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Some properties of point processes in statistical optics
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The analysis of the statistical properties of the point process (PP) of photon detection times can be used to
determine whether or not an optical field is classical, in the sense that its statistical description does not require
the methods of quantum optics. This determination is, however, more difficult than ordinarily admitted and the
first aim of this paper is to illustrate this point by using some results of the PP theory. For example, it is well
known that the analysis of the photodetection of classical fields exhibits the so-called bunching effect. But this
property alone cannot be used to decide the nature of a given optical field. Indeed, we have presented examples of
point processes for which a bunching effect appears and yet they cannot be obtained from a classical field. These
examples are illustrated by computer simulations. Similarly, it is often admitted that for fields with very low light
intensity the bunching or antibunching can be described by using the statistical properties of the distance between
successive events of the point process, which simplifies the experimental procedure. We have shown that, while
this property is valid for classical PPs, it has no reason to be true for nonclassical PPs, and we have presented
some examples of this situation also illustrated by computer simulations.
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I. INTRODUCTION

In a previous paper [1] it was shown that the analysis of
the statistical properties of the point process (PP) of photon
detection times allows us to determine whether or not an optical
field is classical, in the sense that its statistical description does
not require the methods of quantum optics. For this purpose the
basic idea was the fact that the PP associated with a classical
field is necessarily a doubly stochastic (DS) Poisson process
[2], which means a Poisson process with a random density, and
introduces various specific properties. If at least one of these
properties is then violated, the corresponding optical field is
certainly nonclassical. Among these properties one of the best
known and used in various experimental results is the so-called
antibunching effect [3–7].

Such an effect cannot appear with a DS Poisson process. Yet
this reasoning immediately suggests the converse question: Is
an optical field that exhibits the bunching effect necessarily
classical? In order to answer this question it is necessary to
study more carefully the properties of PPs that can be used for
the description of photon detection. For example, the previous
question leads to the search for a model of PP which is not a DS
Poisson but such that its coincidence function as defined in [1]
exhibits a bunching effect. If such a model exists, regardless of
the question of its physical realization, we can conclude that
the bunching effect is not a characteristic property of classical
fields. The same reasoning can be presented for various other
properties appearing with nonclassical fields and this leads to
the main purpose of this paper which is to investigate some
models of PPs that can be used to analyze various examples of
situations appearing in quantum optics.

It is important to note that the statistical properties of a PP
appearing in photon detection can, at least theoretically and by
using standard methods of quantum optics, be deduced from
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the density matrix ρ describing completely the statistics of the
optical field. The inverse problem is much more complicated
and it is often an open question to know whether or not it is
possible to associate with a given mathematical PP a density
matrix ρ such that this PP describes the photon detection
phenomenon in the optical field defined by ρ. If this is possible
we shall say that the PP considered is a detection PP (DPP).
Since we cannot ensure that the PPs used in this paper are
DPPs, we shall use for our discussion the models of PPs
the description of which is the simplest possible. This leads
immediately to renewal processes.

They are characterized by the fact that the intervals between
successive points, sometimes called lifetimes of order one,
are independent and identically distributed (IID) positive
random variables. Such PPs are then completely defined by
the probability distribution of these random variables. If this
class of models is too restrictive for our purpose, it is possible
to introduce some correlations between successive intervals
of points and a preliminary example in this direction was
introduced in [1].

The paper is organized as follows. In Sec. II we review
the principal notions of PPs concerning their use in statistical
optics. The notations are in general the same as in [1] in order
to make our review as short as possible. In particular, as the
objective is the comparison between classical and nonclassical
optical fields by using statistical properties of photoelectron
PPs, we introduce a set of three properties of these PPs that
must be satisfied when the field is classical. These properties
correspond to the three kinds of experiments usually presented
in the literature concerning the statistical analysis of optical
fields, namely the bunching effect, the time intervals between
successive occurrence points and the photon counting. If
at least one of these properties is not verified the field is
not classical. These properties can be expressed in terms of
coincidence function, of the probability density function (PDF)
of the lifetime and of photon counting. Section III is devoted to
the review of main properties of renewal PPs that can be used in
the analysis of photoelectron counting and coincidence. From
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a mathematical point of view, renewal processes are especially
interesting because their description does not require various
assumptions without physical meaning. The only knowledge
necessary for their description is the PDF of the intervals
between successive points which is effectively an objective
of some experiments in statistical optics. The last advantage
of renewal PPs is the fact, already noted in [1], that there is
a simple relation between the coincidence function and the
PDF of the intervals defining the process. This relation will be
widely used in our analysis.

