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Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation
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We show through theory and numerics that when few-cycle femtosecond solitons are generated through
cascaded (phase-mismatched) second-harmonic generation, these broadband solitons can emit optical Cherenkov
radiation in the form of linear dispersive waves located in the red part of the spectrum. The beating between the
dispersive wave and the soliton generates trailing temporal oscillations on the compressed soliton. Insertion of
a simple short-wave pass filter after the crystal can restore a clean soliton. On the other hand, bandpass filtering
around the dispersive wave peak results in near-transform-limited ultrashort mid-IR pulses with pulse durations
much shorter than the input near-IR pulse. The Cherenkov radiation for the crystal considered (β-barium borate)
is found for pump wavelengths in the range λ = 0.95–1.45 µm, and is located in the regime λ = 1.5–3.5 µm. For
shorter pump wavelengths, the phase-matching point is located in the absorption region of the crystal, effectively
absorbing the generated dispersive wave. By calculating the phase-matching curves for typically used frequency
conversion crystals, we point out that the mid-IR absorption in the crystal in many cases automatically will filter
away the dispersive wave. Finally, an investigation of recent experimental results uncovers a four-wave-mixing
phenomenon related to Cherenkov radiation that is an additional generation mechanism of long-wavelength
radiation that can occur during soliton compression. We discuss the conditions that lead to this alternative
dynamics rather than generation of Cherenkov radiation.
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I. INTRODUCTION

One of the most celebrated and investigated nonlinear
processes is second-harmonic generation (SHG) [1]. Despite
this fact, there are today still new aspects to discover, in
particular when ultrafast pulses in the femtosecond regime
interact. We here discuss optical Cherenkov radiation through
radiation of linear dispersive waves [2] when ultrashort few-
cycle solitons are generated through cascaded SHG.

Cascaded SHG occurs when the nonlinear conversion
process over the propagation length L is strongly phase mis-
matched |�kL| � 1: up-conversion to the second harmonic
(SH) is followed by the reverse process of down-conversion
to the fundamental wave (FW) after half a coherence length
π/2|�k|. On continued propagation, the SH is therefore cycli-
cally generated and back-converted (the cascade of nonlinear
effects). In this cascaded nonlinear interaction the FW expe-
riences a nonlinear phase shift due to the difference in phase
velocities, and the magnitude and sign of the phase shift are de-
termined by the phase-mismatch parameter �k [3]. This prop-
erty is useful for many applications (see Ref. [4] for a review).

One particular application is pulse compression of energetic
femtosecond pulses toward the few-cycle regime with cas-
caded quadratic nonlinearities [5,6]. In this particular example
a strong negative nonlinear phase shift is generated on the FW
by the cascaded nonlinearity, which means that, unlike in many
other media, solitons may now be excited even in regimes with
normal dispersion (where blue components travel more slowly
than red components). An important regime is the visible
and near-IR, in which soliton compression of femtosecond
pulses is possible even to few-cycle duration [7]. Furthermore,
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the cascaded nonlinearity can be understood as a Kerr-like
self-phase-modulation (SPM) action, and the negative sign
of this effective nonlinearity means that it is self-defocusing.
Thus, catastrophic collapse due to self-focusing effects may
be avoided provided that the self-focusing material Kerr
nonlinearities can be overcome [8], and it is therefore possible
to compress multiple millijoule femtosecond pulses with this
method. Therefore this method is a compact and efficient
alternative to existing compression methods, such as, e.g.,
pulse compression in hollow fibers combined with dispersive
elements [9], for generating energetic few-cycle pulses.

Recently we investigated how close to the ultimate limit
(single-cycle duration T = 2π/ω) this soliton compression
system can get [10]. In this connection we noted that higher-
order dispersion (HOD) in the numerics revealed surprising
features of the compressed soliton, namely, a peak in the
nonsolitonic part of the spectrum, and we suggested that it
could be optical Cherenkov radiation. This peak disappeared
when only up to third-order dispersion was used. We will here
investigate this phenomenon in detail.

The first prediction of resonant dispersive waves came from
Wai et al., who showed that when perturbing the nonlinear
Schrödinger equation (NLSE) with HOD, e.g., third-order
dispersion, the otherwise stable soliton will start to radiate
energy into a dispersive wave [2,11]. This was later coined
optical “Cherenkov” radiation, since the soliton propagates
through the medium emitting radiation with a slower group
velocity [12]. The first experimental observation of optical
Cherenkov radiation came shortly after in a mode-locked dye
laser generating solitonlike pulses [13] and in a single-mode
fiber [14]; both systems are well described by the NLSE. A
similar effect called Kelly sidebands [15] can be observed
in soliton fiber lasers, where periodical gain may induce
nonsolitonic radiation in the sidebands of the laser spectrum.
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The dispersive wave is linear in nature and feeds off the
generated solitons in the system, and its spectral location
is a result of a phase-matching condition to the soliton
[12]. Dispersive waves are often found in supercontinuum
generation outside the soliton regions [16,17], where solitons
are no longer supported because the group-velocity dispersion
(GVD) changes sign (see [18] for a review). Currently there
is also focus on use of dispersive waves for ultrashort pulse
synthesis [19] and broadband frequency combs [20].

In this publication we investigate the presence of dispersive
waves in cascaded SHG of ultrafast femtosecond pulses. We
derive the nonlocal NLSE governing the FW, and show that in
the stationary regime and weakly nonlocal limit, a description
of the FW dynamics by a standard NLSE with HOD is well
justified. We derive the phase-matching conditions for the dis-
persive wave as a function of the FW soliton wavelength, and
calculate specifically the conditions for a standard nonlinear
crystal. These calculations show that a dispersive wave can
form on the red side of the spectrum (at longer wavelengths),
and it is clear that including only a few extra orders of
dispersion is often not enough to describe the dispersive wave
formation accurately as the dispersive wave may be strongly
redshifted from the soliton. Through numerical simulations
we investigate the formation of the dispersive waves in detail,
and show that the theoretical predictions are quite accurate.
We show how the dispersive wave can be removed after the
soliton is formed by using a simple short-wave pass filter
after the nonlinear crystal. On the other hand, the dispersive
wave radiation can also be isolated with a bandpass filter,
resulting in an ultrashort near-transform-limited mid-IR pulse.
We calculate the phase-matching curves for a broad range
of standard frequency conversion crystals, and point out that
in the more dispersive crystals the phase-matching condition
is often found inside the absorption region of the crystal.
Finally, we discuss some experimental results obtained by
some of us in connection with another study [21] in order to
understand whether the spectral peaks, which were observed in
the linear (anomalous) regime, are related to optical Cherenkov
radiation. This investigation helps us to differentiate between
two closely related mechanisms for the generation of long-
wavelength radiation that can occur during cascaded-quadratic
soliton compression.

II. THEORY

Consider the propagation equations for SHG in mks units.
In a type-I phase-matching configuration two degenerate FW
photons with frequency ω1 combine to give a SH photon ω2 =
2ω1 with orthogonal polarization with respect to the FW. In
the slowly-varying-envelope approximation and in absence of
diffraction the governing propagation equations for the electric
fields Ej are [22,23][

i
∂

∂z
+ D̂1

]
E1 + ω1deff

cn1
E∗

1E2e
i�kz = 0, (1)

[
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]
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cn2
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1e
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where deff is the effective χ (2) nonlinearity. Later in the
numerical simulations we will extend these equations to the
slowly-evolving-wave approximation [7,23] and include also

competing Kerr nonlinearities and self-steepening effects. The
equations have been transformed to the frame of reference
traveling with the FW group velocity vg,1 = 1/k

(1)
1 by the

retarded time coordinate τ = t − z/vg,1, which gives rise to
the group-velocity mismatch (GVM) term d12 = k

(1)
1 − k

(1)
2 .

