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Coherent radiation by a spherical medium of resonant atoms
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Radiation by the atoms of a resonant medium is a cooperative process in which the medium participates as a
whole. In two previous papers we treated this problem for the case of a medium having slab geometry, which,
under plane-wave excitation, supports coherent waves that propagate in one dimension. We extend the treatment
here to the three-dimensional problem, focusing principally on the case of spherical geometry. By regarding the
radiation field as a superposition of electric and magnetic multipole fields of different orders, we express it in
terms of suitably defined scalar fields. The latter fields possess a sequence of exponentially decaying eigenmodes
corresponding to each multipole order. We consider several examples of spherically symmetric initial excitations
of a sphere. Small uniformly excited spheres, we find, tend to radiate superradiantly, while the radiation from a
large sphere with an initially excited inner core exhibits temporal oscillations that result from the participation
of a large number of coherently excited amplitudes in different modes. The frequency spectrum of the emitted
radiation possesses a rich structure, including a frequency gap for large spheres and sharply defined and closely
spaced peaks caused by the small frequency shifts and even smaller decay rates characteristic of the majority of
eigenmodes.
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I. INTRODUCTION

A quantum of light emitted within a finite medium made
of identical atoms cannot easily escape. It may suffer a
large and undeterminable number of coherent absorption
and reemission processes before reaching the boundary of
the medium, and even there is subject to the hazard of
internal reflection. The emission of a quantum by a single
atom within such a medium, in other words, is inevitably a
process in which the entire medium partakes coherently. When
more than one atom is excited initially, they tend to radiate
cooperatively and that sort of coherent emission process is
often referred to as superradiance [1–6]. The time dependence
of the energy emitted by the medium in all these cases may
differ considerably from the exponential decay characteristic
of the isolated atom, and its frequency spectrum may differ
substantially from the familiar Lorentzian form. In the present
paper we address ourselves to the analysis of these effects
for the important case in which the medium is spherical in
shape and all the inhomogeneities that destroy coherence are
assumed negligible.

The medium we envisage consists of identical atoms, all
with the same electric dipole resonance at a (renormalized)
frequency ω0. We assume that the atoms are weakly excited
initially, so that they may be replaced, in effect, by harmonic
oscillators of the same frequency. We also assume them
to be distributed densely enough that many are present in
each cubic wavelength (2πc/ω0)3, and smoothly enough
to permit treating the medium as a continuum. We have
called this idealized model of a resonant and isotropically
polarizable medium polarium, and have discussed a number
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of its behaviors in two previous papers, I [7] and II [8].
In those papers, we discussed the emission and propagation
of radiation in the essentially one-dimensional context of
parallel slab geometry. The plane waves that are radiated,
we showed, can be regarded as a superposition of contribu-
tions from a sequence of mutually orthogonal polarization
modes that decay exponentially and have easily calculated
properties.

The modal decomposition of the polarization in the one-
dimensional medium revealed in I a complex structure for
the time dependence of its decay. An oscillatory exchange
of energy takes place, in effect, between the coherently
coupled radiation and polarization fields. The radiated spec-
trum consequently exhibits an elaborate structure of narrow
peaks and dips corresponding to mutually interfering resonant
amplitudes contributed by the various modes. A gap is also
present in the spectrum, corresponding to a band of frequencies
in which the implicit dispersion law of the medium suppresses
propagation. Not surprisingly, these features are also found
to play an important role in the discussion of reflection
and transmission of an externally incident plane wave by a
slab-shaped medium that we undertook in II. By changing the
angle of incidence and the polarization direction of the incident
wave, we could tune and alter the spectral dependences of
the reflection and transmission coefficients in predictable
ways.

One of our early tasks in analyzing the problem in spherical
geometry will be to find the appropriate set of exponentially
decaying polarization modes. These must obey conditions that
assure the transverse character of the radiated fields. In I,
transversality was easily secured by dealing only with fields
uniform over planes perpendicular to the axis of propagation.
In II, where plane waves could be obliquely incident upon
the slab-shaped medium, a more careful treatment of the
separated Cartesian field components was required since
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induced surface charges and currents complicate the boundary
conditions.

For the spherical geometry we find it particularly conve-
nient to introduce two familiar angular momentum projection
operators to separate the full vector field problem into its
electric and magnetic multipole parts. Each of these parts
can be further resolved into a succession of spherical har-
monic components. The magnetic multipole fields separated
in this way automatically obey the required transversality
conditions. The electric multipole fields, on the other hand,
still require some consideration of surface charges and cur-
rents in order to secure transversality. The most convenient
feature of the angular momentum decomposition is that it
involves only scalar functions which are in effect the radial
components of the electric and magnetic fields. We may
express these components in terms of mode functions that
decay exponentially with time in each spherical harmonic
order.

We begin in Sec. II with the elementary example of
radiation from a small uniformly excited sphere. This problem,
which can be solved directly without the use of angu-
lar momentum operators, provides physical insights into
the coherent radiation problem, which is useful in treating
the problem of larger spheres. In Sec. III, we present the
equations of motion for the radiation field and polarization.
The complications of maintaining a transverse displacement
field everywhere are handled here by means of the two
angular momentum projection operators. Their use leads to
equations of motion for the electric and magnetic fields
and for their polarization sources. The magnetic multipole
radiation, which is analytically simpler to treat, is discussed
in Sec. IV, while a full treatment of the electric multipole
radiation is begun in Sec. V. The magnetic multipole radiation
field obeys simple outgoing-wave boundary conditions in
each angular momentum order. We derive the eigenvalue
equation that results from these boundary conditions and
briefly discuss certain important properties of the exponen-
tially decaying eigenmodes. The electric multipole radiation
problem requires somewhat more involved outgoing-wave
boundary conditions that can be most simply treated by
considering the differential equations obeyed by the electric
and displacement fields inside and outside the medium. When
the medium excitation is restricted to initial polarizations
that are oriented along a fixed direction and have a radially
symmetric but otherwise arbitrary amplitude, the spherical
medium, regardless of its radius, radiates as a pure electric
dipole, as we show in Sec. V. In the same section, the
associated electric dipole eigenvalue problem is developed in
the more general context of electric multipoles of arbitrary
order, and the eigenvalue equation is analytically solved
for the eigenvalues in several important limiting cases. In
Sec. VI, we establish the orthogonality of electric multipole
modes of an arbitrary order. In Sec. VII we discuss the
temporal and spectral characteristics of the electric dipole
radiation from an interesting example of a spherical sys-
tem, one in which a uniformly excited spherical core is
surrounded by an initially unexcited spherical shell. Finally,
in Sec. VIII, some concluding remarks about the problem
of coherent transport of resonant excitations treated here are
presented.

II. AN ELEMENTARY EXAMPLE: RADIATION FROM A
SMALL UNIFORMLY EXCITED SPHERE

It will be useful to begin our analysis by discussing the
radiation by a spherical medium of radius R much smaller than
the reduced wavelength 1/k0 = c/ω0, i.e., β ≡ k0R � 1. The
problem is simple enough to afford elementary access. It will
furnish a valuable example for later reference.

The atoms of the medium we call polarium are assumed to
be distributed with a uniform density n0. The transition matrix
elements of their electric dipole moment vectors �µ are assumed
to be randomly oriented so that the medium is isotropic, and its
induced electric polarization is always parallel to the inducing
field. Then, as we have shown in deriving Eq. (9) of I, the
positive frequency part of the polarization field �P (+)(�r,t) for
such a medium is driven by the positive frequency part of the
electric field �E(+)(�r,t) through the relation(

∂

∂t
+ iω0

)
�P (+)(�r,t) = in0| �µ|2

3h̄
�E(+)(�r,t). (1)

In the absence of the electric field, the polarization varies in
time at any point as exp(−iω0t).

By expressing �E(+) and �P (+) in terms of their slowly varying
envelopes �E and �P:

�E(+)(�r,t) = �E(�r,t)e−iω0t , �P (+)(�r,t) = �P(�r,t)e−iω0t , (2)

we may rewrite Eq. (1) as

∂

∂t
P(�r,t) = in0| �µ|2

3h̄
E(�r,t). (3)

We shall assume that the polarization is spatially uniform
and given by ẑP (t) exp(−iω0t), where ẑ is a unit vector along
the z axis. In that case, the fields generated by the uniform
polarization, although rapidly oscillating in time, have the
familiar electrostatic spatial dependence within the near-field
zone. Thus the electric field within the sphere is uniform
and parallel to the polarization. The magnetic field within the
medium is of relative order k0R � 1, and is thus negligible in
this, the long-wavelength limit.

Such a uniformly polarized small sphere decays superra-
diantly, as we shall see presently. If λ0 is the exponential
decay constant for this mode, then the electric field within
the medium, which we denote by �E<, and the polarization
P0 exp(−λ0t) are formally related, according to Eq. (3), by

�E< = ẑ
3ih̄λ

n0| �µ|2 P0e
−λ0t e−iω0t . (4)

Outside the medium, the electric field �E> is that of a point
dipole �p0, equal in value to the dipole moment of the sphere,

�p0 = ẑP0
4π

3
R3, (5)

and located at its center. In the near-field zone, the electric field
thus assumes the familiar electrostatic spatial dependence

�E> = 3( �p0 · r̂)r̂ − �p0

4πr3
e−λ0t e−iω0t . (6)

The eigenvalue λ0 is determined by requiring that in the
long-wavelength limit the electric field in the interior of
a uniformly polarized small sphere be minus one-third of
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its polarization, �E< = −(1/3) �P . In view of Eq. (4), this
requirement yields the following expression for λ0:

λ0 = i
n0| �µ|2

9h̄
. (7)

Because the eigenvalue (7) is purely imaginary, it represents
merely a frequency shift for the field and polarization. The
sphere does not radiate in the limit β → 0. For small but finite
β, the sphere does, in fact, radiate. To calculate the decay rate
Reλ0, we resort to an analysis based on the rate at which a
uniformly polarized sphere, with its polarization oscillating
at frequency ω0, radiates energy. A small sphere of this kind
radiates as an oscillating point dipole [9] at the time-averaged
rate [10]

W = c| �p0|2k4
0

3π
. (8)

Equivalently, the rate at which energy is lost from the
dipoles of the spherical medium must be equal to the rate
at which work is done by them on the field. The rate of
work done by the ith dipole of dipole moment �pi , when
averaged over the fundamental period of oscillation, is just
−2Re �̇p ∗

i · �E, where �̇pi is the time derivative of the dipole
moment. Therefore the rate at which work is done by the

sphere is −2Re �̇P ∗ · �E(4πR3/3). Since the polarization and
field both oscillate at a frequency close to ω0, the preceding
expression is essentially the same as

W = 8πR3

3
ω0Im �P ∗ · �E. (9)

When the relation (1) between the field and polarization is
used to eliminate �E from Eq. (9), the resulting expression
for W is

W = 8πR3ω0
Reλ0

(n0| �µ|2/h̄)
| �P |2. (10)

An explicit expression for the decay rate Reλ0 is now obtained
by equating Eqs. (8) and (10) and using Eq. (5),

Reλ0 = 2

27

n0| �µ|2
h̄

β3. (11)

The rate (11) at which a small uniformly polarized sphere
decays radiatively may be expressed as the product of the num-
ber of atoms, N = n0(4πR3/3), and the Wigner-Weisskopf
intrinsic decay rate of each atom, τ−1 = |�µ|2k3

0/(18πh̄):

Reλ0 = Nτ−1. (12)

Each dipole in an assembly of N identically prepared and
coherently coupled atomic dipoles emits radiation at a rate that
is N times the rate with which it would spontaneously radiate
when isolated from the others. Such enhanced decay rates are
characteristic of superradiant emission, a process that is often
considered as developing from a much stronger excitation of
the radiating medium, e.g., when all of the atoms are fully
excited in the initial state. In these more general examples the
emission process can only be described adequately by means
of nonlinear equations. The present problem, by contrast,
is considerably simpler due to its linearity in the fields and
polarization. Because of the coherent initial preparation of the

atomic dipoles, the essential coherence always remains present
in the emission process.

