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Manipulation of a Bose-Einstein condensate by a time-averaged orbiting potential using phase
jumps of the rotating field
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We report on the manipulation of the center-of-mass motion (“sloshing”) of a Bose-Einstein condensate
in a time-averaged orbiting potential (TOP) trap. We start with a condensate at rest in the center of a static
trapping potential. When suddenly replacing the static trap with a TOP trap centered about the same position, the
condensate starts to slosh with an amplitude much larger than the TOP micromotion. We show, both theoretically
and experimentally, that the direction of sloshing is related to the initial phase of the rotating magnetic field of
the TOP. We show further that the sloshing can be quenched by applying a carefully timed and sized jump in the
phase of the rotating field.
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I. INTRODUCTION

Time-averaged potentials (TAP) offer a versatile tool for
trapping both charged and neutral particles. For neutral atoms
the most common example in this class of traps is the time-
averaged orbiting potential (TOP), which was used in the
experiments in which the first Bose-Einstein condensate
(BEC) was created [1,2]. The TOP trap consists a magnetic
quadrupole trap [3,4] shifted by a uniform magnetic modula-
tion field rotating at a high (audio) frequency. As this rotation
is slow as compared with the Larmor precession of the atomic
magnetic moments, the atoms remain polarized with respect
to the instantaneous effective magnetic field [5] as follows
from the adiabatic theorem. On the other hand, the rotation
is fast as compared with the orbital motion of the atoms. As
a consequence, the atomic motion consists of a fast rotating
part (micromotion), superimposed on a slow oscillating part
(macromotion). In the simplest theoretical description, the
static approximation, the micromotion is eliminated by time
averaging the instantaneous potential over a full cycle of the
modulation field.

Suppose we load a particle with given momentum p0 at
position r0 in a TOP trap using a sudden switch-on procedure.
One might naively guess that the ensuing motion is given
by the dynamics in the TAP, subject to the initial conditions
r = r0 and p = p0, but this guess turns out to be wrong. In fact,
one can show that the initial conditions for the slow motion
depend on the phase of the TOP at the time of switch-on. This
phenomenon was analyzed by Ridinger and coworkers [6,7]
for the special case of a one-dimensional rapidly oscillating
potential (ROP) with zero average. Ridinger et al. also showed,
first for a classical particle [6] and subsequently for the
quantum case [7], that the amplitude and energy associated
with the slow motion can be altered by applying a suitable
phase jump in the rapidly oscillating field.

In this paper we show, both theoretically and experimen-
tally, that the dependence on the initial phase and the possibility
of influencing the motion by phase jumps are also present for a
two-dimensional rotating TOP field. In particular we show that
a cloud of atoms that is initially at rest with zero momentum
acquires a sloshing motion as soon as the TOP is suddenly
switched on. This is true even if the cloud is initially at the
minimum of the effective potential. The amplitude of this slow

macromotion is much larger than that of the fast micromotion,
while the direction of sloshing depends on the TOP phase at
switch-on. We also demonstrate that this macromotion can be
almost entirely quenched by applying a carefully timed and
sized phase jump in the TOP field.

The motion of atoms and ultracold atomic clouds in
TOP traps has been extensively described in the literature.
Following the achievement of the first BEC [2], the use of
the axially symmetric TOP was described theoretically in
Refs. [8–13] and explored experimentally by other groups
[14–19] to study properties of the BEC. The idea of the TOP
was extended to an asymmetric triaxial TOP trap developed
by Ref. [15] and used by other groups [17,18]. A number of
other variations were introduced: In many cases, it turns out to
be convenient to switch on the TOP after a preparative stage
of cooling in a conventional static trap such as a magnetic
quadrupole trap (see, e.g., Ref. [15]), an optically plugged
magnetic quadrupole [20], and Ioffe-configurations [21–23].
Often the transfer of the cloud from the static to the TOP
trap cannot be performed adiabatically for topological reasons.
Bearing this in mind, it becomes relevant to carefully analyze
the dynamics that may be induced by a sudden switch-on of
the TOP. In addition, applications that require manipulation of
a BEC are heavily dependent on precise control of the location
of the atomic cloud and can thus benefit from the techniques
described.

In our experiments the condensate is prepared in a Ioffe-
Pritchard (IP) trap before transferring to a TOP. This procedure
induces the “sloshing motion.” Although our method is very
specific, it is typical for any sudden change of a TOP geometry
in amplitude and/or phase. In our case the transfer was cho-
sen because the use of radio-frequency-induced evaporative
cooling is more efficient in a static magnetic trap than in a
TOP. Once transferred to the TOP we can create trapping
geometries that are difficult to realize using a static magnetic
potential without introducing Majorana losses associated with
the presence of zero-field points. An example is the double-
well potential used in Ref. [21].

The remainder of this paper is organized as follows. In
Sec. II we calculate the motion of a cloud of atoms in a TOP
that at switch-on is at rest at the center of the trap. We discuss
the motion that results and derive the conditions under which
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a phase jump can lead to a substantial reduction of the energy
associated with the slow motion of the cloud. In Sec. III we
discuss the experimental details and the preparation of the
BEC and its transfer to the TOP. In Sec. IV we present the
experimental results and compare them with the theory of
Sec. II. Finally in Sec. V we give a summary and conclusion.

II. THEORY

A. Time-averaged Ioffe-Pritchard potential

In the literature the term TOP is most often used for a
spherical-quadrupole trap combined with a rotating uniform
magnetic modulation field. In this paper we will use TOP in
a broader context, to include the magnetic trapping potential
created by combining a IP trap with rotating modulation field.
Challis et al. [13] have shown that the dynamical eigenstates
of a degenerate Bose gas in a TOP are given by solutions of
the usual Gross-Pitaevskii equation but taken in a circularly
translating reference frame, that is, a reference frame the origin
of which performs a rapid circular motion but retains a constant
orientation. In particular this implies that the center of mass of a
condensate in its ground state performs the same micromotion
in a TOP as a point particle with the magnetic moment of an
atom. In this spirit we use as a 87Rb condensate to study the
micromotion and macromotion in a TOP.