The phase mismatch is �k = k2 − 2k1, and the equations are
generalized to include dispersion up to order md through the
operators D̂j = ∑md

m=2
im

m!k
(m)
j

∂m

∂τm , and k
(m)
j ≡ dmkj/dωm|ω=ωj

are the dispersion coefficients, kj = njω/c the wave numbers,
and nj the linear refractive indices, whose chromatic disper-
sion is modeled by the Sellmeier equations [24].

A. NLSE describing cascaded SHG

We consider strongly phase-mismatched (cascaded) SHG,
in which the FW can be approximately described by a NLSE
[22]. More precisely, we recently showed [10,25] that in the
cascading limit |�k|z � 1, the ansatz E2(z,τ ) = φ(τ )e−i�kz

when inserted in Eq. (2) and Fourier transformed, yields the
solution in the frequency domain

Ẽ2(z,
) = −e−i�kz
√

2π
ω1deff

cn2�k
R̃(
)F

[
E2

1(z,τ )
]
, (3)

where F[·] denotes the forward Fourier transform. The
nonlocal response function in the frequency domain, R̃, is

R̃(
) = 1√
2π

�k

D̂2(
) − d12
 + �k
, (4)

where D̂2(
) = ∑md

m=2 m!−1k
(m)
2 
m is the SH dispersion

operator in the Fourier domain. Using the convolution theo-
rem E2(z,τ ) = −e−i�kz ω1deff

cn2�k

∫ ∞
−∞ dsR(s)E2

1(z,τ − s), where

R(τ ) = F−1[R̃] is the inverse Fourier transform of the re-
sponse function. Inserting this into Eq. (1) and normalizing the
variables, we see that the FW obeys a dimensionless nonlocal
NLSE,[

i
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]
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1 (ξ,τ ′ − s) = 0. (5)

Here τ ′ = τ/Tin, where Tin is the FW input pulse duration, ξ =
z/LD,1, where LD,1 = T 2

in/|k(2)
1 | is the FW dispersion length,

and finally U1 = E1/Ein with Ein being the peak amplitude
of the electric input field. The dimensionless dispersion is
D̂′

j = ∑md

m=2 imδ
(m)
j

∂m

∂τ ′m and δ
(m)
j ≡ k

(m)
j (T m−2

in |k(2)
1 |m!)−1.

The dimensionless nonlocal response function R′(τ ′) =
TinR(τ ) determines the nature of the cascaded SHG interaction,
and in most cases (see also below) it results in an instantaneous
and a delayed Kerr-like SPM term. This part is controlled by
the cascaded soliton order

N2
SHG = LD,1E2

in
ω2

1d
2
eff

c2n1n2|�k| . (6)

In Eq. (5) we have also included Kerr SPM in the material (but
we neglect for simplicity cross-phase-modulation effects as
they remain weak because the SH is inefficiently converted).
The Kerr soliton order is N2

Kerr = LD,1
ω1
c
Iinn

I
Kerr, where the

Kerr nonlinear refractive index is nI
Kerr = 3Re(χ (3)

eff )
4ε0n

2
1c

, with Iin as
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the FW peak input intensity and χ
(3)
eff the appropriate cubic

nonlinear tensor component of the interaction (see Ref. [26]
for more details).

In the so-called stationary regime, where the cascaded
nonlinear effects dominate GVM effects, the denominator of
Eq. (4) has only complex roots in 
, making the nonlocal
response function |R| ∝ e−|τ |/τs . In the stationary regime the
weakly nonlocal approximation is often satisfied [10], in which
the response function is much narrower than the pulse width
τs � Tin, and the NLSE can be approximated as [10,25]

[
i

∂

∂ξ
+ D̂′

1

]
U1 − [

sgn(�k)N2
SHG − N2

Kerr

]
U1|U1|2

= sgn
(
�kd12k

(2)
2

)
iN2

SHGτR,SHG|U1|2 ∂U1

∂τ
. (7)

From this equation the left-hand side tells us that in the cas-
cading limit the FW experiences an overall cubic nonlinearity.
For �k > 0 the cascaded SHG contribution is negative, i.e.,
self-defocusing, and we may in this case introduce an effective
soliton order N2

eff = N2
SHG − N2

Kerr to describe the effective
nonlinear strength. In the normal dispersion regime δ

(2)
j > 0, a

FW soliton may then be induced by the cascaded SHG if �k >

0. This ensures an overall effective self-defocusing cubic
nonlinearity. We can also interpret the effective cubic nonlin-
earity through an intensity-dependent change in the refractive
index n = n1 + I1n

I
cubic, where nI

cubic = nI
SHG + nI

Kerr. From
our analysis the contribution from the cascaded quadratic non-

linearities is nI
SHG = − 2ω1d

2
eff

c2ε0n
2
1n2�k

, consistent with Ref. [3], and

we have in the self-defocusing case N2
eff = LD,1

ω1
c
Iin|nI

cubic| =
LD,1

ω1
c
Iin(|nI

SHG| − nI
Kerr). The requirement of an overall ef-

fective self-defocusing cubic nonlinearity then comes down to
having |nI

SHG| > nI
Kerr.

The right-hand side of Eq. (7) represents the weakly
nonlocal contribution of the cascaded nonlinearity. It is a self-
steepening-like term that, in combination with the nonlinear
phase shifts from the stationary component of the nonlinear
polarization, produces a Raman-like frequency shift that tends
to blueshift the soliton for sgn(�kd12k

(2)
2 ) < 0 (as is the

case with normal dispersion and self-defocusing effective
nonlinearity). It is governed by a characteristic dimensionless
time parameter τR,SHG = 2|d12/Tin�k|. Thus, the blueshift is
small for long input pulses and for NSHG small. Evidently a
strong GVM in the interaction will also affect this term, as will
a reduced phase mismatch �k. However, when we stay in the
stationary regime the characteristic time τR,SHG remains small
and the blueshift remains insignificant. This is further justified
if NSHG is not too large since the nonlocal self-steepening-like
term is proportional to N2

SHG; see Eq. (7). The stationary
regime is the parameter space for which �k > �ksr, where
�ksr = d2

12/2k
(2)
2 is the phase-mismatch parameter, at which

the roots of the denominator in Eq. (4) change from being
complex to being real for md = 2 [25]. If �k < �ksr (the
nonstationary regime), GVM effects become very strong, and
the interaction can no longer be described as simply as the
right-hand side of Eq. (7); see Ref. [10] for more details. The
blueshift is described in more detail in Ref. [27]; note that this
study operated with a low �k (and was thereby conducted

in the nonstationary regime) where the blue-shift is much
stronger since τR,SHG increases.

In the rest of this section we therefore base our calculations
on the following NLSE:[

i
∂

∂ξ
+ D̂′

1

]
U1 − N2

effU1|U1|2 = 0. (8)

We will now proceed to calculate the phase-matching condi-
tions for optical Cherenkov radiation.

B. Optical Cherenkov radiation

When only second-order dispersion (GVD) is considered
we get the standard NLSE[

i
∂

∂ξ
− δ

(2)
1

∂2

∂τ 2

]
u1 − u1|u1|2 = 0, (9)

where δ
(2)
1 = sgn(k(2)

1 )/2 = 1/2 in the case of normal disper-
sion, and where u1 = U1Neff . It has the following soliton
solution [12]:

u0
1,sol = A sech(Aτ )eiq ′

solξ , (10)

where A is the peak amplitude of the soliton and insertion of
Eq. (10) into Eq. (9) yields the dimensionless soliton wave
number q ′

sol = −A2/2. The negative sign is due to the fact that
we are dealing with self-defocusing nonlinearities.

In order to observe optical Cherenkov radiation, it is not
enough to consider the NLSE with only GVD (9); we must
include some perturbation in the form of HOD. Basically
HOD tends to destabilize the stable soliton solution (10):
the soliton can become phase matched to a linear wave,
which extracts energy from the soliton. We can find this
phase-matching point by requiring that the phase of the
soliton be that of the dispersive wave φsol = φdw. The phase
accumulated by the soliton at a propagation distance L

is φsol = L[n1(ωsol)ωsol/c + qsol − ωsol/vg,sol], where vg,sol =
1/k

(1)
1 (ωsol) is the group velocity at the soliton frequency.