On the other hand we cannot say that renewal PPs are
effectively DPPs as defined previously and we shall take into
account this point in the interpretation of our simulations.

In Sec. IV we show that the set of conditions previously
introduced is not sufficient to ensure that a field is classical. For
this it is sufficient to show that one can construct an example of
renewal PP, which by construction cannot appear for a classical
field, but which is such that all the three properties of the
set are satisfied. We present the mathematical construction of
this PP and the procedure used for its computer simulations.
They show clearly that this PP satisfies the set of properties
associated with a classical field. In the last two sections
we present various examples of PPs satisfying only some of
the three properties previously introduced and we discuss the
results of some computer simulations corresponding to these
examples. One of the most interesting results is to show that
it is possible to construct a renewal PP in which there is an
antibunching effect while the PDF of the distance between
successive points is a decreasing function. This clearly shows
that the bunching (antibunching) effect cannot in general be
detected by considering only the lifetime of order one of the
photoelectrons, as indicated in some studies [8–12].

II. SHORT REVIEW ON POINT PROCESSES AND THEIR
USE IN STATISTICAL OPTICS

A PP in time is a sequence of random time instants
ti [2,13,14]. In most of what follows we assume that it
is stationary, which means that all the statistical properties
are invariant under any change of the origin of time. A
PP is completely defined by the sequence Xk = tk − tk−1 of
distances between successive points called lifetimes of order
one. These quantities are positive random variables (RV).

The lifetime of order n is the time between any point ti
of the point process and the nth point ti+n after ti . Let Fn(x)
and fn(x) be the distribution function (DF) and the probability
density function (PDF), when it exists, of the lifetime of order
n, respectively. These functions appear in the description of
various properties of the point process.

Consider first the coincidence analysis. A coincidence event
appears when two nonoverlapping small intervals [θ1,θ1 +
dθ1] and [θ2,θ2 + dθ2], θ1 < θ2, contain at least one point of the
PP, regardless of the number of points of the PP appearing in
the interval [θ1 + dθ1,θ2]. The calculation of the probability of
this event introduces the coincidence function c(x) discussed
in Sec. IIA of [1]. It contains all the second-order properties of
the PP but also describes the bunching or antibunching effect
which was analyzed in various papers (see for example [4]).

For large values of x the coincidence function tends to
λ2, where λ is the density of the PP. For a Poisson PP we

have c(x) = λ2 and there is a bunching effect when c(x) > λ2.
For classical fields c(x) belongs to the class of covariance
functions, which especially implies that it is maximum for
x = 0. This means that for such fields there is always a
bunching effect. One of the purposes of this paper is on
the contrary to construct statistical models of PPs in which
antibunching appears without invoking quantum properties.

The coincidence function of a stationary PP is related to the
PDFs fn(x) of the lifetimes of order n by the relation,

c(x) = λ

∞∑

n=1

fn(|x|), (2.1)

also used in [1]. This relation is used for the measurements of
c(x) [15] with the series replaced by a sum of a finite number of
terms. We shall present various results of such measurements
in what follows.

In some experiments the bunching effect is analyzed with
the use of f1(x) instead of c(x) (see for example [4]). This is
due to the fact that in the case of DS Poisson processes, which
means in the case of classical fields, the coincidence function
tends to f1(x) when the density tends to 0, in such a way that
the series (2.1) tends to be limited to its first term only.

