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Polarization dynamics and polarization time of random three-dimensional electromagnetic fields
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We investigate the polarization dynamics of random, stationary three-dimensional (3D) electromagnetic fields.
For analyzing the time evolution of the instantaneous polarization state, two intensity-normalized polarization
autocorrelation functions are introduced, one based on a geometric approach with the Poincaré vectors and the
other on energy considerations with the Jones vectors. Both approaches lead to the same conclusions on the rate
and strength of the polarization dynamics and enable the definition of a polarization time over which the state of
polarization remains essentially unchanged. For fields obeying Gaussian statistics, the two correlation functions
are shown to be expressible in terms of quantities characterizing partial 3D polarization and electromagnetic
coherence. The 3D degree of polarization is found to have the same meaning in the 3D polarization dynamics as
the usual two-dimensional (2D) degree of polarization does with planar fields. The formalism is demonstrated with
several examples, and it is expected to be useful in applications dealing with polarization fluctuations of 3D light.
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I. INTRODUCTION

The polarization state of a monochromatic beamlike
electromagnetic field is specified by the orientation, shape, and
helicity of the polarization ellipse, but for a random, partially
polarized light the state is not invariant; instead it evolves in
time [1,2]. Furthermore, for two fields with the same degree of
polarization the temporal evolution of the polarization state,
i.e., the polarization dynamics, can be completely different [3].
For an unpolarized field no preferred instantaneous state of
polarization exists, and the state fluctuates with maximal
randomness. For a partially polarized field the polarization
state varies around a specific state, and the higher the degree of
polarization, the smaller, on average, the range of fluctuations.
For a fully polarized field the instantaneous polarization state
does not change in time. Recently, the polarization dynamics
of two-dimensional (2D) fields (plane waves, beams, and far
fields) was analyzed in terms of the instantaneous Poincaré
vectors [4] and Jones vectors [5]. Both formalisms were
shown to provide the same information on the polarization
dynamics, and they enabled us to define, in analogy with
the coherence time and coherence length, the concepts of
polarization time and polarization length for optical beams.
The polarization dynamics can be used, for example, to
transmit information in a fiber ring laser system [6].

In this work we extend the results of Refs. [4,5] on the
polarization dynamics of 2D fields to random, statistically
stationary, three-dimensional (3D) electromagnetic fields.
Such fields are common in applications and in nature. For
example, evanescent electromagnetic waves encountered in
guided-wave optics are genuinely 3D fields. Likewise, in
reflection of an unpolarized beam, the incident and reflected
light generally form a 3D field. Other examples of inherently
3D fields are thermal radiation in a cavity and simply ambient
light. For such fields, not only the instantaneous polarization
ellipse but also the plane in which it lies can vary randomly. In
order to describe the dynamics of the polarization fluctuations
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at a point in 3D space (consisting of any medium), we define
two autocorrelation functions. The first one is obtained on the
basis of geometrical arguments and relies on the instantaneous
eight-component Poincaré vectors. The second approach is
based on energy considerations, and it is formulated in terms
of the instantaneous three-component Jones vectors. Although
the two approaches are seemingly different, a connection
between them is established, indicating that they are equivalent
and provide the same information about the rate and strength
of the polarization dynamics. Both theories can be used to
define a polarization time as a time interval over which the
instantaneous polarization state does not change significantly.
We also show that in the case of Gaussian statistics, the
polarization correlation functions can be written in terms of the
3D degree of polarization and two quantities used to character-
ize coherence in electromagnetic fields. Significantly, the 3D
degree of polarization, as defined in Ref. [7], plays exactly the
same role in the characterization of the polarization dynamics
of 3D fields as the customary 2D degree of polarization does
for 2D fields. We exemplify the formalism by three examples:
a uniformly partially polarized and temporally Gaussian-
correlated field, radiation inside a blackbody cavity, and the
field at the intersection of three orthogonally propagating and
orthogonally linearly polarized beams.

The paper is arranged as follows. In Sec. II we recall
the tools used to describe the partial polarization and partial
coherence properties of random, 3D electromagnetic fields.
In Sec. III we introduce two autocorrelation functions to
characterize the polarization dynamics of random 3D fields
and establish a connection between the two approaches. In
this section we also define a polarization time for 3D fields.
The formalism is illustrated with specific examples in Sec. IV.
Finally, we summarize the work in Sec. V.