Using the result from before and converting to physical
units we get qsol = −N2

effIsol/(2LD,1Iin) = −|nI
cubic|Isolω1/2c,

where Isol is the peak intensity of the soliton.
This is identical with the expression in Ref. [16] except for

the sign of the nonlinear term. The dispersive wave must in
order to be efficiently generated move in the same reference
frame as the pump, but since it is a linear wave it will not
contain any nonlinear phase shift. Its phase is therefore simply
φdw = L[n1(ωdw)ωdw/c − ωdw/vg,sol]. Phase-matching φsol =
φdw therefore implies
n1(ωdw)ωdw − n1(ωsol)ωsol

c
− ωdw − ωsol

vg,sol
− qsol = 0. (11)

At this point one could simply just start finding the frequency
ωdw that fulfills this requirement for a given ωsol. However,
in the stationary reference frame we may equivalently state
the following identity for the soliton wave number including
nonlinear corrections [28]:

ksol(ω) = k1(ωsol) + (ω − ωsol)k
(1)
1 (ωsol) + qsol. (12)

The solitonic (nondispersive) nature is evident through
the linear dependence on ω of the soliton wave num-
ber. The phase-matching condition can now be written as
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k1(ωdw) − ksol(ωdw) = 0, i.e., at the dispersive wave frequency
the soliton and the linear dispersive wave have the same wave
number. Expanding the wave number of the linear radiation
k1(ωdw) around ωsol, this condition may be expressed as

md∑
m=2

(ωdw − ωsol)m

m!
k

(m)
1 (ωsol) − qsol = 0 (13)

with md = ∞. The sum is now recognized as the FW
dispersion operator expanded around the soliton frequency,
evaluated at the frequency ωdw, and taking into account all
orders of dispersion. Clearly, this phase-matching condition is
sensitive to how many orders of dispersion are included in the
analysis. Obviously, this is especially the case if the soliton is
far from the zero-dispersion point.

In order to evaluate the phase-matching condition we need
to know the soliton peak intensity Isol, and a valid estimate
can be found by using the scaling laws for cascaded SHG
[23]. Specifically, the peak soliton intensity at the optimal
compression point can be estimated by Isol = fcQcIin, where
the compression factor is fc = 4.7(Neff − 0.86) and the com-
pressed pulse quality is Qc = [1 + 0.24(Neff − 1)1.11]−1. It is
at this point convenient for our case to use this result to write
the soliton wave number as qsol = −N2

efffcQc/2LD,1, giving

qsol = −
∣∣k(2)

1

∣∣N2
eff4.7(Neff − 0.86)

2T 2
in[1 + 0.24(Neff − 1)1.11]

. (14)

For a fixed Neff and input pulse duration Tin the only
wavelength-dependent term is the GVD coefficient k

(2)
1 .

These analytical results will now be tested against numeri-
cal simulations presented in the next section.

III. NUMERICAL SIMULATIONS

In our recent work [10] we observed an unexpected spectral
peak in the mid-IR when simulating cascaded SHG pulse
compression in β–barium borate (BBO) for type-I phase-
matching pumping with λ1 = 1.064 µm and including all
orders of dispersion. However, when only up to third-order
dispersion (md = 3) was included, the peak disappeared. We
argued that this peak was a dispersive wave phase matched to
the soliton, and in order to investigate this further, we have
here carried out simulations at other wavelengths.1

Before showing the numerical results, it is instructive to
mention the rather peculiar dispersion conditions we operate
with. Dispersive waves have mainly been studied in Kerr
systems with a self-focusing nonlinearity where solitons

1The simulations are based on the full coupled SHG propagation
equations in the slowly-evolving-wave approximation [21] (see [23]
for more details), and they include exact dispersion (md = ∞),
self-steepening, and Kerr effects. We do not model a noninstantaneous
Kerr (Raman) response because the ultrafast Raman response function
for BBO is to our knowledge not known. For more details, see
Ref. [23], but note that we have in the present publication used a larger
Kerr nonlinearity, nI

Kerr = 5.9 × 10−20 m2/W, based on observations
made in Ref. [21], and the IR-corrected Sellmeier equations [24].
We use Miller’s rule to determine the chromatic dispersion of the
nonlinear coefficients (see [26] for more details).

FIG. 1. (Color online) The wavelength dependence of (a) the FW
group index ng,1 = c/vg,1; (b) FW GVD k

(2)
1 (black) and FW TOD

k
(3)
1 (red, dashed) for BBO.

are generated in the anomalous dispersion regime. In our
system the effective nonlinearity is, as mentioned before,
self-defocusing, and solitons therefore reside in the normal
dispersion regime. The FW group index, GVD, and third-order
dispersion (TOD) coefficients for BBO are shown in Fig. 1.The
normal dispersion regime is for λ < λZD 	 1.49 µm, and the
dispersion slope is positive.

The numerical results are summarized in Fig. 2, and the
main simulation parameters are listed in Table I. Generally,
dispersive waves are observed for a range of soliton wave-
lengths spanning the zero-dispersion wavelength λZD down to
around λ1 = 0.95 µm. Below this wavelength the dispersive
wave becomes phase matched in the mid-IR absorption band of
BBO (λ > 3.5 µm) and can therefore no longer be observed.
In the figure we also present the results of the theory:2 the
dashed thin black line is the phase-matching condition Eq. (13)
taking into account the nonlinear correction to the soliton phase
via Eq. (14), while the solid thick black line neglects this
contribution (i.e., takes qsol = 0). We deliberately used a short
pulse [50 fs full width at half maximum (FWHM)] and a mod-
erate effective soliton order3 (Neff = 2.0) in order to simplify
the temporal and spectral dynamics; due to the rather short
input pulse duration, for higher soliton orders the compressed
solitons became more distorted, making it harder to determine
precisely the location of the dispersive wave. Another justifi-
cation for keeping low soliton orders is that the simple NLSE
(8) is also more accurate for small values of the soliton order
NSHG. By keeping a low effective soliton order, the nonlinear
correction to the phase-matching condition is kept small; there
is a clear but small deviation only close to λZD.

Commenting briefly on our result from Ref. [10], we
observed that there a dispersive wave when pumping with λ1 =
1.064 µm and using exact dispersion, while it disappeared
with only TOD. In Fig. 2 it is clear from the phase-matching
curve for TOD (md = 3, red dotted curve) that around

2In order to calculate the phase-matching curves we used the
Sellmeier equations for BBO with IR corrections [24]: these should
be valid all the way up to λ 	 3.2 µm. This is important in order
to calculate the dispersion correctly. See also the discussion later in
connection with Fig. 6.

3Note that an effective soliton order of 2.0 may seem quite low,
but the input pulse being as short as 50 fs FWHM the scaling
laws for the cascaded soliton compression [23] predict a sub-10 fs
FWHM compressed soliton, which for the wavelengths considered
here corresponds to as little as two or three optical cycles.
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FIG. 2. (Color online) Summary of numerical simulations of
cascaded pulse compression in BBO cut for type-I (oo → e) phase
matching at various FW wavelengths. The filled black circles show
the numerically observed Cherenkov radiation wavelength peak at the
propagation distance where the FW soliton is compressed to its short-
est duration (z = zopt). The data are plotted as a function of the soliton
wavelength λsol as determined by a cross-correlation frequency-
resolved optical gating spectrogram (see, e.g., Fig. 4 later). The the-
oretical phase-matching curves are calculated from Eq. (13), and the
thick curves are taking qsol = 0 and using md = 3 (red, dotted), md =
5 (blue, dashed) or exact dispersion (black), while the thin dashed
black curve is for exact dispersion and ksol from Eq. (14). This curve
is possible to calculate since Neff = 2.0 and Tin = 28.4 fs are held
fixed. All simulations are done with exact dispersion except for one
using only TOD (red, open circle). For other parameters, see Table I.