We consider a cigar-shaped IP potential [4,24,25]

U (�,z) = µ

√
α2�2 + (

B0 + 1
2βz2

)2

, (1)

where �(t) is the radial position of a test atom with respect
to the IP symmetry axis, µ the magnetic moment of the
atom, and α, β, and B0 the parameters for the radial
gradient, axial curvature, and offset value of the IP magnetic
field, respectively. Equation (1) represents an approximate
expression for the IP trap that is valid for α2 � βB0 and in the
limit � � α/β [4,24,25].

In the presence of the TOP field we transform to the
circularly translating frame [13] and have

�(t) = {x − ρm cos(ωt + φm), y − ρm sin(ωt + φm)}, (2)

where {x,y,z} ≡ {ρ,z} ≡ r is the position of the atom in the
laboratory frame and the IP symmetry axis is displaced over a
distance ρm = Bm/α in the direction

ρ̂m = {cos(ωt + φm), sin(ωt + φm)} (3)

by the uniform modulation field

Bm = Bm{cos(ωt + φm), − sin(ωt + φm)} (4)

applied perpendicular to the z axis. The y axis is taken along
the vertical direction, the xz plane being horizontal. The mod-
ulation field Bm rotates at angular frequency −ω (phase −φm)
around the horizontal z axis as illustrated in Fig. 1. Notice
that the sense of rotation of the IP-field minimum is opposite
to that of the Bm field, in contrast with the original TOP
configuration [1], where the field zero rotates in the same
direction as the bias field. This reflects the difference between
the 2D-quadrupole symmetry of the IP trap and the axial
symmetry of the spherical-quadrupole trap. The rotation of
the modulation field Bm also gives rise to a fictitious field Bω

FIG. 1. (Color online) Schematic diagram of the magnetic field
configuration in relation to the orbit of stationary micromotion (solid
blue circle). The view is along the (horizontal) z axis. The orbital
position and velocity of the micromotion are denoted by ρ = −ρ0ρ̂m

and v0, respectively. The IP symmetry axis rotates at frequency ω

(with initial phase φm) around the z axis on the circle of radius ρm

(dashed black circle). Note that the TOP field Bm = Bmρ̂m rotates at
frequency −ω (phase −φm), reflecting the 2D-quadrupole symmetry
(dashed red circle) of the IP trap.

that has to be added or subtracted from the offset field B0,
depending on the sense of rotation,

B0 → B0(1 ± Bω/B0) = B0(1 ± ω/ωL), (5)

where ωL = gF µBB0/h̄ is the Larmor frequency of magnetic
moment of the atoms, with gF the hyperfine g factor and
µB the Bohr magneton. In a standard TOP, the fictitious field
in combination with a gradient of the quadrupole field gives
rise to a shift of the equilibrium position of the cloud in the
direction of the axis around which the field rotates [5,17]. In
our IP TOP the axial field is homogeneous near the origin and
the shift is absent; the change in B0 turns out to be small and
will be neglected in this paper.

For β = 0 and B0 = 0 the potential U (�,z) corresponds to
that of a two-dimensional quadrupole field with a zero-field
line that rotates at distance ρm around the z axis as a result of the
modulation. For B0 = 0 the distance ρm is known as the radius
of the “circle of death.” For B0 < 0 the potential corresponds
to two TOP traps separated by �z = 2(2|B0|/β)1/2 [21]. In
this paper we will consider only the case B0 � 0.

In the common description of the TOP one analyzes the
motion in an effective potential, obtained by time averaging
the static trap over a full rotation period of the Bm field. For
Eq. (1) this procedure yields the effective potential

U(r) = 1

2π

∫ 2π

0
U (x − ρm cos ζ,y − ρm sin ζ,z) dζ, (6)

where ζ = ωt + φm. For the cigar-shaped IP potential we
consider the condition

ω � 
ρ � 
z, (7)
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where, for an atom of mass m, the quantity 
z = (µ β/m)1/2

is the axial harmonic oscillation frequency in the effective po-
tential U(0,0,z). Analogously, harmonic oscillation frequency
in the radial plane is given by


ρ =
√

µα2

mB̄0

(
1 − 1

2
B2

m/B̄2
0

)
≡ 
, (8)

where B̄0= (B2
0 + B2

m)1/2 is offset value of the effective
potential at the origin [21].

The first inequality in Eq. (7) ensures that the fast and
slow radial motions of the atoms can be separated, which
is the well-known operating regime for a TOP trap [1]. The
second inequality implies that the axial motion in the effective
trap is slowest and that the motion can be treated as quasi
two-dimensional in the radial plane.

To account for the acceleration due to gravity (g), the
gravitational potential mgy has to be added to Eqs. (1) and
(6). The main effect is to shift the minimum of the potentials
in the negative y direction by the amount

�y = g/
2. (9)

This expression holds as long as the gravitational sag �y is
much smaller than the harmonic radius ρh ≡ B̄0/α.

Since ρh � ρm, the effective potential (6) may be treated
as harmonic as long as the motion is confined to a region
around the z axis that is small compared with ρm. For our
experiment the harmonic approximation holds rather well and
is sufficient for gaining qualitative insight into the micro-
and macromotion, as will be shown in Sec. II B. Refinements
associated with switch-on transients and gravity are discussed
in the Appendix. In the numerical analysis of Sec. II C,
we solve the classical equations of motion in the full time-
dependent potential Eq. (1). In this context we also comment
on the validity of the harmonic approximation.

B. Micromotion and macromotion

To analyze the effect of switching on the Bm field at
t = 0 we first consider an atom “at rest” in the center of the
effective trapping potential U(ρ,z). Such an atom exhibits no
period-averaged dynamics (no macromotion) but only circular
micromotion at a frequency ω about the origin as illustrated in
Fig. 1. The radius of this stationary micromotion,

ρ0 = µα

mω2

(
1 + B2

0

/
B2

m

)−1/2
, (10)

follows from the condition Fc = mω2ρ0 for the centripetal
force Fc = −∇ρU |ρ=0 = µα(1 + B2

0/B2
m)−1/2ρ̂m. The speed

of this stationary micromotion,

v0 = ωρ0 = µα

mω

(
1 + B2

0

/
B2

m

)−1/2
, (11)

is directed orthogonally to the direction ρ̂m. Such pure
micromotion results only if at t = 0 the atom is already
moving at speed v0 along a circle of radius ρ0 around the
origin and is located at position ρ = −ρ0ρ̂m (see Fig. 1).
Obviously an atom at t = 0 at rest at the origin ρ = {0,0}
does not satisfy these initial conditions, and as a consequence
its macromotion will start with a finite launch speed. We will
see that the result is elliptical motion at frequency 
, with the

long axis approximately perpendicular to the initial direction
of ρ̂m and with a substantial amplitude of order (ω/
)ρ0.
Usually this motion is undesired, and our aim is to quantify it
and subsequently quench it by imparting a phase jump to the
TOP field.