II. DESCRIPTION OF ELECTROMAGNETIC
COHERENCE IN 3D FIELDS

Consider a fluctuating, statistically stationary, electro-
magnetic field that, in general, can have three orthogo-
nal electric vector components. The coherence properties
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of such a nonparaxial field at a pair of points r1 and
r2 and at time difference τ may be described using the
3 × 3 (electric) coherence matrix, E(r1,r2,τ ), having the
elements [1,8]

Eij (r1,r2,τ ) = 〈E∗
i (r1,t)Ej (r2,t + τ )〉, i,j ∈ (x,y,z). (1)

In this equation Ei(r,t), with i ∈ (x,y,z), denotes the com-
ponents of the zero-mean complex analytic signal associated
with the electric field vector. Furthermore, the angle brackets
and the asterisk denote averaging and complex conjugation,
respectively. We assume the field to be ergodic, implying
that the average can be either a time average or an ensemble
average. Equation (1) indicates that the coherence matrix is
Hermitian in the sense that

E(r1,r2,τ ) = E†(r2,r1, − τ ), (2)

where the dagger stands for the Hermitian adjoint.
The polarization properties of the field at a point are

described by the single-point, equal-time coherence (or
polarization) matrix, obtained from Eq. (1) by

J(r) = E(r,r,0). (3)

Thus we see that the polarization matrix is purely Hermitian;
i.e.,

J(r) = J†(r). (4)

Next we recall three quantities frequently employed to
characterize the partial coherence and partial polarization of
random 3D electromagnetic fields. First, the 3D degree of
polarization P3(r) is defined by [2,7]

P 2
3 (r) = 3

2

[
tr J2(r)

tr2 J(r)
− 1

3

]
, (5)

where tr denotes the trace. The physical interpretation of the 3D
degree of polarization is that in the reference frame in which
the intensities of the electric-field components are the same,
its square is equal to the average of the squared correlations
between the components [7]. This feature is identical to that
of the usual 2D degree of polarization [1,9] and can, in fact, be
viewed as the defining property of P3(r). The value of P3(r)
is invariant under unitary transformations and bounded as 0 �
P3(r) � 1, with the lower and upper limit corresponding to
full unpolarization and full polarization, respectively.

Second, the electromagnetic degree of coherence,
γEM(r1,r2,τ ), quantifies the spatial and temporal coherence
of the field, and it has the expression [10]

γ 2
EM(r1,r2,τ ) = tr [E(r1,r2,τ ) · E(r2,r1, − τ )]

tr J(r1) tr J(r2)
. (6)

The degree of coherence is real-valued, invariant under
unitary transformations at the two points, and bounded as
0 � γEM(r1,r2,τ ) � 1. The lower limit refers to complete
incoherence and the upper limit to full coherence. Physically,
the degree of coherence characterizes the field’s ability
to interfere. However, in the electromagnetic context, the
interference does not show up only as intensity fringes but also
as polarization modulation. The above definition is consistent
with this interpretation, as it describes the modulation

of all four Stokes parameters in a Young’s interference
arrangement [11].

Third, the intensity fringe visibility in a Young’s two-
pinhole experiment, γW(r1,r2,τ ), is given by [12]

γW(r1,r2,τ ) = tr E(r1,r2,τ )√
tr J(r1) tr J(r2)

. (7)

This quantity is also sometimes called the “degree of co-
herence” promoted by an analogous interpretation in the
scalar-field context. Its magnitude is limited to the in-
terval 0 � |γW(r1,r2,τ )| � 1, but unlike Eq. (6) it is not
invariant under different unitary transformations at the two
points.

In this work we consider polarization and coherence
properties only at a single point in space, i.e., r1 = r2 = r,
and so from now on we will not explicitly show the spatial
dependence of the quantities.

III. CHARACTERIZATION OF POLARIZATION
DYNAMICS IN 3D FIELDS

In this section we introduce two methods for characterizing
the time evolution of the instantaneous polarization state
of the field. The first, a geometrical approach, makes use
of the Poincaré vectors, whereas the other one, an energy-
based approach, relies on the Jones vectors. Both formalisms
lead to the same conclusions on the field’s polarization
fluctuations.

A. Poincaré-vector formalism for 3D fields

The 3 × 3 polarization matrix J of Eq. (3) can be uniquely
decomposed using the identity matrix and the eight Gell-Mann
matrices [13]. The expansion coefficients are the nine (time-
averaged) generalized Stokes parameters [1,7]. This result is
analogous to the known expression of the 2 × 2 polarization
matrix in terms of the unit matrix and the three Pauli spin
matrices with the usual Stokes parameters of beam field as
the expansion coefficients [8]. The time averages in the Stokes
parameters are over a much longer interval than the time scale
characterizing the polarization fluctuations, and hence they
cannot, as such, provide information on the time evolution of
the instantaneous polarization state of random light. For this
purpose we define the instantaneous 3D Stokes parameters
�k(t), k = 0, . . . ,8, as

�0(t) = |Ex(t)|2 + |Ey(t)|2 + |Ez(t)|2, (8a)

�1(t) = 3
2 [E∗

x (t)Ey(t) + E∗
y (t)Ex(t)], (8b)

�2(t) = 3
2 i[E∗

x (t)Ey(t) − E∗
y (t)Ex(t)], (8c)