λ1 = 1.06 µm the phase-matching point λdw for md = 3 is
far into the mid-IR absorption band, and thus the dispersive
wave will be absorbed; we were therefore not able to observe it
in our study in Ref. [10]. This is also the case when including

TABLE I. Parameters of the simulations used in Fig. 2. The phase
mismatch is continuously changed to satisfy �k > �ksr, and at the
same time low enough to achieve |nI

SHG| > nI
Kerr. The characteristic

time parameter of the nonlocal self-steepening-like term in Eq. (7)
is kept roughly constant, τR,SHG 	 0.11–0.16, for all simulations.
Input parameters: Neff = 2.0, sech-shaped pulse with T FWHM

in = 50 fs
(Tin = 28.4 fs), which ideally should generate a sub-10 fs FWHM
compressed soliton [23]. The dispersion is calculated from the
Sellmeier equations in Ref. [24].

λ1 �k �ksr Iin λdw zopt

(µm) (mm−1) (mm−1) (GW/cm2) NSHG NKerr (µm) (mm)

0.950 80 79 1319 8.7 8.5 3.212 29

1.000 70 61 474 5.6 5.2 3.011 25

1.030 60 52 229 4.2 3.7 2.888 17

1.064 55 43 176 3.8 3.3 2.769 17

1.100 45 36 101 3.2 2.5 2.624 17

1.200 30 19 43 2.7 1.8 2.273 22

1.260 30 15 40 2.8 1.9 2.108 28

1.300 20 10 19 2.4 1.4 1.998 32

1.400 20 5.1 11 2.5 1.5 1.736 66

1.450 10 2.2 2.2 2.2 0.94 1.631 152

up to fifth-order dispersion (blue dashed curve). Only with
higher-order dispersion (in this case exact, or all orders, of
dispersion) is the dispersive wave accurately described. This
is because the pump wavelength is so far away from the zero-
GVD point. When pumping with a longer wavelength close to
the zero-GVD point, the TOD case can show a dispersive wave,
and we confirmed this with a simulation for λ1 = 1.300 µm
(red open circle), which matches the theory quite well.

The dispersive wave is seen to form to the red side of
the spectrum, because the nonsolitonic regime due to the
effective self-defocusing nonlinearity resides in the anomalous
dispersion region. In contrast, in silica fibers dispersive waves
are typically observed in the blue part of the spectrum.
This is because the nonlinearity in fibers is self-focusing,
implying that solitons require anomalous GVD to exist,
and the linear regime (normal dispersion) is located to the
blue side. On the other hand, redshifted dispersive waves
have also been observed with self-focusing nonlinearities: it
was initially suggested [29] and subsequently experimentally
demonstrated [30] that redshifted dispersive waves may extend
the continuum further into the infrared. This was achieved
by using photonic crystal fibers with very small cores that
made it possible to get two zero-dispersion points, one to the
blue and one to the red side of the soliton. Such a dispersion
profile has been used to study, e.g., soliton self-frequency shift
cancellation [31] and to generate broadband IR radiation using
a near-IR pump [32].

While the phase-matching condition might allow a dis-
persive wave to form independently on the soliton spectral
bandwidth, it is only when there is a spectral overlap between
the soliton spectrum and the Cherenkov resonance that it grows
to a substantial level [33]. Therefore Cherenkov radiation is
usually observed when the soliton is formed close to λZD.
However, in the case we have considered here the solitons
were compressed to few-cycle duration through the cascaded
interaction, and their spectra were therefore ultrabroadband.
This is the reason why we could observe Cherenkov radiation
very far away from the soliton wavelength.

The detailed dynamics in the creation of the ultrashort
FW soliton and subsequently the dispersive wave can be
appreciated in Fig. 3, which shows a simulation at λ1 =
1.300 µm with exact dispersion. In the simulation the 50 fs
input pulse is after around 32 mm of propagation compressed
to a 12 fs FWHM (sub-three-cycle) soliton; see Fig. 3(a).
This compression occurs due to the cascaded SHG; the SHG
coherence length for the chosen phase-mismatch parameter
�k = 20 mm−1 is very short, Lcoh = π/|�k| = 0.16 mm, and
thus hundreds of cascaded conversion cycles have occurred
at the optimal compression point. At the compression point
the FW soliton shows trailing oscillations, and subsequently
radiation is emitted at a slower group velocity than the soliton:
this is optical Cherenkov radiation. Eventually the soliton
detaches from the uncompressed pedestal, which at the end
of the simulation (z = 100 mm) is located on the leading side
around τ = −20 fs.

In the FW spectrum, Fig. 3(c), the soliton is blueshifted
due to the nonlocal terms that induce a Raman-like frequency
shift. A careful investigation shows that the soliton at the
compression point is located around λ = 1.25 µm, and at
this propagation stage resonant Cherenkov radiation appears,
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FIG. 3. (Color online) The simulation for λ1 = 1.300 µm with
exact dispersion: The FW time trace (a) shows a soliton that
compresses to 12 fs FWHM at z = zopt = 32 mm (optimal com-
pression point, dashed line). At this point the FW spectrum (c)
shows resonant Cherenkov radiation emitted with a spectral peak
at 
dw 	 −0.5 PHz. The SH time plot (b) and spectrum (d) show
similar dynamics due to the harmonic locking of the SH field in the
cascading limit.

located to the red side of the spectrum. No Cherenkov radiation
is observed before this point because the soliton is not formed
yet. At the observed soliton wavelength the theory predicts a
dispersive wave located at λ = 2.12 µm (
 = −0.56 PHz),
which slightly overestimates the dispersive wave peak
position in the spectrum located around λdw = 2.00 µm
(
dw = −0.51 PHz). This trend seems quite general for most
of the simulations, as summarized in Fig. 2.

After the optimal compression point, the dispersive wave
remains stable at the same wavelength. However, it was
recently shown that in the NLSE radiation trapping of the
soliton and the dispersive wave can under certain circum-
stances continuously shift the dispersive wave away from
the zero-GVD point [34,35]. In our case this would mean a
continuous shift of the dispersive wave peak toward longer
wavelengths, and this does not happen. The explanation is as
follows: The main dispersive radiation occurs when the soliton
is compressed to its minimum duration because here the soliton
has its highest peak intensity and its broadest spectrum. As the
soliton and dispersive wave propagate further the dispersive
wave peak in the FW spectrum, Fig. 3(c), remains fixed. This
is because the dispersive wave is emitted at a wavelength
having a much slower group velocity than the soliton (see
Fig. 1). This group-velocity mismatch between the soliton and
the dispersive wave is also quite evident in the time trace in
Fig. 3(a). The soliton is temporally delayed due to the blueshift
induced by the cascaded nonlocal nonlinearity, pushing the
soliton toward lower wavelengths and thereby lower group
velocity (see again Fig. 1). However, it never becomes slow
enough to catch up with the dispersive wave, and therefore
collision and subsequent trapping as described by Refs. [34,35]
cannot occur.

In supercontinuum generation with anomalous dispersion,
the Raman effect redshifts the soliton and thereby slows it
down. This is in fact the driving force behind much of the
dynamics involved in the generation of the broad spectrum, in
particular of the spectral part generated by trapping the soliton
and the dispersive wave through a Raman-mediated slowing
down of the soliton. In our results presented here we have
neglected the effect of a Raman-delayed Kerr nonlinearity
in the simulations, since the Raman response of the crystal
we simulated, BBO, is not well known. If we were to take
Kerr Raman effects into account in the simulations, then
this would not lead to radiation trapping either: the Raman
effect would redshift the soliton, but because we operate in
the normal dispersion regime this would actually speed up
the soliton, making the group-velocity mismatch between the
soliton and the dispersive wave even greater. On the other
hand, a Raman-like frequency shift is intrinsic in the cascaded
SHG interaction [25,27], and it would be very interesting
to study the competition and dynamics between these two
similar nonlinear processes. This would require detailed and
accurate measurements of the SHG nonlinear crystals in order
to determine the instantaneous material Kerr nonlinearity and
the delayed ultrafast Raman response, such as the technique
used in Ref. [36].