It is worth recalling here that Hartmann and collabora-
tors [11,12] have made an important criticism of Dicke’s
elementary theory of superradiance in many-atom systems.
They have pointed out that the electric dipole moments induced
in different atoms will interact strongly via the familiar
dipole-dipole interactions and lead to spatially dependent
shifts of atomic energy levels. These differing level shifts
can bring about relative dephasing of different parts of the
oscillating polarization distribution and thus some breakdown
of the cooperative character of superradiant emission. We see
no evidence of this suppression in the radiative rate given
by Eq. (12). Indeed, the way in which we have treated the
interaction of each atom with the field implicitly includes the
effects of all dipole-dipole interactions. Their total effect does
not inhibit superradiance, at least for the linear problem of
radiation from a small uniformly polarized sphere.

III. FORMULATION OF THE GENERAL PROBLEM

We now turn to the general problem of radiation by an
arbitrary excitation of a spherical medium of arbitrary radius.
The resonant interaction of the polarium medium with the
electromagnetic field is described by Eq. (1) and the Maxwell
wave equation

−�∇ × ( �∇ × �E(+)) − 1

c2

∂2

∂t2
�E(+) = 1

c2

∂2

∂t2
�P (+). (13)

Because of the identity

−�∇ × ( �∇ × �E(+)) = ∇2 �E(+) − �∇( �∇ · �E(+)), (14)

Eq. (14) contains an explicit gradient term, �∇( �∇ · �E(+)), which
enforces the transversality of the total displacement field, �D =
�E + �P . We shall see later that this term greatly influences

the character of the radiation and most particularly when the
sphere is small compared to the wavelength of radiation.

The spherical geometry of the radiation problem is best
approached by decomposing the radiation field into its electric
multipole (EM) and magnetic multipole (MM) components,
and introducing appropriate scalar functions to describe
them. A simple way to exhibit this decomposition without
introducing the full panoply of vector spherical harmonics is to
use two operators [6,9] that are simply related to the quantum-
mechanical angular momentum operator, �L = −i�r × �∇. Let
us consider the action of the operators �L· and �L · �∇× on
Eqs. (1) and (13). Because both these operators annihilate
the gradient term inside the double curl when identity (14) is
used and because they commute with the Laplacian, Eq. (13)
simplifies to an inhomogeneous scalar wave equation of the
general form(

∇2 − 1

c2

∂2

∂t2

)
η(�r,t) = 1

c2

∂2

∂t2
φ(�r,t), (15)

where the symbols φ and η denote the functions

φ = �L · �P (+) and η = �L · �E(+) (16)

or alternatively

φ = �L · �∇ × �P (+) and η = �L · �∇ × �E(+). (17)
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That �L · �E(+) and �L · �∇ × �E(+) describe the radial com-
ponents of the magnetic and electric fields and thus the MM
and EM fields, respectively, is immediately evident when the
vector triple products are rearranged, and the Faraday and
Maxwell-Ampère laws are introduced as follows:

�L · �E(+) ∼ (�r × �∇) · �E(+) = �r · ( �∇ × �E(+))

∼ �r · ∂

∂t
�B(+) ∼ �r · �B(+),

(18)
�L · �∇ × �E(+) ∼ �L · �B(+) ∼ �r · ( �∇ × �B(+))

∼ �r · ∂

∂t
�E(+) ∼ �r · �E(+).

The final step in each of the two relations in Eq. (18) has
employed the assumption of quasimonochromaticity, which
permits replacing time differentiations of the positive fre-
quency parts of the electromagnetic field by the multiplicative
factor −iω0. The validity of this assumption is assured by the
resonant character of the radiative interactions in the medium.

By contrast with Eq. (13), Eq. (1) is formally unchanged
when the spatial operator �L· is applied,(

∂

∂t
+ iω0

)
φ(�r,t) = in0| �µ|2

3h̄
η(�r,t), (19)

where φ and η are given by Eq. (16). Under the �L · �∇ ×
operation, however, the sharp drop-off at the surface of
the otherwise uniform medium density contributes to the
right-hand side of Eq. (19) a surface singularity, which
is generated by oscillating surface charges. Such surface
polarization charges and currents must be present for EM
radiation for which both the electric field and polarization
have nonvanishing radial components [9]. A self-consistent
approach that treats these surface singularities correctly but
implicitly is based on matching on the surface the appropriate
components of the electromagnetic field inside the medium to
those outside.

The �L· operation commutes with the density, which has
only a radial step-function form. Equation (19) is thus valid
both in the interior and on the surface of the medium. That is
to say, for MM radiation, the electric field and polarization are
both purely transverse, and no surface charges are present.

For the problem of radiation from an initially excited
medium with no externally incident fields, Eq. (15) admits
the familiar sort of retarded integral solution for η:

η(�r,t) = − 1

c2

∫
∂2

∂t ′2
φ(�r ′,t ′)

δ
(
t − t ′ − |�r−�r ′|

c

)
4π |�r − �r ′| d�r ′dt ′

= − 1

c2

∫ ∂2

∂t2 φ
(�r ′,t − |�r−�r ′|

c

)
4π |�r − �r ′| d�r ′. (20)

By expressing η and φ in terms of their slowly varying
envelopes E and P:

η(�r,t) = E(�r,t)e−iω0t , φ(�r,t) = P(�r,t)e−iω0t , (21)

and dropping the time derivatives ofP , which may be assumed
small, we may reduce Eq. (20) to the form

E(�r,t) = k2
0

∫
P

(
�r ′,t − |�r − �r ′|

c

)
eik0|�r−�r ′|

4π |�r − �r ′|d�r ′. (22)

Because Eq. (19) fails to include radiating surface currents,
the description provided by Eqs. (19) and (22) is not complete
for EM radiation. These equations do, however, describe
properly MM radiation which has no surface sources for a
spherical radiator.

IV. MAGNETIC MULTIPOLE RADIATION AND THE
ASSOCIATED EIGENVALUE PROBLEM

The use of the envelopes (21) in Eq. (19) leads to the
equation of motion for the polarization multipoles,

∂

∂t
P(�r,t) = i

| �µ|2
3h̄

n0E(�r,t). (23)

By eliminating the field multipoles E between Eqs. (22) and
(23), we secure the integral equation for the polarization
multipole fields

∂

∂t
P(�r,t) = i

| �µ|2n0k
2
0

3h̄

∫
eik0|�r−�r ′|

4π |�r − �r ′|
×P

(
�r ′,t − |�r − �r ′|

c

)
d�r ′. (24)

The integrand on the right side of Eq. (24) requires
evaluating the envelope function P at the retarded time
t − |�r − �r ′|/c, but if its temporal variation is sufficiently slow
it remains accurate to neglect the retardation in P and write

∂

∂t
P(�r,t) = i

| �µ|2n0k
2
0

3h̄

∫
eik0|�r−�r ′|

4π |�r − �r ′|P
(�r ′,t

)
d�r ′. (25)

The more important effects of retardation are still retained in
the exponential function in the integrand. This approach, which
we have called the rapid-transit approximation in I, assumes
only that the slowly varying amplitude P does not change
appreciably during the passage time of a wave through the
medium. The approximation is not essential to our treatment of
the problem, but it greatly simplifies the analysis, and we shall
therefore employ it in exploring the behavior of the system.

Let us consider an expansion of P(�r,t) in spherical
harmonics, defined according to the convention employed in
Ref. [13],

P(�r,t) =
∑

,m

P
m(r,t)Y
m( ��). (26)

Substitution of this form into Eq. (25), followed by a use of
the identity

eik0|�r−�r ′|

4π |�r − �r ′| = ik0

∑

,m

j
(k0r
<)h(1)


 (k0r
>)Y
m( ��)Y ∗


m( ��′) (27)

and integration over the solid angles ��′ of the vector �r ′,
together with a use of the orthonormality and linear inde-
pendence of the various spherical harmonics, yields the result

∂

∂t
P
m(r,t) = −n0| �µ|2k3

0

3h̄

∫ R

0
P
m(r ′,t)

× j
(k0r
<)h(1)


 (k0r
>)r ′2dr ′. (28)

Here j
 and h
(1)

 are spherical Bessel and Hankel functions

of the first kind, and r< (r>) is the smaller (larger) of the
two radial distances r,r ′. That each multipole order separates
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from all others is a consequence of the spherical geometry. All
multipoles that are initially unexcited thus remain unexcited
at all later times.

We now look for solutions of Eq. (28) that have a purely
exponential time dependence,

P
m(r,t) = P
mλ(r)e−λt . (29)

For such solutions, Eq. (28) reduces to the homogeneous
Fredholm integral equation:

λP
mλ(r) = n0| �µ|2k3
0

3h̄

∫ R

0
P
mλ(r ′)

× j
(k0r
<)h(1)


 (k0r
>)r ′2 dr ′. (30)

This equation contains the radiative boundary condition at the
spherical surface r = R,

P
mλ(r)
r→R∼ h

(1)

 (k0r) (31)

together with the condition that P
mλ remains finite at r = 0.
These conditions restrict the form of the polarization function
P
mλ(r) and the values of the decay constant λ.

The possible values of λ, the eigenvalues, form a discrete,
infinite set of complex numbers. By invoking the symmetry of
the kernel of the integral equation (30) under the interchange
r ↔ r ′, we can establish, as in I, both the positivity of the
real part of each eigenvalue and the orthogonality of the
eigenfunctions,∫ R

0
P
mλ(r)P
mλ′(r)r2dr ∼ δλλ′ . (32)

Equation (32) can be used to define a normalization integral
and to secure an orthonormal set of eigenfunctions. Further
properties of the eigenvalues and eigenfunctions follow from
the bilinear expansion of the kernel in terms of the orthonormal
eigenfunctions, as we showed in the context of the one-
dimensional problem [7].