�3(t) = 3
2 [|Ex(t)|2 − |Ey(t)|2], (8d)

�4(t) = 3
2 [E∗

x (t)Ez(t) + E∗
z (t)Ex(t)], (8e)

�5(t) = 3
2 i[E∗

x (t)Ez(t) − E∗
z (t)Ex(t)], (8f)

�6(t) = 3
2 [E∗

y (t)Ez(t) + E∗
z (t)Ey(t)], (8g)

�7(t) = 3
2 i[E∗

y (t)Ez(t) − E∗
z (t)Ey(t)], (8h)

�8(t) =
√

3
2 [|Ex(t)|2 + |Ey(t)|2 − 2|Ez(t)|2]. (8i)
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The physical interpretations of the 3D Stokes parameters
are similar to those of the traditional four Stokes parameters
of 2D fields [7].

In full analogy with the 2D formalism [1], we may define
the instantaneous Poincaré vector as

�(t) =
8∑

k=1

�k(t)ûk, (9)

where ûk , with k = 1, . . . ,8, are orthonormal vectors span-
ning an eight-dimensional real vector space. The Poincaré
vector �(t) uniquely defines the polarization state of the
field at time t . By averaging �(t) and making use of
Eqs. (8a)–(8i), the 3D degree of polarization, Eq. (5), can be
re-expressed as

P 2
3 = 〈�(t)〉 · 〈�(t)〉

3〈�0(t)〉2
=

∑8
k=1〈�k(t)〉2

3〈�0(t)〉2
. (10)

Therefore, for partially polarized fields 〈�(t)〉 · 〈�(t)〉 �
3〈�0(t)〉2. Instead, for the instantaneous Poincaré vector, we
find, using straightforward algebra, that

�(t) · �(t) =
8∑

k=1

�2
k(t) = 3�2

0(t), (11)

which may be physically interpreted to reflect the fact that
at any instant of time the field has a certain polarization state.
Furthermore, Eq. (11) indicates that the instantaneous Poincaré
vector lies on the surface of an eight-dimensional Poincaré
sphere whose radius is

√
3�0(t).

In order to separate the study of polarization fluctua-
tions from that of intensity fluctuations, i.e., the changes
in the direction of the Poincaré vector from those in
its magnitude, we express the Poincaré vector defined in
Eq. (9) as

�(t) =
√

3λ̂(t)�0(t), (12)

where λ̂(t) is the unit-length Poincaré vector. The vector λ̂(t)
may be used to investigate the polarization fluctuations by
employing the scalar product λ̂(t) · λ̂(t + τ ) as a quantitative
measure of the similarity of the state of polarization at times
t and t + τ . If the polarization states at the two times are
the same, the scalar product yields the value of 1. The
minimum value for the scalar product is −1/2, which is
encountered when the polarization states are orthogonal.
This fact, which is verified later in connection with the
Jones-vector formalism [Eq. (20) and Appendix], shows that
not all regions on the eight-dimensional Poincaré sphere are
accessible to the instantaneous Poincaré vector. For example,
no polarization states exist for which the scalar product equals
−1. For fluctuating light, a measure for the difference in the
polarization states at the time separation τ may be established
by computing the average 〈λ̂(t) · λ̂(t + τ )〉. In the absence of
intensity fluctuations, i.e., if �0(t) is constant, this would be an
entirely satisfactory quantity to characterize the time evolution
of the instantaneous polarization state. However, since often
the intensity fluctuates, we use the intensity-weighted average
of λ̂(t) · λ̂(t + τ ) to characterize the dynamics of polarization
fluctuations. This leads to a mixing of the polarization and
intensity statistics, in which those instants of time with a low

intensity, and hence of reduced physical importance, contribute
less to the average, whereas the polarization states with high
intensity give a larger contribution. Hence such a weighting
accounts for the possible correlations between the intensity
and the polarization state. A quantity, denoted by γP,3(τ ), with
the above character can be defined as

γP,3(τ ) = 〈�(t) · �(t + τ )〉
3〈�0(t)�0(t + τ )〉 . (13)

If the intensity and the polarization state are independent,
Eq. (12) implies that γP,3(τ ) reduces to the pure polarization
average 〈λ̂(t) · λ̂(t + τ )〉. The autocorrelation function γP,3(τ )
in Eq. (13) has the following properties:

−1/2 � γP,3(τ ) � 1, (14)

γP,3(0) = 1. (15)

The lower limit in Eq. (14) corresponds to the case that the
polarization states at times separated by τ are orthogonal,
whereas the upper limit indicates that the polarization states
are the same. Equation (15) shows that instantaneously
the field has a certain polarization state, consistent with
Eq. (11).