The SH also shows some interesting features. In particular
the spectrum Fig. 3(d) has what appears to be a dispersive wave
around 
 = −1.0 PHz. However, this spectral component is
actually just the FW dispersive wave picked up at twice the
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FIG. 4. (Color online)
XFROG spectrograms of the FW
(a), (c) and SH pulse (b), (d),
taken at the optimal compression
point z = zopt = 32 mm (left
column) and at z = 100 mm
(right column) for the simulation
with λ1 = 1.300 µm and full
dispersion. The dashed line
λdw indicates the Cherenkov
phase-matching point with the
soliton at λsol = 1.25 µm. In the
SH plots the lines λdw,2 indicate
the wavelength beating with
twice the predicted Cherenkov
phase-matching frequency (see
text). A sech-shaped gating pulse
of 20 fs FWHM was used.

beat frequency 2
dw. This happens because in the cascading
limit the SH spectrum is locked to the FW; cf. Eq. (3).
This connection is modulated only by the nonlocal response
function R̃(
). In the stationary regime �k > �ksr, where the
simulations are carried out, and in the weakly nonlocal limit
Ẽ2(z,
) 	 [R̃(
 = 0) + 
dR̃

d

|
=0]F[E2

1(z,τ )] [10]; thus the
SH contains many of the same spectral components as the
FW, and since it is locked to F[E2

1(z,τ )] it will contain
frequency components at twice the frequency observed in the
FW spectrum.

This locked “Cherenkov radiation” is also observable in
the temporal trace of the SH; see Fig. 3(b). Note that it is
traveling with the same group velocity as the FW dispersive
wave, despite the fact that the SH group velocity at that
wavelength (λ 	 1.0 µm) is substantially lower. The GVM
walk-off component of the SH is also observable: it appears in
the beginning of the propagation as a rapidly disappearing term
(due to a slower SH group velocity giving a substantial GVM
parameter d12 = −45 fs/mm). Finally, the nonlocal locking
of the SH to the FW also implies that the FW soliton and
pedestal are “copied” in the SH time trace as locked harmonic
radiation trapped in the frame of reference traveling with the
FW group velocity. In another presentation we will investigate
this phenomenon more closely [37].

While the harmonic locking effect evidently leaves distinct
traces in the SH that are reminiscent of solitonic behavior,
there is no proof that the locked SH radiation is actually a
soliton. Therefore we do not believe that the locked radiation
can generate resonant optical Cherenkov radiation. On the
other hand, if we could observe Cherenkov radiation emitted
by the SH, it would indicate that the SH was indeed a soliton,

but the phase-matching point would be too far away in the
spectrum to be observable.

A more detailed insight into optical Cherenkov radiation
formation is obtained in Fig. 4, where the numerical results
at λ1 = 1.300 µm are presented at the optimal compression
point through cross-correlation frequency-resolved optical
gating (XFROG) spectrograms, calculated as Sj (
,T ) =∣∣∫ ∞

−∞ dτ ′ei
τ ′
Uj (τ ′)Ugate(τ ′ − T )

∣∣2
, where Ugate is a suitably

chosen gating pulse. The FW in Fig. 4(a) has compressed to
12 fs FWHM and during compression it has been blueshifted
to λsol = 1.25 µm. In the spectral trace as well as in the
spectrogram the dispersive wave is quite evident: its position
at λ = 2.00 µm lies slightly below the wavelength predicted
by the theory λdw = 2.12 µm for the observed soliton wave-
length. On the logarithmic FW time trace on the top of Fig. 4(a)
the trailing oscillations mentioned before are noticeable. These
trailing oscillations have been studied analytically in detail
in the NLSE including third-order dispersion [38]. From the
spectrogram we can now explain them as a result of beatings
between the linear dispersive wave and the soliton: in fact
the temporal period (around 12 fs) is exactly the beat period
2π/|
sol − 
dw|. As the pulse propagates further through the
crystal, the main part of the dispersive wave is delayed due to
having a lower group velocity than the soliton [38], but at the
same time new energy is fed into the dispersive wave. This
position will now shift toward lower wavelengths after the
optimal compression point; this is caused by a slight redshift
toward a fixed final value of the soliton after the compression.
This soliton redshift might be some kind of spectral recoil
from losing energy to the dispersive wave, and eventually the
saturation point could be due to a balance between the blueshift
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induced by the nonlocal cascaded nonlinearity and the spectral
recoil. A similar effect was observed in silica photonic crystal
fibers with a negative dispersion slope in Ref. [31], where the
Raman self-frequency shift is balanced by the blue recoil of
the soliton losing energy to the dispersive wave.

In the spectrogram we also observe that upon propagation
the amount of radiation shed into the dispersive wave region
will diminish, mainly because soliton fission will occur,
reducing the soliton intensity [39]. Another factor is that the
dispersive wave strength is proportional to the spectral overlap
of the soliton [33]. Thus, when the soliton is the shortest
the radiation into the dispersive wave is strongest, and this
occurs at the optimal compression point. Note that the total
spectral intensity of the dispersive peak will instead grow upon
propagation. This is because what is observed there is the sum
of all the temporal slices of radiation shed by the soliton(s).

It is also worth noting that in Fig. 3(a) it seems that
dispersive waves are emitted only at the optimal compression
point, but actually weaker radiation is emitted subsequently
by the soliton in the later relaxation stage, which is below the
minimum level of the chosen color scale of that time trace.
Instead in Fig. 4(c) it is evident that dispersive waves are
continuously radiated by the soliton upon further propagation.

The SH spectrogram in Fig. 4(b) has two components:
one locked to the FW pulse due to the cascaded interaction
[cf. Eq. (3)], and one being the usual GVM walk-off component
located around T = +1300 fs due to the lower group velocity.
The beating of these two components causes the ripples
in the SH spectrum around the degenerate SH wavelength
λ = 0.650 µm. The SH component created by the nonlocal
locking to the FW at twice the dispersive wave frequency is
quite obvious, indicated with λdw,2 = 2πc/(ω2 + 2
dw). In
the time trace ripples similar to those of the FW are observed
in the trailing part, but they oscillate faster as the beating
frequency is twice that of the FW. Note also that the SH spectral
cut actually has a hole where the FW dispersive wave resides.

We have also in Figs. 4(c) and 4(d) included the spec-
trograms taken upon further propagation (z = 100 mm). The
FW now has a more “ragged” dispersive wave spectral
cut, extending over a larger bandwidth than in the previous
spectrum in Fig. 4(a). This is because, as mentioned above, the
soliton after the compression point starts to redshift slightly,
ending up at a wavelength slightly to the blue side of the
original pump wavelength, and thus the phase-matching point
shifts toward shorter wavelengths as the soliton propagates,
giving a broader spectral peak.

In the SH spectrogram of Fig. 4(d) we observe the same
features as at the previous propagation point: the locked
harmonic travels with the FW group velocity and “copies”
the FW radiation, while the FW dispersive wave components
also leave signs in the SH spectrogram around λdw,2. In this
spectrogram the SH GVM walk-off component is no longer
inside the window shown (it appears at T 	 +4 ps).