To solve explicitly for the eigenvalues λ and eigenfunctions
P
mλ(r), we employ the fact that the kernel j
(k0r

<)h(1)

 (k0r

>)
is a Green’s function,{

d2

dr2
+ 2

r

d

dr
+

[
k2

0 − 
(
 + 1)

r2

]}
j
(k0r

<)h(1)

 (k0r

>)

= i

k0r2
δ(r − r ′). (33)

This enables us to convert Eq. (30) into a differential form,{
d2

dr2
+ 2

r

d

dr
+

[
γ 2

λ − 
(
 + 1)

r2

]}
P
mλ(r) = 0, (34)

where

γλ = k0

√
1 − in0| �µ|2/(3h̄)

λ
(35)

may be regarded as the propagation constant for the mode
inside the medium.

The most general solution of this equation that remains
finite at r = 0 has the form

P
mλ(r) = Aj
(γλr). (36)

The radiative boundary condition (31) at r = R is equivalent
to the following equality involving logarithmic derivatives:

d
dR

P
mλ(R)

P
mλ(R)
=

d
dR

h
(1)

 (k0R)

h
(1)

 (k0R)

, (37)

which immediately leads to the eigenvalue equation

γλj
′

(γλR)

j
(γλR)
= k0h

(1)′

 (k0R)

h
(1)

 (k0R)

, (38)

where the prime superscript denotes first derivatives of the
respective functions with respect to their arguments.

V. EXCITATIONS OF SPHERICALLY SYMMETRIC
AMPLITUDE AND ELECTRIC DIPOLE RADIATION

If the initial polarization present in the medium has
complete spherical symmetry, it must point everywhere in
the radial direction with an amplitude that has no angular
dependence. Such polarizations, being purely longitudinal,
cannot radiate at all. The radiation of transverse waves requires
that the spherical symmetry be broken.

We consider radiation by initial polarizations of the spheri-
cal medium that have a uniform direction throughout the sphere
but spherically symmetric amplitudes. If we take this direction
to be the z axis identified by the unit vector ẑ, we may write

�P (+)(�r,t = 0) = ẑp(r). (39)

Since ẑ commutes with �L which annihilates any spherically
symmetric function, the scalar product �L · �P (+) vanishes
initially and, according to Eq. (25), at all subsequent times
as well. Because of Eq. (23), �L · �E(+) therefore also vanishes
at all times. The initial excitation (39) thus cannot radiate MM
fields.

The operation of �L · �∇× on Eq. (39), on the other
hand, produces a nontrivial result. Because of the density
discontinuity at the boundary, this operation involves a surface
singularity, as we noted earlier. It leads, furthermore, to a finite
result within the medium, which may be shown after simple
algebra to involve the derivative of the amplitude p(r),

�L · �∇ × �P (+)(�r,0) = 2i

√
4π

3
p′(r)Y10( ��). (40)

An excitation of the form (39) thus radiates only an electric
dipole contribution of the (
 = 1,m = 0) order. All other
multipoles remain unexcited.

It is interesting to compare our coherently excited initial
state with an entangled single-excitation state of an extended
medium of identical two-level atoms envisioned by Scully
and Svidzinsky [14,15] as either having been prepared by a
swept-wave excitation or being intially in the symmetric Dicke
state. While the entangled atomic quantum states differ from
our coherent initial excitation in essential ways, they all share
the important attribute of initial coherence, as easily confirmed
by the nonzero off-diagonal matrix elements of the density
operator for the single-excitation state. We claim that it is
this spatially extended initial coherence, not entanglement per
se, that is fundamentally responsible for cooperative radiation
processes such as superradiance and subradiance. The absence
of subradiant emission for the swept-excitation state is a result
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of a coherent phasing of the emitted photon that yields an
enhanced emission rate in the forward direction. For both our
problem and the symmetric Dicke state, however, modes in
which the atoms cooperate to trap coherent excitation and
release it only weakly are also possible when β � 1. But
unlike the single-excitation state analysis, which is based on
a scalar-field approximation [14,16], our exact vector field
treatment accounts fully for the polarization and angular
distribution of the emitted radiation.

A. Solution procedure

We first develop a general approach to the electric multipole
radiation problem, and then apply it to the special case of elctric
dipole radiation we have just discussed. Instead of formulating
the problem in terms of an integral equation, as we did for the
MM radiation, we begin with the differential equations that
describe the radiation fields inside and outside the spherical
medium. In the rapid-transit approximation, which we use, the
retardation of the slowly varying amplitudes is negligible, and
that reduces Eq. (22) to the simple form

E(�r,t) = k2
0

∫
P

(�r ′,t
) eik0|�r−�r ′|

4π |�r − �r ′|d�r ′. (41)

The integral equation (41) can be turned into a differential
equation by operating on both sides of it with the operator
(∇2 + k2

0), (∇2 + k2
0

)
E(�r,t) = −k2

0P(�r,t). (42)

We look for solutions of Eqs. (23) and (42) within the
medium that are expansions in spherical harmonics of the
form

P<(�r,t) =
∑

,m

P<

m(r,t)Y
m( ��),

E<(�r,t) =
∑

,m

E<

m(r,t)Y
m( ��). (43)

The superscript < on the variables P and E is here used
to identify the polarization and field inside the medium. On
writing the Laplacian as

∇2 = ∂2

∂r2
+ 2

r

∂

∂r
− L2

r2
(44)

and noting that the spherical harmonics Y
m are mutually
orthogonal eigenfunctions of the L2 operator with eigenvalues

(
 + 1), Eq. (42) separates into individual equations, one for
each spherical harmonic,{

∂2

∂r2
+ 2

r

∂

∂r
+

[
k2

0 − 
(
 + 1)

r2

]}
E<


m(r,t) = −k2
0P<


m(r,t).

(45)

The evolution of the polarization within the medium, described
by Eq. (23), also separates similarly,

∂

∂t
P<


m(r,t) = i
n2

0| �µ|2
3h̄

E<

m(r,t). (46)

Outside the medium, i.e., for r > R, the polarization
vanishes identically, and the EM field obeys the free-space
wave equation obtained by setting P<


m equal to 0 in Eq. (45).

Denoting the exterior field by the superscript >, we may thus
write for r > R{

∂2

∂r2
+ 2

r

∂

∂r
+

[
k2

0 − 
(
 + 1)

r2

]}
E>


m(r,t) = 0. (47)

Our radiation problem thus separates both inside and outside
the medium into radiation by the individual multipoles.

The interior field and polarization are coupled to the
exterior field by the continuity of the normal component of
the displacement field �D
m and of the tangential components
of the electric field �E
m at the boundary, r = R,

�r · �D<

mλ|r=R = �r · �D>


mλ|r=R (48)

and

�r × �E<

mλ|r=R = �r × �E>


mλ|r=R. (49)

B. The eigenvalue problem

Because of the separability of the space and time variables
in Eqs. (45)–(47), they admit exponentially time-dependent
solutions that maintain their shape and are of the form

E
m(r,t) = E
mλ(r)e−λt . (50)

For such solutions, Eq. (46) defines the constitutive relation
between the polarization and the field,

P
mλ = −i
n0| �µ|2

3h̄λ
E<


mλ(r). (51)

When combined with Eq. (45), this relation leads to the
equation for E<


mλ:{
∂2

∂r2
+ 2

r

∂

∂r
+

[
γ 2

λ − 
(
 + 1)

r2

]}
E<


mλ(r) = 0. (52)

A general solution of Eq. (52) that is also finite at r = 0
must, as we have seen earlier, take the form

E<

mλ(r) = Aj
(γλr) (53)

within the medium. Outside the medium, the fields consist
of purely radiative, outgoing waves. They are described by a
solution of Eq. (47) of form

E>

mλ(r) = Bh

(1)

 (k0r). (54)

From these field forms, we obtain, as we now show, the electric,
magnetic, and displacement fields throughout space.

Returning to the definition of η in Eq. (17), of which E is
the slowly varying envelope, we note that the full electric field
�E
mλ and the radial component E
mλY
m of its envelope are

related as follows:

�L · �∇ × �E
mλ = E
mλ(r)Y
m( ��)e−λt e−iω0t . (55)

From Faraday’s law, which, in the slowly-varying-envelope
approximation, takes the form, �∇ × �E
mλ ≈ ik0 �B
mλ, we have

�L · �B
mλ = 1

ik0
E
mλ(r)Y
m( ��)e−λt e−iω0t ,

an equation that has the simple solution [9]

�B
mλ = 1

ik0
(
 + 1)
E
mλ(r) �LY
m( ��)e−λt e−iω0t , (56)
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consistent with the requirement that �B has no radial component
for pure EM radiation. If we now use the Maxwell-Ampère
law in which the time derivative (∂ �D/∂t) is approximately set
equal to −iω0 �D, we obtain the corresponding displacement
vector

�D
mλ ≈ − 1

ik0

�∇ × �B
mλ

= 1

k2
0
(
 + 1)

[ �∇ × E
mλ(r) �LY
m( ��)]e−(λ+iω0)t . (57)

Equation (57) also describes the electric field in the free space
outside the medium. Finally, the electric field �E<


mλ within the
medium is obtained by means of Eq. (51), which yields

�E<

mλ = �D<


mλ − �P
mλ = �D<

mλ + in0| �µ|2

3h̄λ
�E<


mλ.

This equation is easily solved for �E<

mλ,

�E<

mλ = k2

0

γ 2
λ

�D<

mλ, (58)

an expression in which use has been made of the definition
(35) for γλ. The ratio (γλ/k0)2, the electrical permittivity
of the medium for the propagation of the (
mλ) mode,
naturally connects the electric and displacement fields within
the medium.

We are now in a position to apply our boundary conditions
(48) and (49). Taking the scalar product of Eq. (57) with �r and
noting that

�r · ( �∇ × �F ) = (�r × �∇) · �F = i �L · �F
for an arbitrary vector field �F and that �L commutes with any
function of the radial coordinate r , we find the relation

�r · �D
mλ = i

k2
0

E
mλ(r)

[
L2Y
m( ��)


(
 + 1)

]
= i

k2
0

E
mλ(r)Y
m( ��).