It is worth mentioning that in the conditions relevant for the
experiments described in this paper the amplitude and energy
of the macromotion are not negligible compared with other
relevant length and energy scales. The characteristic size of
the condensate is given by the Thomas-Fermi radius, which
turns out be slightly smaller than the macromotion amplitude.
Likewise, the energy associated with the macromotion is at
least as large as the chemical potential.

To gain insight into the way in which the sudden switch-on
of the TOP influences the macromotion of an atom initially
at rest at the origin, we first consider a simple model in
which it is assumed that the motion in the radial plane can
be decomposed into two harmonic components, oscillating
at the micromotion and macromotion frequencies ω and

, respectively. The position ρ(t) and velocity ρ̇(t) are
given by

ρ(t) = {ρ0 cos(ωt + φ),ρ0 sin(ωt + φ)}
+ {X0 cos(
t + ϕx), Y0 sin(
t + ϕy)}, (12)

ρ̇(t) = {−v0 sin(ωt + φ),v0 cos(ωt + φ)}
+ {−V0,x sin(
t + ϕx), V0,y cos(
t + ϕy)}, (13)

where X0 (Y0) is the amplitude, V0,x = 
X0 (V0,y = 
Y0)
the velocity amplitude, and ϕx (ϕy) the initial phase of the
macromotion in the x (y) direction; φ is the initial phase of
the micromotion. The atom starts at rest at the origin; hence
the initial conditions are ρ,ρ̇ = 0 at t = 0. If the condition

ω � 
 (14)

is satisfied, the acceleration due to the micromotion dominates
over that of the macromotion. The total acceleration may be
approximated by ρ̈ � Fc/m. In other words, ρ̈ points in the
direction ρ̂m, which is opposite to the direction of ρ (see Fig. 1).
Hence, the initial phase of the micromotion is φ � φm + π ,
where φm is fixed by the phase of the rotating Bm field [26].
Without loss of generality we can set φm = 0, which means
that ρ̂m is oriented along the positive x direction at t = 0.
With this choice and setting φ = φm + π , we find from the
initial conditions ϕx,ϕy = 0, X0 = ρ0, and Y0 = (ω/
)ρ0.
Substituting these values in Eq. (12) we obtain an equation
for the macromotion representing an elliptical orbit with
its major axis oriented perpendicular to the instantaneous
direction ρ̂m of the Bm field at t = 0. Since the amplitude
of the macromotion along its major axis is larger than the
micromotion by the factor ω/
, a substantial sloshing motion
results from the sudden switch-on. Note that with increasing
ω, the micromotion amplitude ρ0 decreases like 1/ω2, whereas
the amplitude of the sloshing motion Y0 decreases only like
1/ω. For this reason the sloshing cannot be neglected in most
practical cases involving audio-frequency modulation.

C. Numerical analysis

To validate the analytical model introduced in Sec. II B, we
numerically integrate the classical equations of motion in the
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FIG. 2. (Color online) Numerically calculated trajectories in the
xy plane with the x and y positions shown against time (left) and
parametric plots of the same trajectory in the xy plane (middle and
right) of a particle initially at rest at the origin, after instant switch-on
(black lines). The dotted red curves correspond to a switch-on time
of 3 µs of the TOP field, a settling time for the value of B0, as well as
the presence of gravity. The trap frequencies are ω/2π = 4 kHz and

/2π = 394 Hz. Units are scaled to the TOP radius ρm.

full time-dependent potential given by Eq. (1) for z = 0, vz =
0, and φm = 0. The result for the trajectory is given in Fig. 2
and exhibits the sloshing macromotion already described. The
choice of parameters is such that it matches the experimental
conditions that will be presented in Sec. III.

The drawn black lines in Fig. 2 correspond to a sudden
switch-on of the TOP trap at t = 0 for an atom initially at
rest at the origin in the absence of gravity. The figure clearly
shows the micromotion superimposed onto the macromotion
orientated along the y direction. The amplitudes and phases of
the macromotion obtained by fitting Eq. (12) to the results of
the numerical calculation agree accurately with the analytical
model of Sec. II B (see Table I). A more detailed comparison
reveals that anharmonicities play a minor role; the harmonics
of both the micro- and macromotion have amplitudes that are
at least two orders of magnitude smaller than those of the
fundamentals.

In order to allow a better comparison with the experiments
to be discussed, we have also performed the numerical analysis
including several refinements that pertain to our specific
experimental situation. These effects are: (a) a difference (δy)
in gravitational sag between the IP and the TOP trap, (b) an
exponential switching transient of the current in the TOP coils
and correspondingly in the Bm field (τ1/e = 3 µs), and (c) a
switching transient of ∼0.5 ms in the offset field from B0 =
9.5 × 10−5 T at t = 0 to the final value B0 = 3.1 × 10−5 T.

TABLE I. Comparison of numerical results (num) with the
analytical model (AM); +ab: including refinements (a) and (b); +abc:
all refinements included.

φm θ/π ϕx/π ϕy/π X0/ρ0 Y0/ρ0

num 0 0 0 0 1 10.2
AM 0 0 0 0 1 10.2
num+ab 0 0.024 0.22 0.04 1.34 10.2
AM+ab 0 0.024 0.23 0.04 1.34 10.2
num+abc 0 0.017 0.20 0.06 0.82 6.5
AM+abc 0 0.021 0.23 0.06 0.85 6.5

The initial gravitational sag in the IP trap is 1.2 µm.

When switching on the TOP, the sag �y jumps in ∼3 µs
to 1.7 µm and settles in ∼0.5 ms to its final value 1.6 µm due
to the decrease of B0. Thus the gravitational sag increases
jumpwise and settles at δy = 0.4 µm. During the same
transient the radius of the stationary micromotion grows from
ρ0 = 0.21 µm to ρ0 = 0.33 µm, and 
 increases by about 5%.