In a soliton compression context, the trailing temporal
oscillations induced by optical Cherenkov radiation may not be
desirable when striving for clean few-cycle pulses. However,
they can easily be filtered away; see Figs. 5(a) and 5(b). This
simulation is done for similar conditions as those used in the
recent experiment by some of us [7]. From a 110 fs input pulse,
a 9 fs FWHM compressed soliton is formed after 38 mm of

FIG. 5. (Color online) (a) shows the FW spectrum at the optimal
compression point (z = 38 mm) for a simulation using the same
parameters as the experiment in Ref. [7]: λ1 = 1.26 µm, T FWHM

in =
110 fs, Iin = 35 GW/cm2, and Neff = 4.1. A dispersive wave is
evident at 
 	 −0.6 PHz (λ = 2.11 µm). When a short-wave pass
filter is applied (dashed), the trailing oscillations on the FW time trace
can be filtered away; see (b). Instead when a bandpass filter is applied
(dotted) centered at the dispersive wave peak, a clean 50 fs FWHM
pulse with λ = 2.11 µm results; see (c). The filtered radiation has for
clarity been amplified 100 times; the peak intensity of this pulse is
around 20 dB below the input peak intensity.

propagation. The temporal trace is shown in Fig. 5(b) and
the trailing oscillations due to the formation of Cherenkov
radiation are quite pronounced (full black line). The dispersive
wave is now filtered away by applying a short-wave pass filter
centered slightly to the blue of the dispersive wave peak. The
filtered soliton (dashed red line) has now a very clean shape
without trailing oscillations and keeps a very short duration
(11 fs FWHM). Thus, from a practical viewpoint this should
not affect the generation of clean compressed solitons as long
as the dispersive wave is generated substantially far away from
the soliton wavelength.

On the other hand, the Cherenkov radiation may also act as
a source of femtosecond IR radiation. In fact, if in the example
discussed above we instead apply a suitable bandpass filter
centered around the peak of the dispersive wave we can recover
a λ 	 2.11 µm pulse [see Fig. 5(c)], which has 50 fs FWHM
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duration (around seven optical cycles and much shorter than
the near-IR pump) and 120 nm FWHM bandwidth. These
values give a time-bandwidth product around 30% above the
transform limit. The efficiency of generating the Cherenkov
radiation can be estimated by observing that the radiation
intensity lies around 20 dB below the input level. A more
precise value is obtained by integrating over the pulses, which
reveals that around 1.5% of the input pulse energy flux resides
in the dispersive wave. Considering that the 50 fs radiation is
generated with a longer near-IR input pulse (110 fs FWHM),
these numbers look quite favorable. A higher efficiency can be
achieved shortly after the optimal compression point, as, e.g.,
evidenced by Fig. 3(c), where clearly the Cherenkov peak
grows in strength after the soliton has been formed. For the
case in Fig. 3(c) the efficiency is around 2% at the compression
point and shortly after it increases to over 3%, after which it
saturates.

IV. CHERENKOV RADIATION PHASE-MATCHING
CURVES

In Fig. 6 we present the phase-matching curves (in absence
of the nonlinear phase shift) for a broad range of nonlinear
crystals previously used for cascaded quadratic interaction. We
observe that the “low-dispersion” crystals (KDP, LBO) might
generate near-IR dispersive waves when pumped at standard
laser wavelengths for generating energetic femtosecond pulses
(λ = 0.8–1.3 µm), while BBO and the more dispersive crys-
tals (LN, LT, KTP, KN, and KTA) when pumped with these
wavelengths will generate dispersive waves in the mid-IR.
In fact, the dispersive wave is in many cases phase matched

FIG. 6. (Color online) Phase-matching curves similar to Fig. 2
for various popular quadratic nonlinear crystals as calculated from
Eq. (13) with qsol = 0. The gray area denotes the regime with
anomalous GVD for λ1, where an effective self-focusing nonlinearity
nI

cubic > 0 is needed to generate solitons. The “0” transmission edge
(through 1 cm of crystal) of the mid-IR absorption region is marked
with a star. The phase matching considered is type I oo → e, except
where denoted “type 0,” where ee → e interaction is considered. The
KN and LN curves hold for both type-0 and type-I phase matching
as they turn out to have almost identical phase-matching curves.
The crystals are as follows (the Sellmeier equations are all taken at
room temperature and are from Ref. [40], except where noted). KDP,
potassium dihydrogen phosphate; LBO, lithium triborate; BBO, β–
barium borate [24,41]; KTP, potassium titanyl phosphate; LT, lithium
tantalate; LN, 5% magnesium oxide–doped lithium niobate [42]; KN,
potassium niobate; KTA, potassium titanyl arsenate [43,44].

inside the absorption region of the crystal; the end of the
mid-IR absorption region is marked with a star. In this case
it is therefore not necessary to perform a postcompression
filtering to avoid beating between the soliton and the dispersive
wave; the filter is in a sense naturally built into the crystal. On
the other hand, if the aim is to generate dispersive waves
this diagram provides a quick overview of possible pump
wavelengths and crystal candidates.

When pumped with Ti:sapphire lasers with λ1 	 0.8 µm all
the crystals shown in Fig. 6 have phase-matching points inside
their respective IR absorption regions. This explains why
dispersive waves have eluded observation despite the many
experiments performed with this wavelength (e.g., [5,6]).
Another explanation is, of course, that while many experiments
have investigated cascaded SHG effects at this wavelength, the
majority of these have been carried out far below the soliton
formation threshold. Thus, a dispersive wave cannot form.

Note that these curves are based on the Sellmeier equations,
which are usually only valid for a limited range; in particular,
the mid-IR behavior of the Sellmeier equations has only
recently been investigated for some crystals due to the current
interest in mid-IR laser sources (BBO [24] and LN [42] are
examples). Thus, the long-wavelength range of the calculations
might not be very accurate for all crystals. In fact, we recently
became aware of a new IR study on BBO [41], reporting on
modified Sellmeier equations relative to those in Ref. [24];
this curve has been included in Fig. 6, and it is evident that the
two predictions do not always agree. The same is the case for
KTA, where two completely different curves are obtained.

V. EXPERIMENT

Recently, some of us investigated controllable self-
steepening effects in cascaded SHG [21]. In preparing for
this experiment a 25 mm BBO crystal cut with θc = 28◦
was pumped at λ1 = 1.420 µm, close to the zero-dispersion
point λZD 	 1.49 µm. The pulses were generated with an
optical parametric amplifier and had a FWHM duration of
130 fs and 10 µJ energy. The input pulse spectrum was large
enough to support an 89 fs FWHM pulse, corresponding
to a dimensionless chirp parameter of around unity, and
the pump pulse was loosely focused in the BBO crystal to
generate an intensity in the tens of GW/cm2 range. The loose
focus (approximately 0.4 mm FWHM spot size) minimizes
diffraction effects as the corresponding Rayleigh length is
around ten times the crystal length.

A substantial spectral component was found to reside inside
the linear region, i.e., beyond λZD; see Fig. 7(a) where the
linear region (with anomalous dispersion) is shaded gray. The
position of the peak changed slightly when the phase-mismatch
value was changed: for �k = 2.4π/mm it is located around
λ = 1.65 µm, for �k = 4.0π/mm it is located around λ =
1.55 µm, while for �k = 5.8π/mm it is located around the
zero-dispersion point. Note that the spectrum analyzer in the
experiment was not able to measure beyond λ = 1.7 µm. This
unpublished result is now investigated further so as to ascertain
whether this is an observation of optical Cherenkov radiation.