(59)

In view of this relation, the condition (48) amounts simply
to the continuity, at the boundary r = R, of the electric field
amplitude E
mλ given by Eqs. (53) and (54),

Aj
(γλR) = Bh
(1)

 (k0R). (60)

The expression for the tangential components of �E
mλ is
more involved. By taking the vector product of Eq. (57) with �r
and using the rule �A × ( �B × �C) = ( �A · �C) �B − ( �A · �B) �C while
allowing for the correct spatial derivatives to be taken, we have

�r × �D
mλ = 1

k2
0
(
 + 1)

[
ri

�∇E
mλ(r)LiY
m

− r
∂

∂r
E
mλ(r) �LY
m

]
,

in which it is understood that the repeated vector-component
index i is summed over its three values. Noting now that
f �∇g = �∇(fg) − g �∇f and that riLi = �r · �L = 0, we have the
expression for �r × �D
mλ in terms of the amplitude E
mλ

�r × �D
mλ = − 1

k2
0
(
 + 1)

[E
mλ + rE ′

mλ(r)] �LY
m. (61)

But since �E>

mλ = �D>


mλ and from Eq. (58) �E<

mλ = k2

0

γ 2
λ

�D<

mλ,

the boundary condition (49) may be written as the matching
condition

1

γ 2
λ

[E<

mλ + RE< ′


mλ(R)] = 1

k2
0

[E>

mλ + RE> ′


mλ(R)]. (62)

When Eqs. (53) and (54) are substituted into this relation, we
secure the second condition that our solutions must obey,

A

γ 2
λ

[j
(γλR) + γλRj ′

(γλR)]

= B

k2
0

[
h

(1)

 (k0R) + k0Rh

(1) ′

 (k0R)

]
. (63)

The two conditions (60) and (63) must be met simulta-
neously, and we have, by taking their ratio, the eigenvalue
equation

[xj
(x)]′

x2j
(x)
=

[
βh

(1)

 (β)

]′

β2h
(1)

 (β)

, (64)

where

β = k0R and x ≡ γλR = β

√
1 − i

n0| �µ|2
3h̄λ

. (65)

This eigenvalue relation applies to radiation from an electric
multipole of arbitrary order (
,m). For our special initial con-
dition (39), we need, however, only consider the azimuthally
symmetric, electric dipole radiation with 
 = 1,m = 0.

1. Electric dipole radiation

Since

[xj1(x)]′ = sin x + cos x

x
− sin x

x2

and [
βh

(1)
1 (β)

]′ =
(

−i + 1

β
+ i

β2

)
eiβ, (66)

Eq. (64) reduces to the form

sin x

sin x − x cos x
− 1

x2
= i

β
− i

β(β2 + iβ)
,

from which, by a simple transposition and division of both
sides of the equation by sin x, the following transcendental
form for the eigenvalue condition results:

x cot x = 1 − βx2

β + ix2
(
1 − 1

β2+iβ

) . (67)

Although still complicated in appearance, the form (67) for
the eigenvalue equation permits an asymptotic analysis of the
roots x = γλR—and hence of the eigenvalues λ—in the limits
of large and small radius, β � 1 and β � 1.

2. Electric dipole radiation from small spheres, β � 1

The superradiant mode that we discussed in Sec. II is but
one of a sequence of exponentially decaying radiation modes
that one can discuss for a small sphere. As we shall see
presently, all of the other modes, however, radiate quite weakly
by comparison.
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The superradiant mode has a propagation constant x = γλR

that is of order β, as we shall see shortly. For β � 1, we may
expand the left-hand side of the eigenvalue equation (67) in
powers of β, retaining only terms of the most significant order
separately in the real and imaginary parts on the left-hand side
to obtain the approximate equation

x cot x ≈ 1

(1 − x2/β2)
− i

x2β

(1 − x2/β2)2
.

If we now expand the left-hand side in powers of x and
keep only the two most significant terms, we may further
approximate the eigenvalue relation for small |x| as

x2 ≈ −2β2 + i
3x2β3

(1 − x2/β2)
,

an equation that may be solved by an iterative procedure. To
the lowest significant order in its real and imaginary parts, the
solution assumes the expression

x2 ≈ −2β2 − 2iβ3. (68)

By employing the relation (65) between x and the eigenvalue
λ, we then obtain

λ ≈ 2n0| �µ|2β3

27h̄
+ i

n0| �µ|2
9h̄

. (69)

This expression for the complex decay constant of the
fundamental mode coincides with that obtained in Sec. II by
means of physical considerations.

For all other eigenmodes, x is of order 1 or larger, so we can
neglect the term β in comparison with ix2 in the denominator
of the right-hand side of the eigenvalue equation (67) and
obtain the approximate expression

x cot x = 1 − i
β2(i + β)

1 − iβ − β2
.

By expanding the denominator for small β and keeping only
terms of the most significant order separately in the real
and imaginary parts of the resulting right-hand side of the
preceding equation, we may approximate it as

x cot x = 1 + iβ5. (70)

Solutions of Eq. (70) of the form

xn =
(

n − 1

2

)
π + εn, n = 1,2, . . . , (71)

where |εn| � 1, may be found, as we see by substituting
Eq. (71) into Eq. (70). To the lowest order in εn, the following
expression for the allowed values of x thus results:

xn =
(

n − 1

2

)
π − i

β5(
n − 1

2

)
π

. (72)

From the relation (65) between x and λ for any mode, we
may now solve for the latter. On keeping only terms to the
lowest order in β separately for the real and imaginary parts,
we obtain the nth eigenvalue

λn = 2

3

n0| �µ|2
h̄

β5

(n − 1/2)4π4
− i

n0| �µ|2
3h̄

β2

(n − 1/2)2π2
,

(73)
n = 1,2, . . . .
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FIG. 1. (a) Decay rates and (b) frequency detuning (from res-
onance) for the 20 fastest decaying modes, for β = 1, in units of
n0µ

2β/(3h̄).

Both the frequency shift and decay rate for each of these
modes are suppressed by a factor O(β2) relative to those for
the superradiant mode. The dramatic decrease of the decay
rates with increasing mode index shows that the excitations of
these modes remain trapped for long periods.

Even when β is of order 1, the behavior of the eigenvalues
λn is qualitatively similar to that for β � 1 we have just
considered. We demonstrate this by plotting the real and
imaginary parts of the first 20 eigenvalues for β = 1 in
Figs. 1(a) and 1(b). The existence of only a single superradiant
mode is quite clear. The next four most strongly decaying
modes have decay rates that are roughly 50, 500, 2000, and
6000 times smaller. Their frequency detunings from atomic
resonance, which are of the opposite sign relative to that for the
single superradiant mode, decrease more modestly, however,
so their successive differences are quite small. These features
of the weakly decaying modes are responsible, as we shall
see later, for a slow oscillatory decay of efficiently trapped
excitation from a small sphere which is initially excited from
its center out to only a small fraction of its total radius.
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3. Electric dipole radiation from large spheres, β � 1

When the radius of the sphere greatly exceeds the wave-
length, β � 1, we may ignore (β2 + iβ)−1 when compared to
1, and Eq. (67) simplifies somewhat to the expression

x cot x = 1 − βx2

β + ix2
. (74)

If the inequality |x|2 � β also holds, then the eigenvalue
equation simplifies still further to the form

x cot x ≈ 1 + iβ ≈ iβ. (75)

This equation is formally identical to the eigenvalue equation
for the odd modes in the one-dimensional problem of resonant
propagation inside a slab that we discussed in I, provided the
slab thickness L is taken to be the sphere diameter 2R. This
isomorphism between the spherical and slab geometries in the
limit of large medium extensions holds only for those modes
that have propagation constants γλ that in magnitude greatly
exceed the curvature 1/R of the spherical surface, consistent
with the mathematical requirements |x|2 � β and β � 1.

Because of the infinitely many branches of the cotan-
gent function, the eigenvalue equation (74) has infinitely
many solutions. However, only those solutions for which
|x| is comparable to β correspond to field eigenmodes
that, being spatially phase matched to the radiation field,
are strongly coupled to it, and thus radiate efficiently. The
eigenvalues of the other, relatively weakly radiating modes
are analogous to those we have already considered for
the one-dimensional problem in I, and need no further
attention.

When |x| ∼ β, then |x2| ∼ β2 � β and the right-hand
side of Eq. (74) may be approximated to the lowest order in its
real and imaginary parts by the expression iβ + (1 − β2/x2).
Now dividing both sides of Eq. (74) by x ∼ β, we may reduce
it to the following approximate form:

cot x ≈ i + 2

β

(
1 − β

x

)
, (76)

where we have only retained the most significant power of
the small quantity (1 − β/x) in the real and imaginary parts
separately. By substituting x = −iy and cot x = i coth y in
Eq. (76), we see that coth y differs little from 1, which implies
that y must have a large real part and coth y ≈ 1 + 2 exp(−2y).
With this approximation, Eq. (76) can be solved for its multiple
roots. They may each be labeled by an integer n, with the value

xn = −iyn ≈ (n + 1/4)π − (i/2) ln β. (77)

For consistency with the assumption |x| ∼ β, we require that
nπ ∼ β. The eigenvalues λn now follow from their relation
(65) with xn,

λn ≈ in0| �µ|2/(3h̄)

1 − [(n + 1/4)2π2/β2] + i[(n + 1/4)π/β2] ln β

≈ in0| �µ|2β/(6h̄)

(β − nπ ) + i(1/2) ln β
, (78)

where the last approximate equality follows from dropping
the 1/4 when compared to n, and then setting nπ ≈ β and
(β2 − n2π2) ≈ 2(β − nπ ). The real and imaginary parts of
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FIG. 2. (a) Decay rates and (b) frequency detuning (from reso-
nance) for the 40 fastest decaying modes, for β = 1000, in units of
n0µ

2β/(3h̄).

the eigenvalues λn thus have a simple resonant character,
similar in form to the frequency dependence of the imaginary
and real parts, respectively, of the susceptibility of a resonant
dielectric medium.

In Figs. 2(a) and 2(b), we display for β = 1000 the real and
imaginary parts of the eigenvalues in the resonant domain,
nπ ∼ β. These have been obtained both by a highly accurate
numerical treatment of the exact eigenvalue equation (67) and
by means of the analytical approximation (78). The analytical
approximation is evidently quite accurate for such a large
value of β.

For further discussions of EM radiation from large spheres
we undertake the development of the orthogonality properties
of the EM eigenmodes. They are somewhat less self-evident
than the analogous properties of the MM eigenmodes we
considered in Sec. IV.

VI. ORTHOGONALITY PROPERTIES OF THE ELECTRIC
MULTIPOLE MODES

For the nth mode of the (
m) order, which we shall call
simply the (
mn) mode, the magnetic field �B(EM)


mn is given by
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Eq. (56), and the electric field �E(EM)

mn essentially by its curl,

�B(EM)

mn = 1

ik0
(
 + 1)
E
mn(r) �LY
m( ��), (79)

�E(EM)

mn = ik0

γ 2

n

�∇ × �B(EM)

mn . (80)

Let us first consider the orthogonality integral for the electric
fields of two modes p,p′ in two different multipole orders
(
,m) and (
′,m′), with 
 �= 
′:∫

r<R

�E(EM)

mn · �E(EM)


′m′n′d�r.