The dotted red traces in Fig. 2 correspond to the numerical
calculation, including all the already mentioned refinements
relevant to the experiments. We have also investigated the
effects of gravity, Bm switching, and B0 switching separately.
We find that the main effect of the settling time of B0 is to
reduce the amplitude along the major axis by ∼35%. The
combined effect of changing gravitational sag and Bm transient
is to slightly increase the x amplitude as well as to produce a
slight tilt angle of the trajectory (see rightmost panel of Fig. 2).

The tilt angle θ of the macromotion also follows from a fit
of Eq. (12) to the numerical results. For known values of X0,
Y0, ϕx , and ϕy the angle of rotation ϑ to align the coordinate
system along the major and minor axis is given by

ϑ = 1
2 tan−1

[
2 sin(ϕx − ϕy)X0Y0

/(
Y 2

0 − X2
0

)]
. (15)

For φm = 0 the tilt angle equals the rotation angle (θ = ϑ).
The results of a fit of Eq. (12) to the numerical results

including only the refinements (a) and (b), as well as a
fit including all three refinements (a), (b), and (c) are also
given in Table I. Extending the analytical model to include
the refinements (a) and (b) is straightforward and given in
detail in the Appendix. The expressions for the amplitudes
and phases depend on the model parameter τ0 and are given
by Eqs. (A6)–(A9) in the Appendix. The model parameter τ0

is chosen by ensuring that the value of the tilt angle θ of the
model reproduces that of a fit to the numerical solution for
zero settling time, θ = 0.024π . This results in τ0 = 3.5 µs.
Excellent agreement is obtained with the numerical model as
is shown in Table I. Insight in the cause of the reduction of
the major-axis amplitude associated with the settling behavior
of B0 can also be gained using the analytical model. As
discussed in the Appendix the major refinement is to change
the launch speed corresponding to the initially smaller value
of ρ0. Although this refinement captures the origin of the 35%
reduction of the major-axis amplitude, Table I shows that the
overall agreement with the numerical model is less favorable.

D. Phase jumps

Let us now analyze how the macromotion can be quenched.
For a one-dimensional ROP it was demonstrated in Ref. [6]
that the amplitude of the macromotion can be quenched by
an appropriate phase jump of the modulation field. For the
2D motion in a TOP, the success of such an approach is not
a priori obvious because the phase jumps for the x and
y motion cannot be selected independently. Yet, as will be
shown, for the TOP as well it is possible to quench both the
X0 and Y0 amplitudes more or less completely by imposing a
single phase jump �φm to the Bm field.

For clarity we first restrict ourselves to the case φm = 0 and
neglect the effects of gravity and switching transients. This
means that the cloud is launched at t = 0 in the vertical y

direction with a speed that is equal to v0, the micromotion
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FIG. 3. (Color online) Explanatory diagram for the phase jump.
Left: Cloud trajectory (black solid line) along with macromotion
trajectory (blue dotted line). The black dashed lines are the symmetry
axes of the trap, and the blue arrows show the macromotion velocity
on crossing the x axis. Middle: Expanded view of boxed region of
the left panel; ρ(t) is the position of the cloud at the time of the phase
jump. The red dashed (black dot-dashed) circle is micromotion just
before (after) the phase jump at t = ta . Right: Micromotion (v) and
macromotion (V) velocity vectors add up to the total velocity vector
ρ̇(t).

speed. As can be seen from the trajectory depicted on the
leftmost side of Fig. 3, the macromotion speed will again be
equal to v0 when the cloud returns close to the origin after
an integer number of macromotion half periods. The total
velocity ρ̇(t) is the vector sum of the micro- and macromotion
velocities, and this quantity varies rapidly on a time scale of
the micromotion period.

The essence of the quenching procedure is to apply the
phase jump at a time ta chosen in the interval tn − �t <

t < tn + �t around times tn = n(π/
) corresponding to a
multiple of the macromotion half period. We choose ta such
that ρ̇(ta) has a magnitude equal to v0. When the cloud returns
at the x axis the micro- and macromotion speeds are both v0,
and hence the resultant total velocity can be equal to v0 only
if the angle between the macro- and micromotion directions
is either 2π/3 or −2π/3 corresponding to two distinct
micromotion phases φa ≡ φ(ta) = ωt2n−1 + φ = ±π/3 (see
rightmost side of Fig. 3). In other words the micro- and
macromotion velocity vectors form an equilateral triangle.
For each of these cases a corresponding phase jump exists,
�φm = ±π/3, respectively, such that ρ̂m is set perpendicular
to ρ̇(ta), which sets the macromotion velocity to zero. The
result is pure micromotion if the orbit into which the particle
is kicked is centered around the origin. For each of the two
choices of φa , pure micromotion results only if the macro-
motion position at the time of the phase jump is equal to
(±ρ0,0), where the ± sign applies for even (odd) n. Complete
quenching can be achieved only for specific choices of the
ratio ω/
. The change of orbit upon a phase jump is explained
pictorially in the center panel of Fig. 3.

We now generalize to the case where the ratio ω/
 is
not precisely fine tuned and allow for the possibility that the
macromotion speed deviates slightly from the value v0 that
we have assumed. One can show that, also in this case, the
maximal reduction in marcromotion energy resulting from a

phase jump is achieved when the jump is applied at a time ta
when ρ̇(ta) has a magnitude equal to v0. The value of �φm

is again selected such as to set ρ̂m perpendicular to ρ̇(ta). By
reasoning similar to the case already described, we find that
the condition of an equilateral triangle of the three velocity
vectors is now replaced by one that is an isosceles-triangle
condition with the micromotion velocity and ρ̇(ta) both having
a magnitude v0. This in turn means that the magnitude of
the phase jump will deviate slightly from the values ±π/3
already found. Also, the nearest distance to the x axis at which
the isosceles-triangle condition can be met is in general not
equal to zero. This means that some residual macromotion
will be present after the phase jump, with an amplitude given
by the distance to the origin of the center of the circular orbit
into which the cloud is transferred by the phase jump. One
can show that there is always a choice possible where the
isosceles-triangle condition is satisfied such that this distance is
approximately 2ρ0 or less. As a consequence, even in the worst
case, the macromotion amplitude is reduced from (ω/
)ρ0 to
an amplitude of order ρ0.