Assuming that the field obeys Gaussian statistics, the
fourth-order correlation functions in Eq. (13) can be expressed
in terms of the second-order ones according to the moment
theorem [8]. Doing so, the correlation function of the Poincaré
vectors can be developed into the form

γP,3(τ ) = P 2
3 − 1

2γ 2
EM(τ ) + 3

2 |γW(τ )|2
1 + γ 2

EM(τ )
, (16)

where P3, γW(τ ), and γEM(τ ) are given in Eqs. (5), (6), and (7),
respectively. Hence we have expressed γP,3(τ ) using quantities
that are measurable by (second-order) interferometric tech-
niques.

Since the field is ergodic, the correlations die out for
sufficiently large time separation τ . Thus, in the limit of
large time difference we find from Eq. (16) that for fields of
Gaussian statistics

lim
τ→∞ γP,3(τ ) = P 2

3 . (17)

We want to draw attention to this result: the 3D degree of
polarization plays exactly the same role in the characterization
of 3D polarization dynamics as the traditional 2D degree
of polarization (P2) does for beam fields. For 2D fields
the polarization correlation function defined in terms of the
instantaneous three-component Poincaré vector approaches
P 2

2 for large time differences [4]. This result has an intuitive
explanation related to the fact that the 2 × 2 polarization matrix
can be uniquely decomposed into two parts, one corresponding
to a fully polarized and the other to a fully unpolarized
field. The correlations associated with the polarized part are
present at any time interval, and therefore, in the limit of
infinitely large τ , the 2D polarization correlation function
naturally depends on the 2D degree of polarization. It is
known that the 3 × 3 polarization matrix cannot be written
as a sum of matrices corresponding to a completely polarized
and completely unpolarized field [1]. However, the value
limτ→∞ γP,3(τ ) equals the 3D degree of polarization as defined
in Ref. [4].
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To have a measure to characterize the rate of polarization
dynamics of a field, we introduce the polarization time as a time
interval over which the polarization state remains essentially
unchanged. More explicitly, we define the polarization time as
the smallest (positive) solution τp to the equation

γP,3(τp) = 1
2 . (18)

Thus τp is the time during which γP,3(τ ) drops from γP,3(0) = 1
to 1/2. The choice of the value 1/2 is, in principle, arbitrary,
and another suitable value depending on the situation could be
used as well.

B. Connection between the Poincaré and
Jones vectors in 3D fields

A physically more appealing interpretation of the polar-
ization correlation function γP,3(τ ) introduced in Eq. (13) is
obtained by expressing the instantaneous Poincaré vectors
in terms of the Jones vectors, given at time t by E(t) =
[Ex(t), Ey(t), Ez(t)]T , where T denotes the transpose. The
time-varying polarization state is specified by a normalized
Jones vector

ê(t) = E(t)√
I (t)

, (19)

where I (t) = E∗(t) · E(t) is the intensity of the field. Recalling
Eq. (8a) we note that I (t) = �0(t). Let then λ̂1(t) and λ̂2(t)
be two arbitrary normalized Poincaré vectors and ê1(t) and
ê2(t) be the corresponding normalized Jones vectors. For
such vector pairs we find that (the proof is outlined in the
Appendix)

λ̂1(t) · λ̂2(t) = 3
2 |ê∗

1(t) · ê2(t)|2 − 1
2 , (20)

which shows that for orthogonal polarization states λ̂(t) · λ̂(t +
τ ) = −1/2, as remarked in connection with the Poincaré-
vector analysis. By choosing λ̂1(t) = λ̂(t) and λ̂2(t) = λ̂(t +
τ ) and correspondingly ê1(t) = ê(t) and ê2(t) = ê(t + τ ),
multiplying both sides of Eq. (20) by 3�0(t)�0(t + τ ), taking
the average, and dividing by 3〈�0(t)�0(t + τ )〉, we obtain

γP,3(τ ) = 3

2

〈|E∗(t) · E(t + τ )|2〉
〈I (t)I (t + τ )〉 − 1

2
. (21)

Next we discuss the first term on the right-hand side of this
equation.

C. Jones-vector formalism for 3D fields

Using the Jones vectors we can express, for a single
realization, the fraction of intensity that at time t + τ is in
the polarization state ê(t) as follows [5]:

γe(t,t + τ ) = |ê∗(t) · E(t + τ )|2
I (t + τ )

= |ê∗(t) · ê(t + τ )|2. (22)

It is obvious that 1 − γe(t,t + τ ) is the fraction of the field
intensity that at time t + τ belongs to the polarization states
orthogonal to ê(t). When the polarization states are the same
at the two times then γe(t,t + τ ) = 1, whereas for orthogonal
states γe(t,t + τ ) = 0. If the intensity does not fluctuate,
the above quantity when time-averaged would provide a
physically meaningful measure for the characterization of time

evolution of the instantaneous polarization state of a random
3D field. However, we are not allowed to do this simplifying
assumption. Following the same logic as in defining γP,3(τ )
of Eq. (13) above, we time-average the intensity-weighted
version of γe(t,t + τ ) (see also Ref. [5]). This leads to the
quantity