Use of Eq. (80) to replace the electric field �E(EM)

mn in terms of

the corresponding magnetic field �B(EM)

mn and the identity

�∇ · ( �A × �B) = �B · �∇ × �A − �A · �∇ × �B, (81)

followed by the use of Gauss’s theorem to reduce a total
divergence term to a surface integral over the sphere, yields
the result ∫

r<R

�E(EM)

mn · �E(EM)


′m′n′d�r

= ik0

γ 2

n

∫
r=R

�B(EM)

mn × �E(EM)


′m′n′ · r̂d2S

− k2
0

γ 2

n

∫
r<R

�B(EM)

mn · �B(EM)


′m′n′d�r. (82)

Here Faraday’s law was employed in the last term to express
the curl of �E(EM)


′m′n′ in terms of the magnetic field �B(EM)

′m′n′ of the

(
′m′n′) mode. That the last term in Eq. (82) vanishes unless

 = 
′ and m = −m′ follows from the orthogonality of the
different vector spherical harmonics �LY
m in terms of which
the magnetic fields of the two modes may be expressed by
means of Eq. (79). By a similar but more detailed argument
involving the identity [9]

i �∇ × �L = �r∇2 − �∇
(

1 + r
∂

∂r

)
,

we may reduce the surface integral in Eq. (82) to a form
involving

∫
d2� �LY
m · �LY
′,m′ , which too vanishes unless 
 =


′ and m = −m′. This proves the orthogonality of the vector
electric fields for modes with different 
 and m values.

A different approach is needed to establish orthogonality
rules for modes with the same 
 value. We begin with the field
equations that �E(EM)


mn and �E(EM)

m′n′ obey,

−ik0 �∇ × �B(EM)

mn + γ 2


n
�E(EM)


mn = 0, (83)

−ik0 �∇ × �B(EM)

m′n′ + γ 2


n′ �E(EM)

m′n′ = 0. (84)

Taking the scalar product of Eq. (83) with �E(EM)

m′n′ and

subtracting the result from that obtained on taking the scalar
product of Eq. (84) with �E(EM)


mn , and integrating the difference
over the spherical sample, we secure the result(

γ 2

n − γ 2


n′
) ∫

r<R

�E(EM)

mn · �E(EM)


m′n′ d�r

= ik0

∫
r<R

[ �E(EM)

m′n′ · �∇ × �B(EM)


mn − �E(EM)

mn · �∇ × �B(EM)


m′n′
]
d�r.

(85)

We now use the identity (81) to reexpress each term on the
right-hand side of Eq. (85) in terms of a complete divergence,
which reduces to a surface integral according to Gauss’s law,
and a curl term, which from Faraday’s law can be written as
a volume integral of �B (EM)


mn · �B(EM)

m′n′ . We see in this way that

Eq. (85) simplifies to a single surface integral, the two volume
integrals canceling each other out,

(
γ 2


n − γ 2

n′

) ∫
r<R

�E(EM)

mn · �E(EM)


m′n′ d�r

= ik0

∫
r=R

[(
r̂ × �E(EM)


mn

) · �B(EM)

m′n′

− (
r̂ × �E(EM)


m′n′
) · �B(EM)


mn

]
d2S. (86)

The surface integral involves only the tangential components of
both the electric and magnetic fields, which are all continuous
across the spherical boundary. The surface integral can,
as such, be expressed equally well in terms of the same
components of the free-space fields in the immediate exterior
of the sphere. However, since in each multipole order (
m) the
exterior fields are all expressed in terms of the outgoing wave
solutions h

(1)

 (k0r)Y
m( ��) and their derivatives, independent of

the mode indices n,n′, the surface integral on the right-hand
side of Eq. (86) vanishes identically. It follows then from
Eq. (86) that if γ
n �= γ
n′ , then the orthogonality integral
vanishes,

∫
r<R

�E(EM)

mn · �E(EM)


m′n′ d�r ∼ δnn′ . (87)

Combining all of the specific orthogonality relations we
have discussed so far in this section, we may write down the
overall orthogonality relation

∫
r<R

�E(EM)

mn · �E(EM)


′m′n′d�r ∼ δ

′δm,−m′δnn′ . (88)

This orthogonality relation (88) may also be directly estab-
lished by using Eqs. (79) and (80) to express its left-hand side
in terms of the mode functions E
mn ∼ j
(γ
nr), simplifying
the resulting integral by means of angular momentum operator
identities, and then exploiting the eigenvalue relation (64) that
each mode must obey.

It is worth noting that the requirement m = −m′, rather
than m = m′, for the nonvanishing of the expression (88)
is a reminder of the symmetric but non-Hermitian character
of the propagation kernel for the electromagnetic field. This
non-Hermiticity was already noted in II in the context of
one-dimensional propagation when an incident wave with
transverse magnetic polarization was obliquely incident on
a slab.

A. Expansion of an arbitrary EM field in the
corresponding modes

The orthogonality integral (88) makes it possible to expand
an arbitrary electromagnetic field in a particular EM order
(
,m) in terms of the EM modes, given by Eqs. (79) and (80),
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of the same order. Let �∇ × [f (r) �LY
m] be an arbitrary field in
this order expressed as the mode sum

�∇ × [f (r) �LY
m] =
∞∑

n=1

fn
�∇ × [j
(γ
nr) �LY
m]. (89)

The coefficients fn are obtained by multiplying both sides of
Eq. (89) by the mode function �∇ × [j
(γ
n′r) �LY
,−m], integrat-
ing over the spherical sample, and utilizing the orthogonality
relation (88),

fn = (j
(γ
nr),f (r))
(j
(γ
nr),j
(γ
nr))

, (90)

where the symbol (f,g) defines an inner product,

(f,g) ≡
∫

r<R

d�r{ �∇ × [f (r) �LY
,−m]} · { �∇ × [g(r) �LY
m]}.
(91)

Whenever either f or g is a mode amplitude function j
(γ
nr),
the inner product (91) can be simplified greatly. To see this, we
make use of formula (81) in Eq. (91) to transform its integrand
to a term involving �∇ × ( �∇ × [g(r) �LY
m]), which, when g is
a mode function, is simply γ 2


ng(r) �LY
m, along with a pure
divergence term, a term that from Gauss’s theorem is equal to
a surface integral. Thus, when g is a mode function, Eq. (91)
takes a simpler form,

(f,g) = γ 2

n

∫
r<R

f (r)g(r) �LY
,−m · �LY
md�r

+
∫

f (r) �LY
,−m × [ �∇ × (g �LY
m)] · r̂ d2S.

Use of the solid-angle integral identity∫
d2� �LY
,−m · �LY
m = (−1)m+1
(
 + 1)

and the fact [9] that the surface integral in the preceding
equation is simply (−1)m+1
(
 + 1)Rf (R)(d/dR)[Rg(R)]
reduces the inner product (91) to the form

(f,g) = (−1)m+1
(
 + 1)

{
Rf (R)

d

dR
[Rg(R)]

+ γ 2

n

∫ R

0
f (r)g(r)r2 dr

}
. (92)

This form of the inner product can also be used as the starting
point of a simple, direct proof of the orthogonality of different
modes in a given multipole order.

VII. RADIATION FROM A LARGE SPHERE WITH A
UNIFORMLY EXCITED SPHERICAL INNER CORE

Coherent radiation from a large resonant sphere will, in
general, involve a large number of modes of both multipole
types and their infinitely many orders. A particularly simple
situation occurs, however, when an inner concentric spherical
region of the sphere is uniformly excited initially, as shown
in Fig. 3. This is a special case of a polarization with radially
symmetric amplitude and uniform direction, which emits pure
electric dipole radiation in the (1,0) order.

FIG. 3. Spherical medium of radius R with an excited concentric
core of radius r0 = f R, f � 1.

Let us assume then an initial polarization of form

�P (�r,0) =
{

ẑP0 for r < r0,

0 for r0 < r < R.
(93)

The electric field that this polarization initially radiates has
a simple expression in the rapid-transit approximation [7], in
which retardation of slowly varying amplitudes is ignored and
the second time derivatives in Eq. (16) are replaced by −ω2.
In this approximation, the initial electric field �E(+)(�r,0) may
be expressed as an integral of the scalar product of the tensor
propagator

G(�r − �r ′) =
(

1 + 1

k2
0

�∇ �∇
)

eik0|�r−�r ′|

4π |�r − �r ′| (94)

and the initial polarization (93) over the spherical sample,
which reduces to the form

�E(�r,0) ≈ P0

(
k2

0 ẑ + ∂

∂z
�∇
)∫

r ′<r0

eik0|�r−�r ′|

4π |�r − �r ′|d�r ′. (95)

The initial field amplitude d(r,0) is the radial function that
multiplies the spherical harmonic Y10( ��) in the quantity �L ·
�∇ × �E(�r,0). Taking the curl of the left-hand side of Eq. (95)
eliminates the pure gradient term,

�∇ × �E(�r,0) = k2
0P0 �∇

∫
r ′<r0

eik0|�r−�r ′|

4π |�r − �r ′|d�r ′ × ẑ. (96)

By using the identity (27) to replace the integrand in Eq. (96)
by a spherical harmonic sum and then integrating it over the
angular coordinates, we see that the integral in Eq. (96) is a
purely radial function,

f (r) = ik0

∫ r0

0
j0(k0r

<)h(1)
0 (k0r

>)r ′2dr ′. (97)

We thus have the result

�∇ × �E(�r,0) = k2
0P0 �∇f (r) × ẑ = df

dr

�r
r

× ẑ.

Operating on both sides of this equation by �L·, noting
that any function of r commutes with �L, and using the
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result

�L · (�r × ẑ) = 1

i
(�r × �∇) · (�r × ẑ)

= 1

i
[�r · (ẑ · �∇)�r − (�r · ẑ)( �∇ · �r)]

= 2i�r · z = 2ir cos θ = 2i

√
4π

3
rY10( ��),

we obtain

�L · �∇ × �E(�r,0) = d(r,0)Y10( ��), (98)

where the initial field amplitude d(r,0) takes the explicit form

d(r,0) = −2k3
0

√
4π

3
P0

d

dr

∫ r0

0
j0(k0r

<)h(1)
0 (k0r

>)r ′2dr ′.

(99)

The radial integral can also be performed in closed form by
means of the indefinite-integral identities [17],∫

j0(x)x2dx = x2j1(x),
∫

h
(1)
0 (x)x2dx = x2h

(1)
1 (x),

(100)

and its derivative taken by means of the identities

d

dx
j0(x) = −j1(x),

d

dx
h

(1)
0 (x) = −h

(1)
1 (x). (101)

The following final form of the amplitude is obtained in this
way:

d(r,0) = 2k3
0r

2
0

√
4π

3
P0j1(k0r

<
0 )h(1)

1 (k0r
>
0 ), (102)

where r<
0 and r>

0 are defined to be the smaller and the larger
of the two radial distances r and r0, respectively.