Another physical argument invoked to consider that the
bunching effect can be detected from the study of the
coincidence function as well from that of the PDF f1(x) is
the following. The difference between the coincidence event
defined earlier and the event used to calculate the lifetime of
order one is that the number of points of the PP in the interval
[θ1 + dθ1,θ2] is zero for the latter while it can take an arbitrary
value for the first. But when the density of the PP (i.e., the
mean number of points by unit of time) is very small, it can
be considered that the probability that this interval contains at
least one point is very small, which leads one to conclude that
c(x) is proportional to f1(x). We shall see that this argument,
correct for DS Poisson processes, is not general and we shall
present examples where it cannot be used.

It is, however, interesting to note that the PDF f1(x) can
be used as a test in the distinction between classical and
nonclassical fields. Indeed, one can show that for a DS Poisson
process this PDF is maximum for x = 0, in such a way that a PP
in which this property is not satisfied is certainly nonclassical.
The converse property will also be analyzed in the following.

For simplicity of the discussion we shall use the expression
conditional bunching effect when it is described only by the
use of f1(x), the term conditional coming from the fact that
the interval [θ1 + dθ1,θ2] does not contain a point of the PP.
One of the conclusions of the following discussion is that a PP
can simultaneously exhibit a conditional bunching effect and
a standard antibunching effect.

The coincidence function discussed here can be called of
second order because it is a coincidence at two distinct time
intervals. But it is possible to use coincidence in an arbitrary
number n of distinct intervals which introduces coincidence
functions of order n. The calculation of these functions from
the density matrix of the field is the main subject of the
paper [17].

Consider now the counting analysis. It is related with the
study of the statistical properties of the number of points of
the PP registered in some interval [θ,θ + T ]. In the stationary
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case these properties do not depend on θ . These properties are
evidently quite different depending on whether or not the time
θ where the observation interval is open is chosen as a point of
the PP or not. In the first case we talk about triggered counting
and in the latter of relaxed counting. Most of the experimental
results published on photon counting are in general related to
relaxed counting, and it is also the case in what follows except
when it is otherwise specified.

It is clear that there exists a relation between counting and
time-interval properties. Let O be an arbitrary point of the PP
chosen at the origin of time axis and anterior to θ . Let Sn be
the RV X1 + X2+? + Xn which is the distance between O

and the nth point of the PP posterior to O. The probability
pmn(θ,T ) that there are m points in the interval [0,θ ] and n

points in the interval [θ,θ + T ] can be expressed in terms of the
sums Sn by

pmn(θ,T ) = P[(Sm � θ ) ∩ (Sm+1 > θ ) ∩ (Sm+n � θ + T )

∩ (Sm+n+1 > θ + T )]. (2.2)

Its calculation in closed form from the statistical properties of
the intervals Xi can be very tedious and in some cases the only
way to obtain this probability is to use computer simulations
described below.

The probability pn(θ,T ) of relaxed counting in the interval
[θ,θ + T ] is of course pn(θ,T ) = ∑∞

m=0 pmn(θ,T ) and under
general ergodic conditions there is a limit when θ tends to
infinity which is the relaxed counting probability pn(T ).

There are several experimental results concerning photon
counting in statistical optics. A review of the most significant
can be found in [4].

In reality, the probabilities pn(T ) are not of a great interest
as a test of the classical or nonclassical nature of an optical
field. But they can be used to calculate some mean values of the
number of points in an interval of duration T and in particular
it is shown in [1] [see Eq. (2.16)] that the variance σ 2

N of this
number satisfies σ 2

N = λT + g(T ), where λ is the density of
the PP and g(T ) a function depending on the second-order
properties of the PP. In particular, g(T ) = 0 for a Poisson PP
and g(T ) > 0 for a DS Poisson PP. This implies that if there
are values of T such that as g(T ) < 0, we can conclude that the
field is nonclassical. The reverse question, however, appears
immediately: does the fact that g(T ) > 0 for any T imply that
the field is classical. We shall analyze this question below.

Note at the end of this section that, since the properties of
PPs analyzed in this paper are in relation with classical and
nonclassical optical fields and since classical fields introduce
necessarily DS Poisson processes, we shall use the expression
classical PPs for such PPs. Conversely, all the PPs which are
not DS Poisson are called nonclassical PPs.