Initially, we can say based on what we have presented so
far in this paper that a dispersive wave should not change
its spectral position when �k is changed, but this is true
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FIG. 7. (Color online) Experimental results (a) of a BBO crystal pumped close to λZD, using a chirped T FWHM
in = 130 fs pulse (T FWHM

in = 89 fs
transform limit) at λ1 = 1.420 µm having 10 µJ of energy. The intensity was kept constant and the spectral trends are reported after 25 mm of
propagation for �k = 5.8π/mm, �k = 4.6π/mm, and �k = 2.4π/mm. The inset shows a zoom in the soliton region λ = 1.1–1.49 µm on a
logarithmic scale. In (b) we show the result of numerical simulations after 25 mm of propagation. The input pulses were chirped Gaussian 130 fs
FWHM pulses with C = +1.0. The same phase-mismatch values as in the experiments were used, and the intensities were Iin = 70 GW/cm2 for
�k = 5.8π/mm (giving Neff = 16.3), Iin = 55 GW/cm2 for �k = 4.6π/mm (giving Neff = 18.5), and Iin = 50 GW/cm2 for �k = 2.4π/mm
(giving Neff = 24.0). In both (a) and (b) the anomalous dispersion region is shaded gray. (c)–(e) Show the XFROG spectrograms of the FW
taken with a 10 fs FWHM gating pulse; (e2) and (e3) show the case �k = 2.4π/mm at later stages. (f) Shows the calculations of FWM using
Eq. (15) and using as input a soliton at λsol = 1.18 µm and a linear wave at λlin = 1.65 µm. The wave numbers shown have been compensated
for the slope of the soliton group velocity.

only as long as the soliton does not change either its peak
intensity substantially (so as to change qsol) or if the soliton
is strongly blue- or redshifted, whereby the phase-matching
point may change quite dramatically. This cannot necessarily
be confirmed for the experimental results in Fig. 7.

We have therefore performed numerical simulations using
130 fs FWHM chirped Gaussian input pulses (chirp parameter4

C = +1.0). All parameters were the same as in the experiment,

4The sign of the chirp is unknown, but a positive chirp from SPM
in the beam path seems most likely. In any case, similar results were
found with a negative chirp, although with a lower intensity.

and the input intensity was varied in the Iin = 50–70 GW/cm2

range to mimic the experimental spectra.5 These intensities
results in quite large soliton orders Neff > 10.

In Fig. 7(b) we show on a linear scale the numerical spectra
at z = 25 mm for each case. The general trend from the
experiment is matched well, as a redshifted peak is observed
in the linear regime and it is redshifted the most for low �k

5The experimental intensity fluctuations were probably lower than
this, but instead the phase-mismatch values hold some degree of
uncertainty justifying this approach.
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values just as in the experiments. Also the blueshifted peaks
match rather well with results of the experiments.

The XFROG spectrograms in Fig. 7 further explain the
dynamics. Basically by decreasing the phase mismatch we
increase the soliton order, and thereby the soliton compression
point occurs sooner; thus what we see with a fixed crystal
length, as in the experiment, is roughly the soliton compression
dynamics at various stages.6

For �k = 5.8π/mm, Fig. 7(c), the soliton order is too low
for any soliton to form before the crystal exit after 25 mm of
propagation; the spectrogram at z = 25 mm shows a strongly
chirped pulse and clear SPM-like shoulders are visible in the
spectral trace. Notice, however, how the redshifted shoulder
has partially leaked into the anomalous dispersion region,
λ > λZD.

For �k = 4.0π/mm, Fig. 7(d), we are now closer to the
optimal compression point, and now the red SPM shoulder
is actually pushed into the anomalous regime. This radiation
gives rise to the strong peak in the nonsolitonic linear regime
of the spectrum around λ = 1.5 µm and beyond.

For �k = 2.4π/mm, Fig. 7(e1), �k is decreased enough to
obtain an effective soliton order high enough to form a soliton
just before reaching z = 25 mm. In the spectrogram the soliton
appears around λ 	 1.20 µm, i.e., strongly blueshifted, and
ahead of the soliton an uncompressed part is located (the usual
pedestal, located around λ 	 1.30 µm).

Therefore the main experimental peak in Fig. 7(a) to
the blue side, which is gradually shifted toward shorter
wavelengths when �k is decreased, seems not to be solitonic
radiation but instead is related to the uncompressed pedestal.
Furthermore, the numerics confirm that this uncompressed
pedestal is quite strong and that the soliton in the linear
spectrum instead is almost unnoticeable: in Fig. 7(b) the soliton
radiation is related to the broad low plateau centered around
λ = 1.20 µm in the blue curve, while for the black and red
curves no soliton is formed and the plateau is absent.

In order to determine whether the experiments show
indications of such a plateau we have made an inset in Fig. 7(a)
showing the short-wavelength range on a logarithmic scale. It
seems that in the 2.4π/mm case the first signs of a plateau of
radiation at λ = 1.2 µm are noticeable, suggesting the initial
stage of the soliton formation seen in Fig. 7(e1).

Coming back to Fig. 7(e1), the SPM shoulder that has
leaked into the anomalous regime temporally overlaps with
the soliton and in the time trace trailing oscillations are seen
on the pulse. Also some radiation is found around λ 	 2.0 µm.
We now argue that this is not Cherenkov radiation, but rather
radiation from four-wave mixing (FWM) of the soliton and the
leaked SPM shoulder. Such a FWM between the soliton and a
linear wave may generate new spectral components [28,45] in
positions distinct from the dispersive wave phase-matching
point. As mentioned previously the Cherenkov resonance
condition can be written as k1(ωdw) = ksol(ωdw), while the two
FWM resonance conditions from mixing the soliton and the

6Such reasoning holds only because the soliton orders in the three
cases are quite similar.

linear wave are [28]

k1(ωrad) = ±[k1(ωlin) − ksol(ωlin)] + ksol(ωrad), (15)

where ωrad is the radiative frequency of the wave resonant in
this FWM.

In order to complete this argument we present the contin-
uation of the simulation for �k = 2.4π/mm in Figs. 7(e2)
and 7(e3). At z = 30 mm the soliton is now clearly separated
from the pedestal (it is slowed down by the nonlocal effects
that induce a Raman-like blueshift of the pulse to a regime
with lower group velocity). The soliton peak is located
around λ = 1.18 µm and due to their temporal overlap it may
interact with the leaked SPM field in the anomalous regime
(peaked around λ = 1.65 µm). At this point of propagation
the peak around λ = 2.10 µm has grown to a substantial level.
Calculations of the FWM phase-matching points from Eq. (15)
presented in Fig. 7(f) show that it derives from FWM between
the soliton and the leaked SPM field rather than Cherenkov
radiation: the former is phase matched at λ+ 	 2.02 µm, while
the Cherenkov resonance is located around λdw 	 2.3 µm.

Upon further propagation to z = 41 mm, Fig. 7(e3), we
can complete the picture: now the soliton fission process
[16,39] has created two main solitons, and the different
spectral peaks observed can be understood from FWM of these
solitons with various parts of the radiation in the anomalous
(linear) regime. In fact, we did not observe any Cherenkov
radiation in the numerics, which could be because the pumping
conditions were close to the zero-dispersion point, favoring
the generalized FWM condition over the Cherenkov condition
[46].

Concluding, we believe that the experimentally observed
radiation peak in the linear regime is not optical Cherenkov
radiation, but rather SPM-broadened radiation leaking into the
linear regime. Nonetheless, through nonlinear FWM with
the 1.2 µm soliton expected at longer propagation lengths,
the experimentally observed leaked radiation peak should play
an important role in the formation of new strongly redshifted
Cherenkov-like waves.

This experimental and numerical investigation has therefore
allowed us to identify an experimentally accessible set of con-
ditions where highly redshifted radiation should be obtainable
by a mechanism other than that of the Cherenkov radiation
condition. This long-wavelength generation originates from
nonlinear FWM dynamics between solitonic and leaked non-
solitonic radiation that naturally plays out during high-order
soliton compression close to the zero-dispersion wavelength.
Observation of the predicted long-wavelength peaks would
require a spectrometer that goes beyond λ = 1.7 µm, and a
more detailed investigation around and below λ = 1.20 µm,
where the numerics predict the formation of the main
soliton.