The criterion that the acceleration be set perpendicular to
the total velocity at the time that the macromotion speed is
equal to v0 can be expressed by the following equation:

�φm = arctan

[
ρ̇y (ta)

ρ̇x(ta)

]
− φ(ta) + (−1)k

π

2
, (16)

where ρ̇x(ta) = −v0 sin φ(ta) − V0,x sin(
ta + ϕx) and
ρ̇y(ta) = v0 cos φ(ta) + V0,y cos(
ta + ϕy) are x and y

components of ρ̇ at time ta and k = 1 for ρ̇x(ta) > 0 and
k = 0 for ρ̇x(ta) < 0. We return to selection of the jump time
and the use of Eq. (16) when discussing the measurement
procedure in Sec. III B.

Examples of the numerical calculations of the quenching
procedure are shown in Fig. 4. The near complete quenching of
the macromotion shown in Fig. 4(a) is obtained for δy = 0 and
τ = 0 with phase jump �φm = −π/3 at time ta = 3.834 ms
in the time interval around t3 = 3π/
. In Fig. 4(b) the
refinements (a), (b), and (c) are included in the simulation of
the experiment. In this case the phase jump had to be adjusted
to �φm = −0.22π for maximum quenching. Note that the
quenching is less complete. By adjusting, at constant 
, the
micromotion frequency to ω = 4.068 kHz and the jump time
to ta = 3.769 ms, complete quenching similar to that shown
in Fig. 4(a) was also obtained when including all refinements
in the numerical model.

III. EXPERIMENTAL

A. Apparatus

The experiments are done with the apparatus described
in detail in Refs. [27] and [28]. We produce a BEC of
2.5 × 105 atoms of 87Rb in the |F = 2,mF = 2〉 state in
an IP trap using radio-frequency evaporative cooling. The
symmetry axis (z axis) of the trap lies horizontal with trap
frequencies (
ρ/2π = 455(5) Hz, 
z/2π = 21 Hz) and the
magnetic-field offset B0 = 9.5(3) × 10−5 T, α = 3.53 T/m,

and β = 266 T/m2. The Thomas-Fermi radius of the BEC is
2.2 µm. The TOP field is produced by two pairs of coils, one
in the x direction, the other in the y direction, as described
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FIG. 4. (Color online) Numerically calculated radial trajectories
in the x and y directions for the same trap parameters as used for Fig. 2,
with a quenching phase jump �φm applied at optimized t = ta � t3
(three macromotion half periods). (a) Instant switching, no gravity:
�φm = −π/3, ta = 3.834 ms; (b) including switching transients and
gravity: �φm = −0.22π , ta = 3.834 ms.

previously in Ref. [21]. The coils consist of only two windings
to keep the inductance low. The current for the TOP is
generated by a TTI 4 channel arbitrary waveform generator
(TGH 1244), amplified by a standard audio amplifier (Yamaha
AX-496). The current used is Im = 3.0 A, and the field
produced is Bm = 6.8(2) × 10−5 T. All measurements in the
TOP are done with 
/2π = 394(4) Hz (B0 = 3.1 × 10−5 T).
Detection is done by time-of-flight absorption imaging along
the z axis using a one-to-one transfer telescope to image the
xy plane onto a Princeton TE/CCD-512EFT CCD camera with
15 µm pixel resolution. All measurements are carried out with
the same flight time �tTOF = 23 ms, giving rise to an expanded
cloud radius of ∼140 µm.

B. Measurement procedure

Our experiments on phase-jump-controlled motion in a
TOP trap are done with the Bm field operated at ω/2π =
4 kHz. This frequency is sufficiently high (ω/
 >∼ 10) to
satisfy the “TOP condition” [Eq. (14)]. The frequency is
chosen lower than in a typical TOP to ensure that the speed
of the stationary micromotion, 9 mm/s as estimated with
Eq. (11), is accurately measurable. In the experiments we start
with an equilibrium BEC in the IP trap already described.
At t = 0 we switch on the Bm field, using B0 to tune the
measured trap frequency to 
/2π = 394 Hz. As the trap
minimum shifts down by δy = 0.40 µm, the initial position of
the cloud is slightly above the trap center. The 1/e-switching
time of the Bm field was measured to be τ ≈ 3 µs, which
corresponds to ωτ ≈ 0.08. When changed, the B0 field settles

to a new value after a damped oscillation with a frequency of
650 Hz and a damping time τ ′ of 0.56 ms. This corresponds
to 
τ ′ ≈ 0.2. The velocity ρ̇ of the BEC in the radial plane at
the time of release is determined by time-of-flight absorption
imaging along the z axis. For the chosen flight time of
23 ms, a speed of 1 mm/s corresponds to a displacement
of 23 µm with respect to a cloud released from the same
position at zero velocity. A cloud released at rest at time trel is
imaged at position R0 = ρ(trel) + 1

2 ρ̈g�t2
TOF, where ρ̈g is the

gravitational acceleration. For a finite release velocity ρ̇(trel)
the cloud will be imaged at R = ρ̇(trel)�tTOF + R0.

In practice we may neglect the small variation in the release
position due to the macromotion, approximating ρ(trel) �
ρ(0), because this variation is smaller than the shot-to-shot
reproducibility of the cloud position. From the model analysis
of Sec. II B the variation in release position due to the
macromotion is estimated to be δρ(trel) <∼ (ω/
)ρ0 ≈ 4 µm.
The centroid of the image of the expanded cloud is determined
using a simple Gaussian fitting procedure and has a shot-
to-shot reproducibility of ∼8 µm, small as compared with
the 140 µm radius of the expanded cloud. No improvement
in shot-to-shot reproducibility was found by changing to a
higher magnification. Since our measurements depend only
on the position of the cloud center, they are insensitive to
fluctuations in atom number or density. To reconstruct the
motion of the condensate in the trap we image the cloud at
t = ti , where ti is the holding time in the TOP. We obtain the
release velocity by measuring the x and y components of the
cloud centroid (Rx,Ry). A typical set of data is shown in Fig. 5.
The micromotion is recognized as the rapid modulation on the
slow macromotion. As the frequency of the micromotion is
accurately known, we avoid aliasing by sampling the motion in
steps of 0.025 ms, much shorter than the micromotion period.
If we wish to look only at the macromotion in a stroboscopic
manner, we can sample precisely at the micromotion period of
0.25 ms, with the best results obtained when sampling on the