We can summarize the previous discussion by indicating
the three most important properties of a classical PP.

Property A. A classical PP presents a bunching effect,
which means that its coincidence function c(x) is maximum for
x = 0.

Property B. The PDF f1(x) of a classical PP is maximum
for x = 0. This means that a classical PP exhibits conditional
bunching effect.

Property C. The variance of the number or points of a
classical PP in relaxed counting satisfies σ 2

N > λT .

Let us now discuss more precisely the concept of DPP
introduced in Sec. I. As indicated previously the statistical
properties of an optical field are completely described by its
density matrix ρ. From this density it is possible to calculate
the so-called quantum nth-order correlation functions defined
in [16] and called earlier higher-order coincidence functions.
They are used for the calculations of coincidence phenomena
in photodetection phenomena of the optical field defined by ρ

as indicated in [17].
Furthermore it is shown in [18] that the statistical properties

of a PP can be completely mathematically defined from
the set of its coincidence functions. Combining these two
properties we can say that a DPP is defined by a density matrix
ρ. Unfortunately, the complete calculations are extremely
complicated and can be completed only in a small number
of cases.

The inverse problem is still more complicated. It consists in
finding the density matrix ρ of a DPP defined by the set of all
its coincidence functions. The question of knowing whether
or not there are mathematical PPs that are not DPPs, which
means that the inverse problem is without solution remains an
open problem.

III. ANALYSIS AND SIMULATION OF SOME
RENEWAL PROCESSES

Renewal processes are characterized by the fact that
the time intervals Xk between successive points of the PP
are independent and identically distributed (IID) random
variables.

Unfortunately, the fact that renewal PPs are DPPs remains
an open conjecture and its proof seems a very difficult task.
We shall take this fact into consideration in our following
discussion. However, if renewal PPs were DPPs, the cor-
responding optical field would certainly be not classical,
because a doubly stochastic Poisson process cannot introduce
independent intervals except in the case when it is a pure
Poisson process.

A renewal PP is entirely defined by the PDF f1(x) = f (x)
of the time intervals Xk . This simplifies significantly the use
of (2.1). Indeed it results from the independence assumption
that the generating function Gn(s) of the PDF fn(x) is
simply Gn(s), where G(s) is the generating function of f (x).
As |G(s)| < 1, the monolateral Laplace transform of c(x)
becomes

C(s) = λ

∞∑

n=1

Gn(s) = λ
G(s)

1 − G(s)
. (3.1)

Note that, since c(x) is an even function of x, its complete
Laplace transform is Ĉ(s) = C(s) + C(−s). The Fourier trans-
form of c(x) is, of course, Ĉ(iω). It is well known that the den-
sity λ of a renewal process is the inverse of the mean value mX

of the time between successive points. As the generating func-
tion G(s) satisfies G(s) = E[exp(−sX)] = 1 − mXs + o(s2),
the application of the expression limx→∞ c(x) = lims→0 sC(s)
yields the property already indicated and that c(x) tends to λ2

when x tends to infinity.
Expression (3.1) implies that the coincidence function of a

renewal PP must satisfy certain constraints. The most evident
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comes from the fact that the generating function of the lifetime
cannot be an arbitrary function because its inverse Laplace
transform must be non-negative and equal to zero for x < 0,
since it is the PDF of a positive RV. It is, however, difficult
to determine the exact consequences of these conditions on
the coincidence function. We shall discuss the problem below
with some specific examples.

The properties of the coincidence function suggest an im-
portant problem in our discussion: Is it possible to associate a
renewal PP with a given coincidence function? For this purpose
it is necessary to make an inversion of (3.1) which yields

G(s) = C(s)

λ + C(s)
. (3.2)

But in order to complete the problem it is necessary to
verify that the function G(s) obtained from this equation is
effectively the generating function of a positive RV. There
is no general solution to this problem but we shall discuss it
with the help of some examples.