Finally, it is worth mentioning that the kind of dynamics
discussed in this section—where the redshifted SPM shoulder
leaks into the linear regime—was not observed in any of the
simulations in Figs. 2–5, even when pumping very close to
the zero-dispersion point. The explanation is that the soliton
order was much lower there, so the amount of leaked SPM-
broadened radiation was minimal. In fact, Fig. 8 compares
the case in Fig. 7(e) pumped at λ1 = 1.42 µm with a high
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FIG. 8. (Color online) Comparing the evolution of the FW in the cases of (a) λ1 = 1.420 µm used in Fig. 7 having Neff = 24.0 and chirped
input pulse (T FWHM

in = 130 fs) and (b) λ1 = 1.400 µm from Fig. 2 having Neff = 2.0 and T FWHM
in = 50 fs.

soliton order with a low-soliton case from Fig. 2 pumped at
λ1 = 1.40 µm. In contrast to the high-soliton-order case just
studied, in the latter case there is only a small amount of leaked
SPM-broadened radiation that later seems to be pulled back
into the normal dispersion regime.

VI. CONCLUSIONS AND DISCUSSION

In this publication we have investigated the formation of
optical Cherenkov radiation (dispersive waves) when gener-
ating solitons with ultrafast cascaded SHG of femtosecond
pulses. Through numerical simulations of the full coupled
propagation equations we showed the formation of dispersive
waves in BBO for a broad range of FW wavelengths (λ1 =
0.95–1.45 µm). The dispersive wave formed in the linear
part of the spectrum, i.e., the anomalous dispersion region,
which is located in the red part of the spectrum. We explained
the dispersive wave formation by reducing the coupled wave
equations to a single NLSE-like equation for the FW. We
calculated the phase-matching conditions analytically using
the resonant coupling theory for the NLSE [12], and found
good agreement with the numerical results.

Since the Cherenkov radiation often was formed very far
from the soliton wavelength, we found it very important to
describe the dispersion as accurately as possible. It is in
this connection worth noting that dispersive waves require
higher-order dispersion to exist: in fact the presence of
third-order dispersion, i.e., the first higher-order contribution,
tends to destabilize the otherwise stable soliton in the NLSE
[2,11,12,47–49], and the soliton starts shedding radiation into
the linear dispersive wave. Close to the zero-dispersion point
λZD, we may describe the system by TOD to a good approxi-
mation, but further away higher-order dispersion components
become more crucial. Here we showed an example of such a
system, where the soliton was generated far away from λZD,
and the spectral location of the dispersive waves therefore was
shifted hundreds of nanometers when accurately describing

the dispersion. This also explains why the dispersive wave in
cascaded SHG has gone unnoticed so far (even if the numerical
simulations in Ref. [7] indicate its presence), and also why we
were unable to observe it with third-order dispersion alone
in Ref. [10] when pumping a BBO crystal around 1.0 µm
wavelength.

Optical Cherenkov radiation gives rise to a beating with
the soliton that leads to ultrafast temporal oscillations in the
trailing part of the compressed soliton. These oscillations
can be removed after the compression by a suitably selected
short-wave pass filter. On the other hand, we also showed that
inserting a simple bandpass filter around the dispersive wave
peak results in an ultrashort broadband mid-IR near-transform-
limited pulse with a pulse duration much shorter than that of
the near-IR pump and with a conversion efficiency around a
few percent.

We also showed the phase-matching curves of a broad
range of popular nonlinear crystals for cascaded interaction,
and pointed out that the more dispersive crystals have phase-
matching points to a dispersive wave quite far into the mid-IR
spectrum, so that when pumped at standard laser wavelengths
the crystal will automatically absorb the dispersive wave
radiation.

In connection with a recent experiment published by some
of us [21], an unexpected spectral peak was observed in the
linear (anomalous dispersion) regime. We performed detailed
numerical simulations to ascertain whether this could be the
first observation of optical Cherenkov radiation in cascaded
SHG. Based on simulations we concluded that for the param-
eters of the experiment the observed peak was not Cherenkov
radiation. Instead, the peak could be explained by leaking of
the red SPM shoulder into the linear regime: in the initial
stages of propagation before soliton formation the cascaded
SHG effectively induces a Kerr-like SPM action generating
the characteristic spectrally broadened double shoulders in the
FW spectrum. Being close to the zero-dispersion point, the red
shoulder leaked into the linear regime. The fact that the peak
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TABLE II. Simulation parameters used for Eq. (A1).

j sj �λj (µm) λ0,j (µm) nSG,j

1 1.0 0.251 0.445 20
2 1.0 1.010 1.300 9

3 0.6 0.159 2.525 1

4 0.2 0.053 2.825 1

5 0.1 0.530 2.750 1

shifted toward longer wavelengths when the phase mismatch
in the experiment was lowered was explained by a higher
effective soliton order.

In the simulations performed to investigate the experimental
results we did not observe clear signs of Cherenkov radiation,
but we instead saw spectral peaks in the linear regime that
we believe to be originating from four-wave mixing of the
solitons and the leaked SPM shoulder. These peaks should
be located slightly beyond the range of the spectrometer and
were therefore not seen in the experiment, but the overall good
agreement between the experiment and numerical simulations
leads us to conclude that we have observed the precursors of the
resonant peaks caused by mixing solitons and linear waves. We
will pursue the observation of such spectral peaks in the future.

FIG. 9. The linear loss included in the simulation to simulate the
absorption loss in BBO.

The observation of optical Cherenkov radiation in cascaded
SHG of ultrafast femtosecond pulses underlines how many
features this system has in common with soliton formation in
optical fibers, and in particular with supercontinuum radiation.
The advantage of the cascaded nonlinearity is as always
that we have at hand a nonlinear system where the strength
of the nonlinearity can be controlled continuously. Thus,
investigation of dispersive waves in cascaded SHG might
give insight into formation, control, and dynamics of the
interaction, leading to improved sources for ultrashort pulses
and broadband coherent light in the visible and mid-IR.
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APPENDIX A: MODELING THE UV AND IR LOSSES

An accurate numerical study of the mid-IR behavior of
the Cherenkov radiation requires taking the losses in that
region into account. In order to do this we used the approach
mentioned in Ref. [50]: based on a typical transmission vs
wavelength profile of BBO, as found, e.g., with the program
SNLO [51], we constructed a transmission profile composed of
five super-Gaussian functions,

T (λ) = min

{ 5∑
j=1

sj exp

[
−

(
λ − λ0,j

�λj

)2nSG,j
]
,1

}
, (A1)

where the coefficients are listed in Table II. This was then
converted to a wavelength-dependent linear loss coefficient α

that was included in the simulations, and its profile is shown in
Fig. 9: the short-wavelength UV edge is set to λ = 0.189 µm
while the IR cutoff was λ = 3.5 µm [40], both defined by
having α = 1 mm−1.
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[30] J. M. Harbold, F. Ö. Ilday, F. W. Wise, T. A. Birks, W. J.

Wadsworth, and Z. Chen, Opt. Lett. 27, 1558 (2002).
[31] D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, Science

301, 1705 (2003).
[32] P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O.

Bjarklev, K. P. Hansen, and J. Broeng, Opt. Lett. 33, 621 (2008).

[33] I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, Opt. Express
12, 124 (2003).

[34] A. V. Gorbach and D. V. Skryabin, Phys. Rev. A 76, 053803
(2007).

[35] A. V. Gorbach and D. V. Skryabin, Nature Photon. 1, 653 (2007).
[36] I. Kang, S. Smolorz, T. Krauss, F. Wise, B. G. Aitken, and N. F.

Borrelli, Phys. Rev. B 54, R12641 (1996).
[37] M. Bache, B. B. Zhou, and F. W. Wise (unpublished).
[38] J. N. Elgin, T. Brabec, and S. M. J. Kelly, Opt. Commun. 114,

321 (1995).
[39] Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron.

QE-23, 510 (1987).
[40] D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey

(Springer, Berlin, 2005).
[41] K. Kato, N. Umemura, and T. Mikami, Proc. SPIE 7582, 75821L

(2010) [http://link.aip.org/link/?PSI/7582/75821L/1].
[42] O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91,

343 (2008).
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