The same steps that took us from Eq. (55) to Eq. (57) can
be employed to write down the displacement field envelope
�D(�r,t) in terms of the amplitude d(r,t) of electric dipole

radiation (
 = 1),

�D(�r,t) ≈ 1

2k2
0

�∇ × [d(r,t) �LY10( ��)]. (103)

Inside the medium, the amplitude d(r,t) may be expanded in
terms of the mode functions j1(γnr) exp(−λnt),

d(r,t) =
∞∑

n=1

dnj1(γnr) exp(−λnt). (104)

Orthogonality of the mode functions under the inner product
(92) enables us to solve for the coefficients,

dp = (d(r,0),j1(γnr))
(j1(γnr),j1(γnr))

. (105)

The inner products in Eq. (105) contain integrals involving
bilinear expressions of spherical Bessel and Hankel functions
of the same order 1, which, as we show in Appendix A, can
be evaluated in terms of simple trigonometric functions. The
inner product in the numerator assumes the form

(d(r,0),j1(γnr)) = −4ik2
0r

2
0

√
4π

3
P0

γ 2
n

k2
0 − γ 2

n

j1(γnr0),

while that in the denominator greatly simplifies in the limit of
large |γn|R,

(j1(γnr),j1(γnr)) ≈ −R,

so the amplitude dn may be expressed as

dn ≈ 4i
k2

0r
2
0

R

√
4π

3
P0

γ 2
n

k2
0 − γ 2

n

j1(γnr0). (106)

The electric field envelope �E(�r,t) has a similar form as the
electric displacement field �D(�r,t),

�E(�r,t) ≈ 1

2k2
0

�∇ × [e(r,t) �LY10( ��)], (107)

with the amplitude e(r,t) having a similar mode decomposition
as d(r,t),

e(r,t) =
∞∑

n=1

enj1(γnr) exp(−λnt). (108)

The mode coefficient en for the electric field is obtained from
dn, the analogous coefficient for the displacement field, by
dividing the latter by the dielectric constant γ 2

n /k2
0 for the nth

mode,

en = dn

(γn/k0)2
≈ 4i

k2
0r

2
0

R

√
4π

3
P0

k2
0

k2
0 − γ 2

n

j1(γnr0). (109)

The resonant character of the excitation of the modes is
unmistakable in the denominator of the right-hand side of
Eq. (109)—only modes with propagation constants γn that
are closely matched to the free-space wave vector k0 are
preferentially excited. Also, because j1(γnr0) falls off rapidly
with γn for |γn|r0 � 1, only modes with propagation constants
of order 1/r0 or smaller in magnitude are significantly excited
in the preparation of the initial core excitation.

A. Frequency spectrum of radiation

The initial polarization (93) radiates light into the various
electric field eigenmodes with amplitudes en. Apart from over-
all angular and distance dependences, the spectral amplitude
of radiation, a(R,δω), at detuning δω is given by the Fourier
transform of the electric field amplitude e(R,t) at the surface
of the sphere,

a(δω) =
∫ ∞

0
e(R,t)eiδωtdt =

∞∑
n=1

enj1(γnR)

λn − iδω
. (110)

By substituting for en from Eq. (109) and using the relation
(35) between γλ and λ in Eq. (109), we may express the spectral
amplitude as

a(δω) = 4
k2

0r
2
0

R

√
4π

3
P0

β2

δω

∑
n

j1(γnr0)j1(γnR)

γ 2
n R2 − β2

δω

, (111)

where βδω is R times the propagation constant for a plane wave
of frequency (ω0 + δω) traversing the medium,

βδω = β

√
1 − n0| �µ|2/(3h̄)

δω
. (112)

The power spectrum of radiation is obtained from a(δω) by
taking its squared modulus.
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The mode sum of Eq. (111) may be evaluated numerically.
However, because of its resonant character, which implies
significant contribution from only those modes that have
propagation constant close to the plane-wave propagation
constant βδω, accurate analytical approximations are also
possible. First of all, for large spheres, β � 1, since all of the
mode propagation constants γn are largely real with relatively
small imaginary parts, there is little radiation at frequency
detunings that lie in the range [0,n0| �µ|2/(3h̄)] for which βδω

is purely imaginary. Due to a strong resonant interaction of
light with matter, radiation simply cannot propagate far in this
frequency range. There is thus a gap in the spectrum in this
range, a feature of resonant radiation that was already noted in
the one-dimensional problem [7].

Outside this gap, the propagation constant βδω is either large
or small compared to the radius parameter β, and the following

excellent analytical approximations can be verified for the
propagation constants γn of the significantly contributing
modes, those for which |γn|R ≈ βδω:

xn = γnR

≈
{(

n − 1
2

)
π − i

β

(n− 1
2 )π for δω < 0,

nπ − i nπ
β

for δω > n0| �µ|2/(3h̄).

(113)

When these expressions are substituted in the resonant
denominators of the terms in the mode sum (111) and
in the large-argument approximation for j1(γnR), namely,
− cos(γnR)/(γnR), and γnR is replaced by βδω in terms that
vary slowly from one mode to the next, the following analytical
forms result for the spectral amplitude:

a(δω) ≈ −4
k2

0r
2
0

R

√
4π

3
P0

β2j1(βδωf )

δωβδω

⎧⎪⎨
⎪⎩

−iβ
∑∞

n=1
(−1)n

(n−1/2)π [(n−1/2)2π2−γ 2
δω]

for δω < 0,

∑∞
n=1

(−1)n

n2π2−γ 2
δω

for δω > n0| �µ|2/(3h̄),
(114)

where f = r0/R denotes the fraction of the spherical radius
initially excited and γδω an effective propagation constant that
takes slightly different forms below and above the gap,

γδω =
⎧⎨
⎩

√
β2

δω + 2iβ for δω < 0,

βδω(1 + i/β) for δω > n0| �µ|2/(3h̄).
(115)

An overall factor that differs from 1 by terms of order 1/β

has been dropped from Eq. (114), which is bound to be
accurate for large values of β only. Both sums in Eq. (114)
may be evaluated in closed form. The second sum is well
known [18]. The evaluation of the first sum by means of
contour integration is presented in Appendix B. The following
closed-form expressions are then obtained for the spectral
amplitude below and above the frequency gap:

a(δω) ≈ 4
k2

0r
2
0

R

√
4π

3
P0

β2j1(βδωf )

δωβδω

×

⎧⎪⎨
⎪⎩

− iβ

2γ 2
δω

(
1 − 1

cos γδω

)
for δω < 0,

1
2γδω

(
1

sin γδω
− 1

γδω

)
for δω >

n0| �µ|2
3h̄ .

(116)

We plot in Figs. 4 the power spectrum S(δω) = |a(δω)|2
for a variety of values of β and the fractional excited radius
f ≡ r0/R. For small spherical samples with linear dimensions
comparable to the wavelength of light, as for β = 1, coherent
radiation initially proceeds by the fast-decaying superradiant
mode we discussed in Sec. II, but the relatively slowly decaying
modes that we discussed in Sec. V B 1 continue to radiate for
long periods of time. Because of the simple proportionality of
the decay rate to the width of the spectrum radiated by a mode,
the superradiant mode furnishes a broad spectral background
on which are coherently superposed sharper line spectra
corresponding to the slowly decaying modes. Each spectral

peak corresponding to a mode is centered at a frequency
detuning equal to the imaginary part of the decay constant of
that mode. We display the power spectrum of emitted radiation
for four different values of the fractional excited core radius,
f , namely, 1, 0.75, 0.5, and 0.1, in Figs. 4(a)–4(d). Since
the more localized initial excitations are made up of a larger
number of weakly decaying modes, all superposed coherently
with the fundamental supperradiant mode, the overall power
spectrum consists of a broad peak and a fine structure of
ever narrower peaks that accumulate below zero detuning,
as seen most dramatically in Fig. 4(d). An initial excitation
of the full sphere corresponds, by contrast, to only a small
admixture of the weakly decaying modes, that are visible in
Fig. 4(a) as small peaks on the broad background provided by
the superradiant mode. When considered in sequence, these
four subplots also illustrate how even for small values of β

a frequency gap develops over the interval [0,n0µ
2/(3h̄)] as

the initial excitation of the sphere is more and more tightly
confined close to its center. The broad background contribution
of the superradiant mode gets progressively smaller, yielding
little power at any positive frequency detuning including
this gap.

For larger spheres too, a similar fine structure is obtained in
the spectrum, but the emergence of a well-defined frequency
gap we discussed earlier is unmistakable with β increasing
in value from 10 to 100, as we see in Figs. 5 and 6. The
more localized the initial excitation the more prominent the
peaks to the left of the gap. This is a result of the fact
that the peaks with negative detuning correspond to modes
that have propagation constants that are large compared to
k0 and which are therefore needed to make up an excitation
that is localized on the subwavelength scale corresponding
to βf � 1. The analytical approximation (116), shown by a
dashed curve on each plot, is already accurate for β = 10,
and is nearly indistinguishable from the numerically exact
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FIG. 4. The frequency spectrum of the power radiated by the
medium, in arbitrary units, as a function of the frequency detuning,
in units of n0| �µ|2β/(3h̄), for β = 1, with (a) f = 1 (uniform initial
excitation); (b) f = 0.75; (c) f = 0.5; and (d) f = 0.1.
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FIG. 5. Same as Fig. 4(a), except (a) β = 10, f = 1 and (b) β =
10, f = 0.01.

results for β = 100. For β = 10 the most superradiant mode
has a decay rate that, according to expression (78), is a factor
ln β = 2.3 times smaller than n0µ

2β/(3h̄). This accounts for
the considerably narrower background provided by this mode
to the emission spectrum in Fig. 5(a) than that present in
Fig. 4(a) for β = 1, even though that mode dominates the
other modes when the sphere is uniformly excited. For much
larger values of β, as in Figs. 6, the superradiant modes, which
are of order (ln β)/π in number, each correspond to a spatially
nonuniform excitation given by Eq. (53) with γλR ∼ β. A
uniformly excited core, regardless of its fractional radius f is
thus comprised of large numbers of superradiant and weakly
decaying modes, which always yield a rich spectrum of narrow
peaks that accumulate on either side of the frequency gap.

B. Time dependence of the radiated power

The power dW/dt radiated by the resonantly excited sphere
is given by integrating the normal component of the Poynting
vector over the surface of the sphere. For β � 1, this integral
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FIG. 6. Same as Figs. 5(a), except (a) β = 100, f = 0.01 and
(b) β = 100, f = 0.0001.

may be reduced to a rather simple final form, as we show in
Appendix C,

dW

dt
= − cβ4

k4
0(1 + β2)

|d(R,t)|2, (117)

where d(R,t) is the amplitude function that determines the
electric displacement field at the spherical surface, r = R, via
relation (103).

1. Radiation from a large sphere, β � 1, with a small excited
core, f � 1

The early stages of radiation are dominated by the fast-
decaying, superradiant modes, while the excitation residing in
the more weakly radiating modes is slow to escape the medium.
The latter are accompanied by an oscillatory exchange of
energy between the atoms and the radiation field, as we shall
see presently. Similar attributes of cooperative emission from
extended media have also been seen for a symmetric Dicke
one-photon excitation [14,16].