The simplest one is when c(x) = 1, which is the coinci-
dence function of a Poisson process of density λ = 1. It results
from (3.2) that G(s) = 1/(s + 1) which is the generating
function of an exponential distribution of unit mean value.
The corresponding renewal process is a Poisson process of
unit density, and, as indicated earlier, its coincidence function
is constant.

Let us now verify this in a computer simulation similar to
those presented in [1]. A Poisson process is a renewal process
in which the PDF f1(x) is an exponential distribution. The first
step is then to generate a large number N of samples Xk of IID
random variables with a unit exponential distribution. This is
easily done by using the transformation Xk = − log(1 − Uk),
where Uk is a sequence of IID random variables uniformly
distributed in [0,1]. The numerical simulation is done by
measuring distinct values of the PDFs fk(x) appearing in (2.1)
by using standard procedures from normalized histograms.

The results appear in Fig. 1. The points indicate the results
of the PDF measurements of the first four PDFs fk(x).
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FIG. 1. (Color online) Coincidence function c(x) and PDFs
fk(x),1 � k � 4, for a Poisson process of density λ = 1. Points,
computer experiment; continuous curves, theory.

The continuous curves are the analytical values of these
functions equal in the case of a Poisson process of unit density
to fk(x) = xk−1 exp(−x)/(k − 1)!. We observe an excellent
agreement between analytical and simulation results. For the
measurement of c(x) we use (2.1) in which only 15 terms are
taken into account. These terms are PDFs measured as those
presented above. We observe that for values of x smaller than
8 the coincidence function measured is practically equal to
1, which is the value expected for a Poisson process of unit
density. This result can be considered as a test of the validity
of the procedure of measurement of the coincidence function
which will be used many times further below.

IV. NONSUFFICIENCY OF THE SET
OF PROPERTIES A, B, AND C

In this section we shall answer the question stated in Sec. I
and show that it is possible to construct a renewal PP, which
is by definition nonclassical, but which exhibits the same
bunching effect as a classical PP. In reality the result is much
stronger. We shall show that a nonclassical PP can satisfy
simultaneously the three properties A, B, and C, which are
sometimes considered as characteristic of a classical PP.

The coincidence function with a decreasing exponential
shape is the most common example introducing a bunching
effect. It appears in many physical situations, as, for example,
in the case of thermal fields generated by a first-order Langevin
equation (see, e.g., [19]). Consider then the function c(x) =
λ2[1 + k exp(−a|x|)], k > 0, a > 0. The problem is then to
find a renewal PP in which c(x) is its coincidence function.
Applying (3.2) yields

G(s) = λ
αs + a

s2 + (a + αλ)s + aλ
, (4.1)

where α = 1 + k. We have G(0) = 1, as for any generating
function, and the only point to verify is whether its Laplace
inverse transform is positive in order to be a PDF. This results
directly from the fact that the roots of the denominator are real
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FIG. 2. (Color online) Coincidence function c(x) and PDFs
fk(x),1 � k � 4, for the renewal process defined by (4.2). Points,
computer experiment; continuous curves, theory.
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TABLE I. First 10 values of counting probabilities.

T p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

1 1 0.3679 0.3679 0.1839 0.0613 0.0153 0.0031 0.0005 0.0001 0.0000 0.0000
2 1 0.3677 0.3681 0.1839 0.0613 0.0153 0.0031 0.0005 0.0001 0.0000 0.0000
3 1 0.5141 0.1996 0.1453 0.0830 0.0375 0.0142 0.0046 0.0013 0.0003 0.0001

4 2 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361 0.0120 0.0034 0.0009 0.0002
5 2 0.1355 0.2708 0.2707 0.1801 0.0902 0.0360 0.0120 0.0035 0.0009 0.0000
6 2 0.3374 0.1596 0.1502 0.1267 0.0953 0.0618 0.0359 0.0185 0.0087 0.0036

and negative, which implies that the inverse Laplace transform
is a sum of two causal and decreasing exponential functions.