γE(t,t + τ ) = 〈I (t)I (t + τ )|ê∗(t) · ê(t + τ )|2〉
= 〈|E∗(t) · E(t + τ )|2〉, (23)

whose maximum value, 〈I (t)I (t + τ )〉, is obtained if the
polarization states at t and t + τ are the same. We use this
value to normalize Eq. (23), which results in

γJ,3(τ ) = 〈|E∗(t) · E(t + τ )|2〉
〈I (t)I (t + τ )〉 . (24)

This is exactly the term on the right-hand side of Eq. (21),
and physically it shows how much energy at time t + τ is,
on average, in the polarization state in which the field was
at time t . Therefore, the function γP,3(τ ) in Eq. (21), defined
originally in terms of the Poincaré vectors, is a normalized
function describing the mean rate of energy exchange between
orthogonal polarization states of a fluctuating 3D field.

The polarization correlation function based on the Jones
vectors, Eq. (24), has the following properties:

0 � γJ,3(τ ) � 1, (25)

γJ,3(0) = 1, (26)

with the same interpretations as Eqs. (14) and (15) have. The
lower and upper limits in Eq. (25) correspond to the states
that are orthogonal and the same, respectively, and Eq. (26)
reflects the fact that the field has a certain polarization state at
any instant of time.

Assuming again Gaussian statistics, Eq. (24) can be
re-expressed as

γJ,3(τ ) =
1
3 + 2

3P 2
3 + |γW(τ )|2

1 + γ 2
EM(τ )

, (27)

where P3, γW(τ ), and γEM(τ ) are found from Eqs. (5), (6),
and (7), respectively. We note that in the large time-interval
limit

lim
τ→∞ γJ,3(τ ) = (

2P 2
3 + 1

)/
3. (28)

When the field is fully polarized, P3 = 1, the polarization state
does not evolve, and limτ→∞ γJ,3(τ ) = 1, as expected. Instead,
for an unpolarized field, P3 = 0, we find that limτ→∞ γJ,3(τ ) =
1/3, indicating that regardless of the initial state of polarization
one third of the intensity remains, on average, in that state, and
two thirds are transferred to the polarization states orthogonal
to it. This result is consistent with the fact that for unpolarized
3D fields the average energy is equally distributed between any
three orthogonal polarization states and the energy exchange
between the states is isotropic.

Finally, we point out that the Poincaré vector approach,
Eq. (13), and the Jones vector formalism, Eq. (24), are,
according to Eq. (21), connected as

γP,3(τ ) = 3
2γJ,3(τ ) − 1

2 . (29)
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Therefore, both γP,3(τ ) and γJ,3(τ ) may equally well be used
in assessing the polarization dynamics of three-dimensional
fields. Defining the polarization time τp in the Jones vector
formalism, one can use, for example, the criterion γJ,3(τp) =
2/3, corresponding to the value 1/2 employed in connection
with the Poincaré vectors [Eq. (18)].

IV. EXAMPLES

We apply the polarization-dynamics formalism presented
above to three specific 3D fields: a uniformly partially
polarized and temporally Gaussian-correlated field, radiation
inside a blackbody cavity, and the field at the intersection
of three orthogonally propagating and orthogonally linearly
polarized beams. The examples are investigated using the
Poincaré-vector approach presented in Sec. III A, but the
analyses could be carried out equally well with the Jones-
vector formalism of Sec. III C. For the polarization time we
use the criterion given in Eq. (18).

A. Uniformly partially polarized, temporally
Gaussian-correlated 3D field

The first example we consider is a uniformly partially
polarized field endowed with Gaussian temporal correlations.
The field is characterized by a 3 × 3 polarization matrix J (with
the corresponding degree of polarization P3) and a coherence
time σ . The coherence matrix of such a field can be expressed
as

E(τ ) = J exp(−τ 2/2σ 2). (30)

Using Eqs. (6) and (7) we find for this field that

γ 2
EM(τ ) = 2

3

(
P 2

3 + 1
2

)
exp(−τ 2/σ 2), (31)

γW(τ ) = exp(−τ 2/2σ 2), (32)

and hence

γP,3(τ ) = 3P 2
3 − (

P 2
3 − 4

)
exp(−τ 2/σ 2)

3 + (
2P 2

3 + 1
)

exp(−τ 2/σ 2)
. (33)

The behavior of γP,3(τ ) as a function of τ/σ is illustrated
in Fig. 1. The dotted, dash-dotted, dashed, and solid curves
correspond to the cases of P3 = 0, P3 = 0.5, P3 = 0.95, and
P3 = 1, respectively. We see that γP,3(0) = 1 for any P3, as
it should according to Eq. (15). Furthermore, the solid line
implies that for a fully polarized field, P3 = 1, the polarization
state does not fluctuate, and hence γP,3(τ ) = 1 for all τ . The
lower P3 is, the more steeply γP,3(τ ) decreases, approaching
the value P 2