FIG. 5. (Color online) The centroid position after 23 ms TOF
plotted in camera pixel units against holding time in the TOP trap.
Upper datatset: Rx ; lower dataset: Ry . The solid lines represent the
fit of Eqs. (17) and (18) to the data. Note that by a stroboscopic
measurement at 0.25 ms intervals the micromotion is eliminated.
Each point represents a single measurement.
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crests of the micromotion. Fitting the expressions

Rx = −v0�tTOF sin(ωt + φ)

−V0,x�tTOF sin(
t + ϕx) + R0,x, (17)

Ry = v0�tTOF cos(ωt + φ)

+V0,y�tTOF cos(
t + ϕy) + R0,y (18)

to the data and using the TOP frequency ω and �tTOF as known
parameters, we obtain the amplitudes v0,V0,x ,V0,y as well as the
macromotion frequency 
 and the phases φ,ϕx,ϕy. Note that
the fit also yields the reference position R0 = {R0,x,R0,y}, but
this information is superfluous for the reconstruction of the in-
trap motion. Once these quantities are determined, the motion
of the condensate in the TOP trap is readily reconstructed with
Eq. (12).

To investigate the effect of phase jumps, we implement the
approach described in Sec. II D. First we determine for given
ω and �tTOF all parameters to reconstruct the motion with
the method just described. This enables us to determine the
time intervals tn − �t < t < tn + �t , where the cloud returns
close to the origin, and choose within this interval the time
ta , where the total velocity ρ̇(ta) has magnitude v0 as shown
in Fig. 6(a). The red dashed lines correspond to the analytical
model of Sec. II D for the case of instant switching: no gravity
[the case of Fig. 4(a)]. The black solid lines correspond to
the calculation including all relevant experimental constraints.
The phase jump �φm that sets ρ̂m perpendicular to ρ̇(ta) is
given by Eq. (16). This optimal phase jump �φm is plotted
versus ta in a time interval around t3 = 3π/
 in Fig. 6(b). For
the case of instant switching, no gravity, the optimum phase
jump is seen to be �φm = −π/3. At the chosen time ta we vary
the phase jump �φm around the value suggested by Eq. (16)
in search for optimal quenching. To reconstruct the residual

un
its

 o
f

un
its

 o
f

FIG. 6. (Color online) Illustration of how to choose the optimal
phase jump and its timing. Both panels: solid black curve: experi-
mental conditions; dashed red curve: analytical model of Sec. II D
for the case of instant switching: no gravity. (a) Total speed of the
cloud in units of the micromotion speed v0 [optimal phase jump time
ta corresponds to ρ̇(ta) = v0]; the dashed blue line (scale on right)
shows the Y component of the macromotion position crossing zero at
t = t3 (stationary micromotion can be achieved by adjusting ω such
that t3 = ta). (b) Optimal phase jump as a function of jump time as
calculated by Eq. (16).

macromotion, we hold the cloud for a variable additional time
tb, before TOF imaging at time t = ta + tb.

IV. RESULTS AND DISCUSSION

In this section we show the results obtained with the
experimental procedure described in Sec. III. We measured the
macromotion induced by switching on the Bm field for three
values of the initial TOP phase, φm = 0,π/4,π/2. For φm = 0
part of the raw data are shown in Fig. 5. In Fig. 7 we show
the measured velocity of the macromotion obtained with the
stroboscopic method. The upper and lower panels correspond
to φm = 0 and π/4, respectively. The data for φm = π/2 are
not shown but are similar to those for φ = 0 and with the roles
of x and y interchanged.

The solid lines in the left panels of Fig. 7 are obtained by
fitting Eqs. (17) and (18) to the full data including micromotion
and provide the input for calculating the amplitudes. Using
the known TOP frequency ω/2π = 4 kHz and flight time
�tTOF = 23 ms, the fit yields for the velocity ampli-
tudes, phases, and frequency v0 = 7.6(2) mm/s, V0,x =
0.7(2) mm/s, V0,y = 5.6(2) mm/s, φ = 1.00(1)π , ϕx =
0.5(2)π , ϕy = 0.05(2)π , and 
/2π = 394(4) Hz. The cor-
responding in-trap amplitudes are ρ0 ≡ v0/ω = 0.30(1) µm,

X0 ≡ V0,x/
 = 0.28(7) µm, and Y0 ≡ V0,y/
 = 2.3(1) µm.
The right panels in Fig. 7 are parametric plots of the

trajectories obtained by reconstructing the motion in the
trap from the velocity fits already described. The trajectories
provide a useful way to see the effect of the initial phase of
the applied Bm field, and in addition the upper panel can be
directly compared with the theoretical prediction shown in
Fig. 2. As expected, the orientation of the major axis of the
macromotion is dependent on the initial phase φm of the Bm

field. The small tilt θ away from the direction perpendicular
to ρ̂m is clearly visible and consistent with the calculations for
a finite switch-on time and the presence of gravity. The value
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FIG. 7. (Color online) Left panels show the macromotion veloc-
ities (taken with the stroboscopic method) of the cloud centroid x

(black) and y (red) versus time for φm = 0 and π/4. Solid curves
are fits of Eqs. (17) and (18) to the data. Right panels represent the
reconstructed trajectories in parametric form (in units of the TOP
radius ρm = 19.5 µm). The difference in aspect ratio is caused by the
gravity shift.
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TABLE II. Experimental results (expt.) for macromotion induced
by the switch-on of the TOP field for φm = 0,π/4. The data are
compared with the results of the numerical calculation of Sec. II C
(num). In all cases the tilt angle has be calculated with the aid of
Eq. (15).

φm θ/π ϕx/π ϕy/π X0/ρ0 Y0/ρ0

expt. 0 0.04(2) 0.5(2) 0.05(2) 0.9(2) 7.7(3)
num 0 0.016 0.20 0.06 0.82 6.5
expt. π/4 0.04(2) 0.49(2) 0.12(2) 6.6(4) 5.2(3)
num π/4 0.013 0.47 0.04 4.95 4.55

obtained for ρ0 is slightly smaller than the value calculated with
Eq. (10), but in view of experimental uncertainties certainly
consistent with the value of α. The results for ϕx/π , ϕy/π ,
X0/ρ0,Y0/ρ0, and the tilt angle θ obtained for φm = 0 and π/4
are given in Table II. For comparison, the numerical results are
also included.