If we use in expression (106) the approximate eigenvalue
formulas (77) and (78), valid for the superradiant modes of a
large sphere, and then evaluate the sum (104), we are assured
of good accuracy for the times when those modes are the
ones actively radiating. Since the superradiant modes have
propagation constants that do not differ much from the free-
space one, k0, we first approximate (k2

0 − γ 2
n ) by 2k0(k0 − γn),

γ 2
n by k2

0, and then substitute formulas (77) and (78) in the
expression (106). We assume here a small initially excited
core, r0 � R, so we may replace j1(γnr0) by j1(βf ), while
the large-argument approximation for j1(γnR) coupled with
expression (77) reduces it to the form

j1(γnR) ≈ −cos γnR

γnR
≈ (−1)n+1 eiπ/4

√
β

, (118)

where we used β � 1 to ignore a term of relative order 1/β

and replaced γnR in the denominator simply by β. With these
approximations and upon extending the sum (104) to also
include all negative integral values of the index n, which
adds spurious terms to the sum that we later subtract out
approximately, we may express the field amplitude d(R,t)
at the surface of the sphere as

d(R,t) = −ieiπ/4

√
4π

3
f 2β2j1(βf )P0

×
∞∑

n=−∞

(−1)neiαt/[nπ − β − (i/2) ln β]

[nπ − β − (i/2) ln β]
.

(119)

This sum may be evaluated exactly by the method of contour
integrals in the complex plane, as shown in Appendix D,
and the following asymptotic expansion in powers of 1/β is
obtained:

d(R,t) = 2eiπ/4

√
4π

3
f 2β2j1(βf )P0

eiβ

√
β

×
∞∑

n=0

(
e2iβ

β

)n

J0(2
√

(2n + 1)αt), (120)

where J0 denotes the Bessel function of the first kind of order
0. For large values of β, the first term alone suffices to furnish
an accurate result for d(R,t) and thus for the radiated power
(111),

dW

dt
≈ −16π

3
ω0k0r

4
0 [j1(βf )]2|P0|2J 2

0 (2
√

αt). (121)

The oscillatory time dependence (121) of the radiated power
represents an exchange of energy between the field and the
polarization of the radiating medium. Such oscillatory energy
exchange is characteristic of any radiation problem in which
many modes of comparable decay rates that are detuned by
different amounts from the resonance frequency participate
coherently. A squared Bessel function time dependence related
to Eq. (121) was first derived by Burnham and Chiao [19] in
the one-dimensional context of radiation from a semi-infinite
medium that is coherently generated in the wake of a sweeping
δ-function excitation pulse.
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FIG. 7. The power radiated by the medium, in arbitrary units,
as a function of time, in units of [n0| �µ|2β/(3h̄)]−1, for β = 1 with
(a) f = 1.0 and (b) f = 0.1.

An expression for the radiated power that is somewhat more
accurate than Eq. (121) is given by subtracting out the spurious
terms, those with n running from 0 to −∞, that we included in
the sum (119) in order to derive the Bessel-function result
(120). Because of their nonresonant character, the sum of
these spurious terms can be evaluated approximately, as we
show in Appendix E, and subtracted from Eq. (120). This
procedure yields the following two-term result for the radiated
power:

dW

dt
≈ −16π

3
ω0k0r

4
0 [j1(βf )]2|P0|2

[
J 2

0 (2
√

αt)

− 1

2
√

β
J0(2

√
αt) sin(β + αt/β)e

− αt

2β2 ln β

]
. (122)

In Figs. 7–9, we plot the power radiated by a spherical
medium for the same values of the radius parameter β for
which the radiated spectrum was considered in Figs. 4–6. For a
uniformly excited sphere (f = 1) with β = 1, the fundamental
superradiant mode is nearly the only one excited, which
implies a purely exponential decay of the radiated power, as
seen in Fig. 7(a). When the medium is initially excited from
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FIG. 8. Same as Figs. 7(a) and 7(b), except (a) β = 10, f = 1.0
and (b) β = 10, f = 0.01.

the center out to only one-tenth of the radius, as in Fig. 7(b), a
significant number of weakly decaying modes of comparable
magnitude are present as well. The initial precipitous drop in
power results from the decay of the superradiant mode, but
the subsequent emission has an oscillatory time dependence
due to radiation emitted coherently by the weakly decaying
modes. The oscillations are slow with a long quasiperiod, due
to rather small differences in the frequency detunings of these
modes, as we noted earlier.

As we increase the value of β, we find inevitably the
emergence of an oscillatory time dependence for power that
for early times is described approximately by the Bessel-
function result (122). This is particularly accurate for the
larger value, 100, of β when the fractional excited core
radius f is small, as seen in Fig. 9(b). The approximate
result (122) ceases, however, to agree with the numerically
exact behavior at long times due to the fact that the former
wrongly presupposes that the superradiant modes continue to
dominate the radiation for all times. In reality, the weakly
decaying modes continue to radiate for long times, well
after the superradiant modes have radiated away nearly all
of their excitation. The differences between the frequencies of
neighboring modes, which determine the detailed character of
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FIG. 9. Same as Figs. 7(a) and 7(b), except (a) β = 100, f = 0.01
and (b) β = 100, f = 0.001.

the temporal oscillations, are dissimilar for the two varieties
of modes, accounting for the failure of the approximate result
(122) to describe the long-time behavior of the radiated power.
It is worth noting that times greatly exceeding those plotted
would be necessary to see the stretched exponential decay of
polarization energy predicted in the one-dimensional problem
of localized excitation [7].

VIII. CONCLUDING REMARKS

Coherent radiation from a sphere of polarizable atoms with
a single resonant excitation energy level can exhibit a rich
variety of spectral and temporal characteristics. A fully excited
sphere with uniform polarization radiates much like a single
atom, albeit at the superradiant rate, when its radius is small
compared to the wavelength of emission. When coherently
excited, a large sphere, by contrast, almost always radiates a su-
perposition of strongly decaying, or superradiant, and weakly
decaying, or subradiant, modes. These exponentially decaying
modes may be classified as magnetic and electric multipole
modes of various angular momentum orders. A particularly
simple, yet sufficiently general, case of our problem is that of
radiation from a uniformly excited concentric spherical core

within an otherwise unexcited spherical medium. We have
demonstrated that such an excitation radiates as a pure electric
dipole, regardless of the size of the medium or its excited core.
This specific case has been studied in detail in the present
paper.

The characteristic differences between the frequency de-
tunings and decay rates of the modes give rise to radiation
that has a wealth of sharp peaks and valleys in its spectrum.
It also has a frequency range in which radiation cannot
propagate far because of its strong resonant interaction within
the medium, and is thus unable to escape it. We derived an
analytical approximation of this spectrum that involves simple
trigonometric functions and is highly accurate for large values
of β. The time dependence is correspondingly quite involved,
with a complicated oscillatory behavior that persists for long
times. For times that are not too long, a simple analytical
result based on the inclusion of superradiant modes alone
furnishes a good approximation to the exact time dependence.
Many of these characteristics of emission, previously noted
in our treatment of the one-dimensional coherent radiation
problem as well, are likely to survive the change of geometry,
provided geometrical length scales remain large compared to
the characteristic wavelengths of emission. A well-localized
excitation deep in the interior of an extended medium of
arbitrary geometry will, for example, remain trapped for
long periods of time, releasing energy only slowly, unless
incoherent processes intervene.

APPENDIX A: EVALUATION OF THE INNER PRODUCTS
IN EQ. (99)

When expression (102) for d(r,0) is substituted into the
inner-product formula (86), we obtain

(d(r,0),j1(γnr))

= −4k3
0r

2
0

√
4π

3
P0

{
Rj1(k0r0)h(1)

1 (k0R)[Rj1(γnR)]′

+ γ 2
n

∫ R

0
r2h

(1)
1 (k0r

>)j1(k0r
<)j1(γnr)dr

}
, (A1)

where a prime superscript denotes a derivative with respect to
the radial coordinate, here R. Since r> is the larger of r,r0 and
r< the smaller, to evaluate the integral in Eq. (A1), we write it
as a sum of two integrals

h
(1)
1 (k0r0)

∫ r0

0
r2j1(k0r)j1(γnr)dr

+ j1(k0r0)
∫ R

r0

r2h
(1)
1 (k0r)j1(γnr)dr. (A2)

Indefinite integrals of the form
∫

z
(αr)w
(βr)r2dr , where
z
 and w
 are any two spherical Bessel functions of order 
,
can be computed analytically. To see how, we first recognize
that Bessel functions obey appropriate Bessel differential
equations,

[rz
(αr)]′′ + [α2 − 
(
 + 1)/r2][rz
(αr)] = 0, (A3)

[rw
(βr)]′′ + [β2 − 
(
 + 1)/r2][rw
(βr)] = 0. (A4)
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By multiplying Eq. (A3) by rw
(βr) and Eq. (A4) by rz
(αr),
then subtracting one resulting equation from the other, and
finally integrating both sides over r followed by a simple
rearrangement of terms, we obtain∫

z
(αr)w
(βr)r2dr

= 1

(α2 − β2)

∫
dr[rz
(rw
)′′ − rw
(rz
)′′]. (A5)

Since the integrand of the right-hand side of Eq. (A5) is the
derivative of [rz
(rw
)′ − rw
(rz
)′], its integral is trivially
evaluated, and Eq. (A5) reduces to the form∫

z
(αr)w
(βr)r2dr = 1

(α2 − β2)
[rz
(rw
)′ − rw
(rz
)′].

(A6)

The indefinite-integral formula (A6) may now be used to
compute the two definite integrals in expression (A2), and thus
the integral in Eq. (A1), for which the following expression
results:∫ R

0
r2h

(1)
1 (k0r

>)j1(k0r
<)j1(γnr)dr

= 1(
k2

0 − γ 2
n

){
j1(k0r0)

[
Rh

(1)
1 (k0R)[Rj1(γnR)]′

−Rj1(γnR)
[
Rh

(1)
1 (k0R)

]′]
+ j1(γnr0)

[
r0j1(k0r0)

[
r0h

(1)
1 (k0r0)

]′

− r0h
(1)
1 (k0r0)[r0j1(k0r0)]′

]}
. (A7)

Use of a Wronskian identity turns the terms within the second
pair of brackets in Eq. (A7) into i/k0, while the terms within the
first pair of brackets can be combined in view of the eigenvalue
relation (64). These simplifications reduce Eq. (A7) to the form∫ R

0
r2h

(1)
1 (k0r

>)j1(k0r
<)j1(γnr) dr

= 1(
k2

0 − γ 2
n

){
j1(k0r0)Rh

(1)
1 (k0R)

× [Rj1(γnR)]′
(
1 − k2

0

/
γ 2

n

) + (i/k0)j1(γnr0)
}
. (A8)

When the integral (A8) is substituted into the right-hand side
of Eq. (A1), the inner product attains its final form

(d(r,0),j1(γnr)) = −4ik2
0r

2
0

√
4π

3
P0

γ 2
n(

k2
0 − γ 2

n

)j1(k0r0).