3 for large τ . The dotted curve indicates that for
an unpolarized field, P3 = 0, the state of polarization changes
significantly during the coherence time σ . Therefore, for a
relatively unpolarized field, the coherence time can be consid-
ered to be an estimate for the polarization time as well. The
horizontal solid line in Fig. 1 identifies the criterion γP,3(τp) =
1/2 for the polarization time τp. The intersections of this
line and the curves for P3 = 0 and P3 = 0.5 are emphasized
with the dashed vertical lines, corresponding to polarization
times τp = 0.9σ and τp = 1.2σ , respectively. In the cases of
P3 = 0.95 and P3 = 1 the polarization time can be considered
infinitely long, as the polarization state evolves only slightly
or not at all as a function of τ . Similar conclusions on the

τ/σ

γ P
,3

(τ
)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

P3 = 0

P3 = 0.95

P3 = 1

P3 = 0.5

FIG. 1. Behavior of the polarization correlation function γP,3(τ )
of a uniformly partially polarized and temporally Gaussian-correlated
3D field as a function of τ/σ , σ being the coherence time. The
curves are for different values of the 3D degree of polarization: P3 =
1 (solid), P3 = 0.95 (dashed), P3 = 0.5 (dash-dotted), and P3 = 0
(dotted). The horizontal gray line emphasizes the criterion γP,3(τp) =
1/2 for the polarization time τp , and the dashed vertical lines indicate
the polarization times for P3 = 0 and P3 = 0.5, which are τp = 0.9σ

and τp = 1.2σ , respectively.

polarization time were drawn in Ref. [4] for a two-dimensional,
uniformly polarized, and Gaussian-correlated field using
the 2D degree of polarization and the 2D Poincaré vector
formalism.

B. Blackbody field in a cavity

The polarization dynamics of blackbody radiation em-
anating from a small opening in a closed cavity was re-
cently investigated, and the polarization times for various
cavity temperatures were assessed [4,5]. For such a far-field
analysis the 2D Poincaré and Jones vector formalisms are
adequate. Here we investigate the time evolution of the
polarization state of the blackbody field inside the cavity,
which necessitates a three-dimensional treatment introduced in
Sec. III.

The electric mutual coherence tensor for blackbody field
inside a cavity is [14]

Eij (τ ) = 16

π

(kBT )4

(h̄c)3
ζ (4,1 + ikBT τ/h̄)δij , i,j ∈ (x,y,z),

(34)

where kB is the Boltzmann constant, T is the absolute
temperature, h̄ is the reduced Planck constant, c is the speed
of light in vacuum, ζ (s,a) is the generalized Riemann zeta
function ζ (s,a) = ∑∞

n=0(a + n)−s as given in Ref. [14], and δij

is the Kronecker delta symbol. Use of Eq. (34) in Eqs. (5), (6),
and (7) implies, respectively, that

P3 = 0, (35)

γEM(τ ) = |90ζ (4,1 + ikBT τ/h̄)|/(
√

3π4), (36)

γW(τ ) = 90ζ (4,1 + ikBT τ/h̄)/π4, (37)
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FIG. 2. Behavior of the polarization correlation function γP,3(τ )
as a function of τ for a blackbody field in a cavity at several
temperatures: 2.8 K (solid line), 10 K (dashed line), 28 K (dash-dotted
line), and 300 K (dotted line). The horizontal solid line shows the
condition γP,3(τp) = 1/2 for the polarization time τp , and the vertical
dashed lines indicate its values.

and therefore

γP,3(τ ) = 4|90ζ (4,1 + ikBT τ/h̄)|2
3π8 + |90ζ (4,1 + ikBT τ/h̄)|2 , (38)

which depends only on the temperature, as expected for a
blackbody field.

The behavior of γP,3(τ ) for the blackbody field inside a
cavity is shown in Fig. 2. The solid, dashed, dash-dotted, and
dotted lines correspond to temperatures 2.8 K, 10 K, 28 K, and
300 K, respectively. The temperature of 2.8 K is chosen as it
corresponds to the cosmic microwave background radiation.
In the limit τ → ∞ each curve tends to 0 since the blackbody
field is unpolarized. The effect of temperature is clearly seen:
the higher the temperature, the faster the polarization state
evolves in time and the shorter the polarization time. Again
the horizontal line indicates the criterion γP,3(τp) = 1/2 for
the polarization time τp, and the vertical dashed lines mark
its value for various temperatures. The polarization times
at temperatures 10 K, 28 K, and 300 K are, respectively,
found to be 365 fs, 130 fs, and 12.2 fs. Although not
shown in the figure, the polarization time for 2.8 K is
1.30 ps. The results indicate that inside a thermal cavity
the polarization time of a fluctuating 3D electromagnetic
field is essentially the same as that of a two-dimensional
far field emitted through a small opening in the cavity
(cf. Refs. [4,5]).