We now turn to the results of a quenching experiment.
The time ta � 3.83 ms and magnitude �φm = −0.22π of the
phase jump have been chosen to meet the conditions necessary
to quench the macromotion as introduced in Sec. III B and
illustrated in Fig. 6. In Fig. 8 we show velocity data taken with
the stroboscopic method. For t < 3.83 ms the data coincide
with those shown in the upper panel of Fig. 7, but the solid
lines are not a fit, representing the macromotion velocity
predicted by the numerical calculation on the basis of the
experimental parameters. These velocity curves correspond to
the macromotion part of the position plot [Fig. 4(b)] and have
no adjustable parameters. Both experiment and theory show
pronounced reduction in the amplitude of the macromotion.
Although the phases of the quenched motion cannot be
determined convincingly with our signal-to-noise ratio, the
agreement between theory and experiment is satisfactory.

In general a jump in the micromotion phase produces an
abrupt change in macromotion phase and amplitude. For the
case illustrated in Fig. 8 we obtain a reduction of more than a
factor of 5 in the amplitude of oscillation in the y direction at
the expense of only a slight increase of the amplitude in the x

FIG. 8. (Color online) Measured and calculated velocity of the
macromotion before and after a phase jump of �φm = −0.22π at
ta = 3.83 ms for initial phase φm = 0. The open black squares (solid
red circles) correspond to the measured Vx (Vy) velocity component
(for ta < 3.83 ms the data coincide with those of Fig. 7). Each point
represents a single measurement. The solid lines correspond to the
numerical model without any adjustable parameter as described in
the text.

FIG. 9. (Color online) Ratio of macromotion energy over mi-
cromotion energy following a phase jump plotted against �φm at
1.32 ms (open black squares) and 1.33 ms (red circles). Each data
point is obtained from fits as described in the text. The horizontal
blue dashed line shows the initial value of the energy before the
phase jump. The solid black lines and dotted red are the numerical
calculation for 1.31 and 1.32 ms, respectively. The inset shows the
dependence on jump time for fixed value of �φm.

direction. As a result the macromotion is reduced to the size of
the micromotion. The energy associated with the macromotion
is consequently reduced by a factor of about 15, reducing it to
a small fraction of the micromotion energy. This demonstrates
that the initial sloshing motion of the cloud can be efficiently
quenched by applying an appropriate phase-jump angle. As
pointed out at the end of Sec. II D, we expect that it should be
possible to suppress the macromotion almost completely by
adjusting the micromotion frequency such that t3 = ta .

Even a small variation in the phase-jump magnitude or
its timing can result in a substantial difference in quenching
efficiency. This is illustrated in Fig. 9, where we plot the ratio
of macro- and micromotion energy,

Emacro

Emicro
= V 2

0,x + V 2
0,y

v2
0

, (19)

as the phase jump is varied in steps of 10 degrees, for ta = 1.32
and 1.33 ms, where the position and velocity criteria are well
satisfied. For most phase jumps �φm the result is an increase in
energy. The drawn lines are the predictions from the numerical
model for the same conditions at ta = 1.31 and 1.32 ms. The
plot for ta = 1.32 ms shows a deeper reduction than that for
ta = 1.31 ms, as well as a shifted optimal �φm. The common
shift of ∼0.01 ms between the data and the numerical results
remains unexplained.

V. SUMMARY AND CONCLUSION

We have shown that a cold atomic cloud initially at rest at
the minimum of the effective potential of a TOP trap acquires
a macroscopic sloshing motion, in addition to near-circular
micromotion, when the TOP is suddenly switched on. The
energy associated with this macromotion is of the same order as
the energy of the micromotion, and the amplitude of the former
is larger than that of the latter by a factor ∼ ω/
. We have
theoretically described the phenomenon, and the predictions
compare well with our experimental results.
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As the micromotion is shared in common mode by all
trapped atoms, the associated energy does not affect the
thermodynamics of the cloud in any way. In contrast, the
macromotion energy is generally unwanted and potentially
harmful. Fortunately, as we have shown, it is possible to
quench this macromotion almost completely and instantly
by applying a suitable and properly timed phase jump to
the rotating magnetic field that defines the TOP. We have
shown theoretically that this procedure works, even for the
2D case of the TOP, which is an extension of previous theory
describing similar phenomena in 1D [6,7]. We have presented a
framework that allows a deterministic procedure for choosing
the optimal parameters for the phase jump. Our experiments
corroborate the theoretical model for the TOP in a quantitative
manner.

The macromotion induced by the switch-on and the
subsequent possibility of altering this motion by phase jumps
have several consequences, some of which we now briefly
mention. For example, the sloshing motion may affect the
time of flight imaging once the fields have been switched off.
When comparing TOF images for different holding times it
is in general not sufficient to synchronize the release time
to the micromotion period. The position after TOF can be
easily polluted by the nonzero macromotion, which evolves
asynchronously with the micromotion. The time scales in
this experiment are on the order of a few macromotion
periods. The physics of interest of the cloud is usually seen
on much longer time scales of hundreds of such periods.
On these longer time scales, the presence of even small
anharmonicities can lead to the conversion of macromotion
energy into heat. The macromotion can be of an order of
the chemical potential, which can have consequences for the
stability of the condensate.

