
case. The Lamb shift scales as γFS/(k0R)2, where R is the
mirror radius of curvature. This contrasts with the γFS/(k0R)4

scaling law found for a plane mirror. Using Rydberg atoms and
high-numerical-aperture elements can potentially yield very
large shifts even for atom-mirror distances of a few centimeters
and serve as a precise test bed for investigations of QED.
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APPENDIX

We can decompose the field in region I into radial and
longitudinal parts using the relation

1

k
�∇ × [gl(r) �Xl,m] = 1

kr

∂

∂r
[rgl(r)]�n × �Xl,m

i

√
l(l + 1)

kr
gl(kr)Yl,m�n, (A1)

where �n = �r/|�r|. Using the decomposition (A1), and the
eigenvalues of the angular momentum operator �L, we then get
an expression of the electric and magnetic field in spherical
coordinates.

The electric field multipoles along φ read

e
φ

TM(�r) = −igl(r)
∂

∂θ

Yl,m√
l(l + 1)

, (A2)

e
φ

TE(�r) = im

kr sin θ

∂

∂r
[rfl(r)]

Yl,m√
l(l + 1)

. (A3)

Along θ , we have

eθ
TM(�r) = −m

sin θ
gl(r)

Yl,m√
l(l + 1)

, (A4)

eθ
TE(�r) = 1

kr

∂

∂r
[rfl(r)]

∂

∂θ

Yl,m√
l(l + 1)

, (A5)

and along r ,

er
TE(�r) = −i

√
l(l + 1)

kr
fl(r)Yl,m. (A6)
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[21] L. Slodička, G. Hétet, S. Gerber, M. Hennrich, and R. Blatt,

Phys. Rev. Lett. 105, 153604 (2010).
[22] A. N. Vamivakas et al., Nano Lett. 7, 2892 (2007).
[23] J. N. Munday, F. Capasso, and V. Adrian Parsegian, Nature

(London) 457, 170 (2009).

[24] S. Zaheer, S. J. Rahi, T. Emig, and R. L. Jaffe, Phys. Rev. A 81,
030502 (2010).

[25] O. Kenneth and I. Klich, Phys. Rev. Lett. 97, 160401 (2006).
[26] R. B. Rodrigues, P. A. M. Neto, A. Lambrecht, and S. Reynaud,

Phys. Rev. Lett. 96, 100402 (2006).
[27] H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360

(1948).
[28] R. Blatt and D. Wineland, Nature (London) 453, 1008

(2008).
[29] Y. R. P. Sortais et al., Phys. Rev. A 75, 013406 (2007).
[30] P. W. Milonni, The Quantum Vacuum: An Introduction to

Quantum Electrodynamics (Academic, San Diego, 1994).
[31] K. Kakazu and Y. S. Kim, Phys. Rev. A 50, 1830 (1994).
[32] G. Barton, J. Phys. B 7, 2134 (1974).
[33] J. Kastel and M. Fleischhauer, Phys. Rev. A 71, 011804(R)

(2005).
[34] H. Chew, J. Chem. Phys. 87, 1355 (1987).
[35] T. Boyer, Phys. Rev. 174, 1764 (1968).
[36] V. V. Klimov, V. S. Letokhov, and M. Ducloy, Phys. Rev. A 56,

2308 (1997).
[37] C. R. Hagen, Phys. Rev. D 61, 065005 (2000).
[38] K. A. Milton, Phys. Rev. D 55, 4940 (1997).
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