C. Intersection of three orthogonally propagating beams

The last example we consider is an arrangement of three
orthogonally intersecting, linearly and orthogonally polarized
optical beams resulting in a 3D electromagnetic field with a
tunable degree of polarization. Similar setups are used in laser
cooling of atoms in optical molasses.

The field at the intersection of the beams is illustrated in
Fig. 3. The beam propagating in the +x direction, indicated
by wave vector kx , is y polarized, having an electric vector
E(x)(t) = E(t)ûy . The second beam is delayed by a time τy

with respect to the first one, polarized in the z direction, and

FIG. 3. The intersection of three orthogonally propagating and
orthogonally polarized beams. The electric fields of the beams
propagating in the x, y, and z directions, specified by wave vectors
ki , with i ∈ (x,y,z), are E(x)(t) = E(t)ûy , E(y)(t) = E(t − τy)ûz, and
E(z)(t) = E(t − τz)ûx , respectively. The parameters τy and τz are time
delays with respect to the beam traveling along the x axis, and ûi ,
with i ∈ (x,y,z), are unit vectors along the Cartesian coordinate axes.

directed to travel along the +y axis with wave vector ky ; hence
its electric field is E(y)(t) = E(t − τy)ûz. The third beam is
delayed by τz with respect to the first one, x polarized, and
propagates along the +z axis with wave vector kz. Thus its
electric vector is E(z)(t) = E(t − τz)ûx .

The total electric field at the intersection of the three
beams is

E(t) = [E(t − τz), E(t), E(t − τy)]T , (39)

for which the electric mutual coherence matrix is of the form

E(τ ; τy,τz)

= I

⎡
⎢⎣

γ (τ ) γ (τ + τz) γ (τ − τy + τz)

γ (τ − τz) γ (τ ) γ (τ − τy)

γ (τ + τy − τz) γ (τ + τy) γ (τ )

⎤
⎥⎦ .

(40)

In this equation I = 〈E∗(t)E(t)〉 is the intensity of the beams,
and we have introduced the normalized correlation function

γ (τ ′) = 〈E∗(t)E(t + τ ′)〉
〈E∗(t)E(t)〉 , (41)

which obeys the relations γ (0) = 1 and γ (τ ′) = γ ∗(−τ ′). For
the coherence matrix in Eq. (40) we find the parameters of
Eqs. (5), (6), and (7) to be

P 2
3 = 1

3 [|γ (τz)|2 + |γ (τy)|2 + |γ (τy − τz)|2], (42)

γ 2
EM(τ ) = 1

3 |γ (τ )|2 + 1
9ξ (τ ; τy,τz), (43)

γW(τ ) = γ (τ ), (44)

where we used the notation

ξ (τ ; τy,τz) = |γ (τ + τz)|2 + |γ (τ − τy + τz)|2 + |γ (τ − τy)|2
+ |γ (τ − τz)|2 + |γ (τ + τy − τz)|2
+ |γ (τ + τy)|2 (45)

for brevity.
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Inserting Eqs. (42)–(44) into Eq. (16), the polarization correlation function takes on the form

γP,3(τ ) = 6[|γ (τz)|2 + |γ (τy)|2 + |γ (τy − τz)|2] − ξ (τ ; τy,τz) + 24|γ (τ )|2
18 + 6|γ (τ )|2 + 2ξ (τ ; τy,τz)

. (46)

The behavior of γP,3(τ ) is illustrated in Fig. 4 in the case of
Gaussian correlation function

γ (τ ) = exp(−τ 2/2σ 2), (47)

with σ representing the coherence time. The horizontal solid
line again indicates the condition γP,3(τp) = 1/2 for the
polarization time τp, and the vertical dashed lines mark its
values. For all values of time delays τy and τz the polarization
correlation function fulfills γP,3(0) = 1, as mandated by the
definition, and for large τ it approaches P 2

3 , which can
be verified using Eqs. (42) and (46) and the fact that
limτ→∞ γ (τ ) = 0. We see from the figure that for τy = 10σ

and τz = 2σ (solid curve), the field is close to a fully
unpolarized 3D electromagnetic field, and the polarization
time is τp = 0.89σ . In fact, while at any instant of time the
field has some polarization state, if τy,τz,|τz − τy | 	 σ , the
orthogonal electric field components are uncorrelated, and,
on average, the field is 3D unpolarized. For τy = τz = 10σ

(dotted curve) and τy = τz = σ (dash-dotted curve) the field
is 3D partially polarized, and the related polarization times
are τp = 1.3σ and τp = 1.5σ , respectively. In the latter case,
the large-interval limit of γP,3(τ ) = P 2