The possibility to excite or quench macromotion by phase
jumps of the rotating field is a valuable feature of the TOP
trap that has received little attention in the literature. Our
work shows that this feature is well understood and can
be applied in a well-controlled manner. We have primarily
focused on quenching with a single phase jump. However, the
reverse effect in which the macromotion is excited may prove
equally useful in some experiments. Also the consequences
for multiple phase-jump applications deserve attention in this
respect. We established numerically that it should be possible
to excite or deexcite large macromotion with a series of π phase
jumps at intervals of the macromotion half period. At each
of these phase jumps, either component of the macromotion
velocity can be increased or decreased by ∼2v0. Because this
is outside the primary focus of this paper, we do not further
elaborate on this interesting topic.
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APPENDIX: ANALYTIC MODEL

For arbitrary φm the position ρ ′ = {x ′,y ′} with respect to a
coordinate system rotated over an angle φm is

x ′(t) = −ρ0 cos ωt + X′
0 cos(
t + ϕ′

x), (A1)

y ′(t) = −ρ0 sin ωt + Y ′
0 sin(
t + ϕ′

y), (A2)

where X′
0, Y ′

0 are the amplitudes and ϕ′
x,ϕ

′
y the phases with

respect to the rotated axes. Taking the time derivative and using
the initial conditions ρ ′,ρ̇ ′ = 0 at t = 0, yields ϕ′

x = ϕ′
y = 0,

X′
0 = ρ0, Y ′

0 = (ω/
)ρ0. This corresponds to an ellipse with
its major axis oriented perpendicular to the instantaneous
direction ρ̂ ′

m ≡ ρ̂m of the Bm field at t = 0.
For exponential switch-on of the Bm field with 1/e time τ0,

we have for the acceleration in the “primed” coordinate system

ẍ ′(t) =ω2[1 − exp(−t/τ0)]ρ0 cos ωt − 
2X′
0 cos(
t + ϕ′

x),

(A3)

ÿ ′(t) =ω2[1 − exp(−t/τ0)]ρ0 sin ωt − 
2Y ′
0 sin(
t + ϕ′

y),

(A4)

where, during switch-on, X′
0, Y ′

0, ϕ′
x , ϕ′

y , and 
 are functions
of time. Since 
 � ω, we may approximate, for ωt � 1,

ẍ ′(t) � ω2[1 − exp(−t/τ0)]ρ0 cos ωt � ÿ ′(t). (A5)

This shows that the switch-on profile mainly affects the
acceleration in the x ′ direction because this is the initial
direction of acceleration. By the time sin ωt is sufficiently large
to make ÿ ′ nonnegligible, the switch-on transient is already
finished. For ωt � 1, the velocity in the x ′ direction is given by
ẋ ′(t) � ω2[t − τ + τ exp(−t/τ )]ρ0. This expression suggests
approximating the switch-on profile by a step function at
t = τ0 � τ and treating X′

0, Y ′
0, ϕ′

x , ϕ′
y as constants for t � τ0.

This “delayed sudden-step approximation” is equivalent to
imposing the boundary conditions ρ ′, ρ̇ ′ = 0 at t = τ0. In
this approximation we obtain for the phases and amplitudes
ϕ′

x = tan−1[ω2τ0/
], ϕ′
y = 0, X′

0 = ρ0(1 + ω4τ 2
0 /
2)1/2, and

Y ′
0 = (ω/
)ρ0 for t � τ0. The phase development ωτ0 due to

rotation of the Bm field during switch-on will appear as a
rotation of the major and minor axes of the macromotion with
respect to the primed coordinate system defined by t = 0.
The optimal value for τ0 can be determined by comparing
the predictions of the analytical model with the results of a
numerical calculation (see Sec. II C).

In the presence of gravity, this analysis remains valid as long
as the radial frequency 
 does not change substantially during
switch-on of the Bm field; in principle 
 can be kept constant
by simultaneously switching B0 and Bm in such a way that the
quantity B̄0/(1 + 1

2B2
m/B̄2

0 ) equals the value of B0 before the
Bm field was switched on. In case of a small and fast change in

 our model can be adapted by changing the initial conditions
to ρ − {0,δy},ρ̇ = 0 at t = τ0, where δy = �yTOP − �yIP is
the difference in gravitational sag. Using the adapted boundary
conditions we obtain in the limits (gα/B̄0)1/2 � 
 � ω and
ωτ0 � 1 for the amplitudes and phases of the macromotion

X0 = ρ0[1 + (ω2/
2 − 1) sin2(ωτ0 + φm)]1/2, (A6)

Y0 = ρ0
[
1 + (ω2/
2 − 1) cos2(ωτ0 + φm)

+ δy2/ρ2
0 + 2(δy/ρ0) sin(ωτ0 + φm)

]1/2
, (A7)
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ϕx = −
τ0 + tan−1 [(ω/
) tan(ωτ0 + φm)] + nπ, (A8)

ϕy = −
τ0 + tan−1{(
/ω)[tan(ωτ0 + φm)

+ (δy/ρ0)/ cos(ωτ0 + φm)]} + nπ, (A9)
where n = 0 for |ωτ0 + φm| � π/2, n = 1 for |ωτ0 + φm| >

π/2. For φm = 0, these equations coincide with the equations
for X′

0, Y ′
0, ϕ′

x , and ϕ′
y in the primed coordinate system.

Analyzing the limit ωτ0 → 0 for the case δy � ρ0 (typical
for our experimental conditions), we find X0 � ρ0 and Y0 �
(ω/
)ρ0 for φm = 0 and X0 � (ω/
)ρ0 and Y0 � 2ρ0 for
φm = π/2. Thus, we deduce that gravity can have a substantial
influence on the amplitude of the macromotion along its minor
axis but not on the amplitude along the major axis. For known
values of X0, Y0, ϕx , and ϕy the angle of rotation ϑ to align
the coordinate system along the major and minor axis is
given by Eq. (15). For 
τ0 � ωτ0 � 1 and in the absence

of gravity (δy = 0) the delayed sudden step gives rise to a
small rotation �ϕ � ωτ0, independent of φm. For δy � ρ0

gravity gives rise to an additional contribution to this rotation,
which is minimal for φm = π/2, where the macromotion is
launched perpendicular to the gravity direction and Eq. (15)
can be approximated by ϕ � ωτ0[1 + (1 + δy/ρ0)(
/ω)2].
The contribution is maximal for φm = 0, where Eq. (15) can
be approximated by ϕ � ωτ0 − (
/ω)2(δy/ρ0)2(1 + ωτ0).

Insight into the dependence of X0 and Y0 on the settling
behavior of B0 can be obtained from Eq. (A5), which shows
that the initial acceleration and, hence, the launch speed scales
with the initial value of ρ0. Therefore, most of the settling
behavior is captured by using the initial value of ρ0 in Eqs. (A6)
and (A7). The 5% change in 
 requires a further refinement
of the model. This cannot be implemented without sacrificing
the simplicity of the model and is not pursued here.
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