Let us present an example of such an identification problem.
Suppose that λ = 1 and k = 1, which yields α = 2. From
simple algebra we deduce that the probability density function
corresponding to (4.1) is

f (x) = u(x)[p1a1 exp(−a1x) + p2a2 exp(−a2x)], (4.2)

where u(x) is the unit step function and p1 = (b + 2)/a1b,
p2 = 1 − p1, a1 = (a + b + 2)/2, a2 = (a − b + 2)/2, and
b = √

a2 + 4. It is clear that the corresponding mean value
is equal to 1, because of the assumption λ = 1.

We shall now verify these results in a simulation. There is
a simple way to generate a sequence of IID random variables
Xk with the PDF (4.2). Let Ūk be a set of IID random variables
uniformly distributed in [0,1]. It is clear that the random
variables Uk defined by Uk = (−1/a1) ln(1 − Ūk) are IID and
their PDF is a1 exp(−a1x). By using the same procedure we
can generate a second sequence of IID exponential random
variables Vk , independent of the Uk . Let finally Bk be a
sequence of Bernoulli random variables, independent of Uk

and Vk , taking the values 0 or 1 with pr(Bk = 1) = p1.
All these random variables can easily be obtained in a
computer simulation. Consider now the random variables
defined by

Xk = BkUk + (1 − Bk)Vk. (4.3)

It is clear that these random variables are IID and that their
PDF is precisely (4.2). The simulation procedure is the same
as in Fig. 1, but in this case the analytical expressions of the
PDF fk(x) do not have a simple form, except for k = 1 where
it is given by (4.2). The results for a = 1 appear in Fig. 2.
We observe that the coincidence function is correctly estimated
and the simulated points are located on the continuous curve
defined by 1 + exp(−x). The same is valid for f1(x) with the
continuous curve corresponding to (4.2). At this step we see
that properties A and B are satisfied, even if the PP analyzed
is nonclassical because it is a renewal process.

TABLE II. Mean values and variances of the number of points.

T Mean value Variance

1/2 0.5002 0.7120
1 1.0001 1.7391
2 2.0000 4.2534
3 2.9997 7.1057

It remains to consider counting properties to verify property
C. In [20] we have presented a procedure which allows us to
deduce the probabilities pn of relaxed counting defined earlier
from the sequence of lifetimes Xk . Data analysis using this
method is displayed in the following. In Table I we present
measurements of the probabilities pn.

All these results correspond to PPs with density λ = 1. The
first three lines are obtained with T = 1, and the others with
T = 2. Lines 1 and 4 display theoretical results for a stationary
Poisson PP. Lines 2 and 5 correspond to results of simulations
obtained with the same PPs. We observe that results of lines 1
and 2 or lines 4 and 5 are very similar, which can be considered
as a test of the correct behavior of the method. Results of
lines 3 and 6 correspond to the PP studied in this section and
defined by (4.3). The interpretation, however, of these results
in terms of distinction between classical and nonclassical
PP is rather complicated. For this it is more efficient to use
the test of the variance appearing in property C. By using
experimental values of the probabilities pn presented, for
example, in Table I we can calculate the corresponding mean
value and variance of the number of points registered in
an interval of duration T . The results appear in Table II.
This table requires two main comments. At first we verified
that the mean value is effectively given by the expression
λT because, as said earlier, the density of the PP generated
by (4.3) is λ = 1. This was also clear on the asymptotic
value of c(x) appearing in Fig. 2. Secondly, the comparison
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FIG. 3. (Color online) Coincidence function c(x) and PDFs fk(x),
1 � k � 4, for the renewal process defined by (5.2) with a = 9/2.
Points, computer experiment; continuous curves, theory.
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TABLE III. First 10 values of counting probabilities.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

0.2812 0.4798 0.2007 0.0348 0.0033 0.0002 0.0000 0 0 0

between mean and variance means that property C is
satisfied.

In conclusion, we see that the PP studied in this section
which is nonclassical because it is a renewal process satisfies
all the three main properties of a classical PP. This clearly
shows that these properties are not sufficient to characterize
the classical character of a PP.