(A9)

The inner product (j1(γnr),j1(γnr)) involves, as expression
(92) indicates, the integral∫ R

0
drj 2

1 (γnr)dr,

which can be evaluated exactly in closed form by means of the
indefinite-integral identity [17]∫

x2j 2
1 (x)dx = x3

2

[
j 2

1 (x) − j 2
0 (x)j 2

2 (x)
]
.

This yields the following exact result for the inner product:

(j1(γnr),j1(γnr))

= −2

γn

{
xj1(x)[xj1(x)]′ + x3

2

[
j 2

1 (x) − j 2
0 (x)j 2

2 (x)
]}

,

(A10)

where x = γnR. By substituting the explicit trigonometric
forms for the spherical Bessel functions of orders 0,1,2,

j0(x) = sin x

x
, j1(x) = sin x

x2
− cos x

x
,

j2(x) =
(

3

x3
− 1

x

)
sin x − 3

x2
cos x,

and performing simple algebraic manipulations, we may
reduce Eq. (A10) to the form

(j1(γnr),j1(γnr))

= −1

γn

[
x −

(
1 − 4

x2

)
sin x cos x − 2

x
cos x − 2

x3
sin x

]
.

(A11)

For large |x| = |γn|R, only the first term in the square brackets
in Eq. (A11) is important,

(j1(γnr),j1(γnr)) ≈ −R, |γn|R � 1, (A12)

which is the expression used in arriving at Eq. (106).

APPENDIX B: EVALUATION OF THE FIRST SUM
IN EQ. (114)

Consider the contour integral

I (α) ≡
∮

C

dz

z(z − α) cos z
, (B1)

where the contour C may be taken to be a circle of radius
Nπ in the complex-z plane. Take N to be a positive integer
and α to be a finite complex number. In the limit N → ∞,
the integral (B1) must vanish, since the integrand goes to zero
faster than 1/N2 while dz grows only linearly with N . But, by
the residue theorem, the integral on the right-hand side (RHS)
is simply 2πi times the sum of residues of the integrand at all
of its poles in the finite complex plane. In the limit N → ∞,
the integrand has only simple poles at 0, α, and (n − 1/2)π ,
n = 0, ± 1, ± 2, . . . , where the residues are easily evaluated,
and the following sum formula results:

0 = 2πi

{
−1

α
+ 1

α cos α

−
∞∑

n=−∞

1

(n − 1/2)π [(n − 1/2)π − α] sin(n − 1/2)π

}
.

(B2)

Note that sin(n − 1/2)π = (−1)n−1. The infinite sum may be
reexpressed as a one-sided sum by relabeling n as (1 − n′) in
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the part of the sum that is over n = −∞ to 0 and then dropping
the prime from n′, as shown below:

∞∑
n=−∞

(−1)n

(n − 1/2)[(n − 1/2)π − α]

=
∞∑

n=1

(−1)n

(n − 1/2)[(n − 1/2)π − α]

+
∞∑

n′=1

(−1)1−n′

(1/2 − n′)[(1/2 − n′)π − α]

=
∞∑

n=1

(−1)n

(n − 1/2)

[
1

(n − 1/2)π − α
− 1

(n − 1/2)π + α

]

= 2α

∞∑
n=1

(−1)n

(n − 1/2)[(n − 1/2)2π2 − α2]
.

When this result is substituted into Eq. (B2), we obtain a
closed-form expression for the sum needed in Eq. (114),
namely,
∞∑

n=1

(−1)n

(n − 1/2)π [(n − 1/2)2π2 − α2]
= 1

2α2

(
1 − 1

cos α

)
.

(B3)

APPENDIX C: CYCLE-AVERAGED RADIATED POWER

When averaged over the fundamental oscillation period
2π/ω0, the Poynting vector takes the form

�S(�r,t) = 2c Re[ �E(�r,t) × �B∗(�r,t)]. (C1)

The integral of the normal component of �S over the surface
of the sphere, r = R, gives the total cycle-averaged power
−dW/dt radiated by the sphere at time t,

−dW

dt
= R

∫
d2� �r · �S|r=R. (C2)

The electric field �E is given by the expression (107), while the
magnetic field �B, which obeys the Maxwell equation

�D = i

k0

�∇ × �B,

may be read off from Eq. (103) for �D,

�B(�r,t) = 1

2ik0
d(r,t) �LY10. (C3)

Using Eq. (C1) and a simple vector-triple-product rearrange-
ment, we may write �r · �S as

�r · �S = 2c Re(�r × �E) · �B∗. (C4)

In view of the form (107) for �E, the vector identity

�r × ( �∇ × �A) = �∇(�r · �A) − �A − r
∂

∂r
�A

and the operator identity �r · �L = 0, it follows that

�r × �E = − 1

2k2
0

∂

∂r
[re(r,t)] �LY10( ��). (C5)

With the help of Eqs. (C5) and (C3) and noting that �L∗ = −�L,
we may reduce Eq. (C4) to the form

�r · �S = Re

[
ic

2k3
0

d∗(r,t)[re(r,t)]′ �LY10( ��) · �LY10( ��)

]
. (C6)

Integrating Eq. (C6) over all solid angles with the help of a
normalization integral for spherical harmonics,∫

d2� �LY10 · �LY10 = −2,

produces the following result for cycle-averaged power (C2)
at the spherical surface, r = R:

−dW

dt
= −2R Re

[
ic

2k3
0

d∗(R,t)[R e(R,t)]′
]

. (C7)

If we now use expansions (104) and (108) and make use of
the first equality in Eq. (109), we may write Eq. (C7) as the
double mode sum

−dW

dt
= −2R Re

{
ic

2k3
0

∑
m

∑
n

d∗
mdnj

∗
1 (γmR)

× [Rj1(γnR)]′(
γ 2

n

/
k2

0

) e−λ∗t e−λq t

}
. (C8)

Use of the eigenvalue equation (64) and the easily derived
equality

d
dβ

[
βh

(1)
1 (β)

]
h

(1)
1 (β)

= β2

1 − iβ
− 1

helps us express the power −dW/dt in the simple form

−dW

dt
= cβ4

k4
0(1 + β2)

∣∣∣∣∣
∑

n

dnj1(γnR) exp(−λnt)

∣∣∣∣∣
2

= cβ2

k4
0

|d(r,t)|2, (C9)

valid when β � 1.

APPENDIX D: EVALUATION OF THE SUM IN EQ. (119)

Sums of this form are most simply evaluated by integrating
the associated function

f (z) = π

sin πz

eiαt/(πz−u)

(πz − u)
, (D1)

where u = β + (i/2) ln β, over a closed contour at infinity
that encloses all of the simple poles at all integers z = n, n =
0, ± 1, ± 2, . . . , and the essential singularity at z = u/π of
the function f (z). The integral over the contour vanishes, since
the integrand f (z) decays to 0 sufficiently rapidly as |z| → ∞.
From the residue theorem of analytic function theory, then, the
sum of the residues at the poles and at the essential singularity
must also vanish. Since the residue at the pole z = n is just

(−1)n
eiαt/(nπ−u)

(nπ − u)
,
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the following sum formula results:

∞∑
n=−∞

(−1)n
eiαt/(nπ−u)

(nπ − u)
= −(residue)z=u

[
π

sin πz

eiαt/(z−u)

(z − u)

]
.

(D2)

The residue at the essential singularity may be computed
by expanding the exponential in f (z) in a power series and
using the standard formula for the residue at a pole of arbitrary
order in each power-series term. This procedure leads to the
following sum formula:

∞∑
n=−∞

(−1)n
eiαt/(nπ−u)

(nπ − u)
= −

∞∑
n=0

(iαt)n

(n!)2

dn

dun

(
1

sin u

)
. (D3)

The result (D3), although exact, is not particularly useful since
it trades one sum for another. However, when β � 1, it can be
expanded in a series of terms which decrease in magnitude as
increasing positive powers of 1/β. To do so, note that we may
write

1

sin u
= −2i exp(iu)

1 − exp(2iu)
= −2i

∞∑
m=0

exp[i(2m + 1)u],

and therefore

dn

dun

1

sin u
= −2i

∞∑
m=0

in(2m + 1)n exp[i(2m + 1)u]. (D4)

Substitution of the result (D4) into Eq. (D3), followed by an
interchange of the order of the m and n sums on the RHS,
leads to the following asymptotic sum formula:

∞∑
n=−∞

(−1)n
eiαt/(nπ−u)

(nπ − u)

= 2i

∞∑
m=0

exp[i(2m + 1)β]

βm+1/2

∞∑
n=0

[−(2m + 1)αt]n

(n!)2
, (D5)

where the value exp(±iu) = exp(±iβ)(β)∓1/2 was used to
replace u in terms of β. Since the n sum on the RHS of Eq. (D5)
is simply a power-series expansion of the Bessel function
J0(2

√
(2m + 1)αt), Eq. (D5) reduces to a simpler form,

∞∑
n=−∞

(−1)n
eiαt/(nπ−u)

(nπ − u)

= 2i

∞∑
m=0

exp[i(2m + 1)β]

βm+1/2
J0(2

√
(2m + 1)αt). (D6)

APPENDIX E: APPROXIMATE EVALUATION
OF A CERTAIN SUM

When a function g(n) changes slowly from one integer
value of n to the next, the sum

∑0
n=−∞(−1)ng(n) may

be evaluated by noting that the sum of each successive
pair of terms, since they have opposite signs, is approxi-
mately the same as the first derivative g′(n). We may thus
write

0∑
n=−∞

(−1)ng(n) ≈
0∑

m=−∞
g′(2m), (E1)

where the sum is now over only even nonpositive integers
n: n = 2m, m = 0, − 1, − 2, . . . . Since the sum on the right-
hand side of Eq. (E1) may be regarded, again approximately,
as an integral over m, we may write it as

0∑
n=−∞

(−1)ng(n) ≈
∫ 0

−∞
dm g′(2m) = 1

2

∫ 0

−∞
dn g′(n). (E2)

Since the integrand is a total derivative with respect to the
integration variable n, its integral is trivial, and Eq. (E2)
reduces to the simple form

0∑
n=−∞

(−1)ng(n) ≈ 1

2
g(0), (E3)

since g(−∞) = 0 as a necessary consequence of the conver-
gence of the original sum.

Use of this general result immediately proves the following
sum formula:

0∑
n=−∞

(−1)n
eiαt/(nπ−u)

(nπ − u)
≈ −1

2

e−iαt/u

u
. (E4)

Noting that u = β + (i/2) ln β and 1/u ≈ 1/β −
(i/2)(ln β)/β2, valid for large β, the preceding result is
approximately the same as

0∑
n=−∞

(−1)n
eiαt/(nπ−u)

(nπ − u)
≈ −1

2

e−iαt/βe−αt ln β/(2β2)

β
. (E5)

Subtracting this result from the first term of Eq. (D6),
which for large β gives the sum over all integer values
of p for the same summand, taking the squared modulus
of the resulting difference, and then keeping only the two
most significant powers of 1/

√
β, yield the result (122) for

the corresponding sum over only positive integral values
of n.
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