3 is larger than 1/2,
but the polarization time could still be defined. For relatively
uncorrelated 3D fields the curves show dips at τ = τy , τ = τz,
and τ = |τy − τz|, corresponding to the time intervals at which
two of the orthogonally polarized beams fully correlate. In
particular, the solid curve takes on values less than zero at
the dips, indicating that, when averaged over time, at these
separations more than two-thirds of the energy has shifted to

τ/σ

γ P
,3

 (
τ)

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

τy = 10σ, τz = 2σ

τy = 0.5σ, τz = 0.25σ

τy = σ, τz = σ

τy = 10σ, τz = 10σ

FIG. 4. Polarization correlation function γP,3(τ ) of three inter-
secting orthogonally linearly polarized, orthogonally propagating,
and temporally Gaussian-correlated beams. The curves are for
different values of time delays τy and τz given next to the graphs.
The horizontal solid line emphasizes the condition γP,3(τp) = 1/2
for the polarization time τp , and the vertical dashed lines indicate its
values.

polarization states orthogonal to the initial state. A similar
phenomenon was observed in Ref. [5] for a fluctuating 2D
field. For the parameters τy = 0.5σ and τz = 0.25σ (dashed
curve) the field is highly polarized, and the polarization time
can be taken to be infinitely long.

V. SUMMARY AND CONCLUSIONS

We investigated the polarization dynamics of random,
three-dimensional electromagnetic fields and introduced two
intensity-normalized polarization autocorrelation functions
for this purpose, one based on a geometric approach with the
Poincaré vectors and the other one on energy considerations
in terms of the Jones vectors. We also showed that the two
approaches yield physically equivalent results on the rate and
extent of the time evolution of the instantaneous polarization
state, enabling us to define polarization time as a time interval
over which the polarization state of the field remains essentially
unchanged. In the case of Gaussian statistics, the polarization
correlation functions were shown to be expressible in terms of
functions characterizing partial polarization and second-order
coherence of random 3D fields. We also found that the 3D
degree of polarization introduced in Ref. [7] has the same
meaning in the 3D polarization dynamics as the traditional 2D
degree of polarization does with beam fields. The formalism
was illustrated with several examples: a uniformly partially
polarized and temporally Gaussian-correlated field, the field
inside a blackbody cavity, and the field at the intersection of
three orthogonally propagating and orthogonally polarized
beams. We expect the results to be useful in applications
involving polarization fluctuations in genuinely 3D fields,
for instance in light-matter interaction in electromagnetic
evanescent fields, intersecting beams in particle trapping
and confinement, and optical systems with high numerical
apertures.
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APPENDIX: DERIVATION OF EQ. (20)

The connection given in Eq. (20) between the intensity-
normalized Poincaré vectors, λ̂(t), and the intensity-
normalized Jones vectors, ê(t), is derived in this
Appendix. The scalar product of two normalized Poincaré
vectors is

λ̂(t1) · λ̂(t2) = �(t1) · �(t2)

3�0(t1)�0(t2)
=

∑8
k=1 �k(t1)�k(t2)

3�0(t1)�0(t2)
, (A1)
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where we used Eqs. (9) and (12) and the fact that λ̂(t) is a
real vector. Using the definitions of the 3D Stokes parameters
given in Eqs. (8), we obtain

8∑
k=1

�k(t1)�k(t2) = 9

2

∑
i,j

E∗
i (t1)Ei(t2)Ej (t1)E∗

j (t2)

− 3

2

∑
i

|Ei(t1)|2
∑

j

|Ej (t2)|2, (A2)

where i,j ∈ (x,y,z). We identify the sums in the last
term as the intensities �0(t1) and �0(t2) and thus find
that

λ̂(t1) · λ̂(t2) = 3

2

∑
i,j E∗

i (t1)Ei(t2)Ej (t1)E∗
j (t2)

�0(t1)�0(t2)
− 1

2
. (A3)

Consider next the scalar product of normalized Jones
vectors, whose squared magnitude can be expressed as

|ê∗(t1) · ê(t2)|2 = |E∗(t1) · E(t2)|2
I (t1)I (t2)

, (A4)

where we used Eq. (19). Since

|E∗(t1) · E(t2)|2 =
∑
i,j

E∗
i (t1)Ei(t2)Ej (t1)E∗

j (t2), (A5)

we observe that

|ê∗(t1) · ê(t2)|2 =
∑

i,j E∗
i (t1)Ei(t2)Ej (t1)E∗

j (t2)

I (t1)I (t2)
. (A6)

Since �0(t) = I (t), we see that Eqs. (A3) and (A5) imply
that

λ̂(t1) · λ̂(t2) = 3
2 |ê∗(t1) · ê(t2)|2 − 1

2 , (A7)

which is Eq. (20).
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