This conclusion is perfectly correct when it is expressed in
terms of point processes, as is the case. Its formulation in terms
of optical fields would require the proof of the conjecture that
renewal processes are DPPs, as indicated earlier.

V. EXAMPLE OF RENEWAL PROCESSES IN WHICH THE
THREE CONDITIONS A, B, AND C ARE NOT SATISFIED

The simplest example of coincidence function introducing
the antibunching effect is the increasing exponential function
such as c(x) = λ2[1 − exp(−a|x|)]. We shall first see that it
is not always possible to associate a renewal process to this
function. Indeed (3.2) yields

G(s) = λ
a

s2 + as + aλ
, (5.1)

and the poles are real and negative if a > 4λ. Otherwise these
poles are complex and the inverse Laplace transform of G(s)
cannot be positive. Thus, if a < 4λ there is no renewal process
having c(x) as its coincidence function. Suppose now that
λ = 1 and a > 4. It is easy to find that the PDF associated
with (5.1) is

f (x) = 2(a/b) exp(−ax/2) sinh(bx/2), (5.2)

with b = √
a2 − 4a. Its mean value is 1, because of the

condition λ = 1.
Because of the difference of two exponential functions

appearing in the term sinh(bx/2) of (5.2), it is not possible
to use a procedure like (4.3) for a simulation of random
variables Xk that are IID and defined by the probability
density function (5.2). Fortunately, for some particular values
of a a direct inversion of the DF is possible, in such a
way that the random variables Xk can be generated from a
sequence of random variables Uk that are IID and uniformly
distributed. This appears, for example, when a = 9/2. In

TABLE IV. Mean values and variances of the number of points.

T Mean value Variance

1/2 0.4995 0.3655
1 0.9998 0.6541
2 1.9995 1.2126
3 2.9996 1.7616

this case a simple calculation shows that the transformation
Xk = −(2/3) log(1 − √

Uk) applied to random variables Uk

that are IID and uniformly distributed in [0,1] generates a
set of random variables that are IID and with the PDF (5.2).
Furthermore, when these random variables are the lifetime of
order one of a PP, its coincidence function is 1 − exp(−ax).

Results of simulations appear in Fig. 3. The numerical
values of the coincidence function corresponds exactly to
the theoretical values, and this is also true for the PDF
f1(x) = f (x) where f (x) is given by (5.2). On the other hand
there is no simple expression of the other PDFs fn(x) for
n > 1. Note that because of the value of a, the asymptotic
value 1 is reached faster than that in the previous figures, and
this allows for the estimation of c(x) with a smaller number
of terms in (2.1). The results of Fig. 3 are obtained with only
seven terms in this sum and in the interval 0 < x < 3 this is
sufficient to obtain a good approximation to the coincidence
function. Note also that for small values of x the coincidence
function is well approximated by using only the PDF of the
lifetime of order one.

It is important to note that the coincidence function c(x)
appearing in Fig. 3 is not a covariance function because it
has a minimum for x = 0. It exhibits a clear antibunching
effect. We note that the increase of c(x) for small values of x

comes from the facts that the PDF f1(x) = f (x) of the random
variables Xk is zero for x = 0 and that the other PDFs fk(x)
are almost 0 for small values of x.

It is clear in Fig. 3 that properties A and B are not satisfied.
It remains then to study the counting properties. In Table III we
present results similar to those of Table I but for the renewal
process, some properties of which appear in Fig. 3. This PP
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FIG. 4. (Color online) Coincidence function c(x) and PDFs fk(x),
1 � k � 4, for the renewal process defined in Sec. VI. Points,
computer experiment; continuous curves, theory.
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TABLE V. First 10 values of counting probabilities.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

0.2776 0.4973 0.1800 0.0382 0.0061 0.0007 0.0001 0.0000 0.0000 0

is defined by the PDF defined by (5.2) with a = 9/2. Its
density is λ = 1, as it appears on the asymptotic value of
its coincidence function, and T = 1. We observe that there
are only six nonzero values of the counting probabilities pn

and this is an important difference with the case of line 3 of
Table I corresponding to the same values of the parameters λ

and T .
On Table IV we present results similar to those presented

in Table II. As in this table the mean values correspond to the
theoretical value λT . On the other hand for all the values of
T considered, the variance σ 2 is smaller that the mean value,
which shows that property C is not verified.

This clearly shows that the PP considered in this section
does not satisfy each of the three properties necessary for
ensuring that a PP is classical.

VI. EXAMPLE OF RENEWAL PROCESSES WHERE
CONDITION B IS SATISFIED AND CONDITIONS A

AND C ARE NOT SATISFIED

Consider the renewal process defined by the PDF f (x) =
f1(x) = (π/2a) cos(πx/2a) for 0 � x � a and f (x) = 0 oth-
erwise. If a = π/(π − 2) its mean value is one, which is also
the value of the density λ of the PP. Since the calculation of
c(x) from (3.1) is almost impossible, a simulation is the only
way to obtain this function. For this it is necessary to generate
the random variables Xk , which is easy from uniformly
distributed random variables with the transformation Xk =
(2a/π ) arcsin(Uk). The results appear in Fig. 4. The calculation
of the convolution f2(x) is still rather simple. The simulated
points of f1(x) and f2(x) are located on the calculated curves.
There is no simple expression for the other convolutions that
yield the functions fk(x) for k > 2. The fact that c(x) is
increasing while f1(x) is decreasing comes from the fact that
all the other probability density functions are increasing, while
f1(x) is almost constant for small values of x. There are various
other examples of the same situation. This appears especially
when the PDF f1(x) is decreasing but with a derivative f ′

1(x)
equal to zero for x = 0. In this case the increase of the other
PDFs fn(x) for small values of x is sufficient to ensure that
the coincidence function c(x) increases in the neighborhood
of the origin, which implies antibunching effect.

TABLE VI. Mean values and variances of the number of points.

T Mean value Variance

1/2 0.5002 0.4068
1 1.0003 0.6781
2 2.0006 1.0821
3 3.0002 1.5218

This result is important because it shows clearly that in
this case it is impossible to approximate the coincidence
function by using only f1(x) as this appears for a classical
PP. The coincidence function shows clearly that there is an
antibunching effect while considering the PDF f1(x) shows a
conditional bunching effect.

The first values of the counting probabilities appear in
Table V. Furthermore, Table VI obtained with the same values
of T as in Tables II and IV shows clearly that the variance is
smaller than the mean value, which means that condition C is
not satisfied.

Finally, it is interesting to note that the converse example
is not possible. Indeed, if the PDF f1(x) increases for small
values of x, as, for example, in the case appearing in Fig. 3,
then the coincidence function c(x) necessarily increases as
well, which means that an antibunching effect occurs. Indeed,
it is easy to verify that for a renewal PP the PDFs fn(x)
satisfy fn(0) = 0, which implies that they are increasing
for small values of x. Since, according to (2.1), c(x) is
a sum of increasing functions, it also increases. This can
be summarized in the following proposition: In the case of
renewal PPs, a conditional antibunching effect implies an
ordinary antibunching effect.

VII. CONCLUSION

Let us highlight the two main results of this paper. The
first one is that the interpretation of results of experiments of
statistical optics requires a great care when the aim is to decide
whether or not an optical field is classical. Indeed, a classical
field exhibits three main properties: (A) a bunching effect;
(B) a bunching conditional effect; (C) a variance of the number
of events recorded in any interval greater that its mean value.
But these three properties can also appear with nonclassical
PPs and we have presented examples of this situation. It results
from this fact that they are insufficient to yield an answer to
the question indicated previously.

The second one is that it is important to avoid any confusion
between a bunching effect detected by using the coincidence
function and a conditional bunching effect detected by using
the PDF of the distance between successive points of the PP.
The argument that these two distinct effects are identical for
PPs with very low density is mathematically incorrect and we
have presented specific examples illustrating this fact.

ACKNOWLEDGMENTS

The Laboratoire des Signaux et Systèmes is a joint
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