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Cooper pairing and BCS-BEC evolution in mixed-dimensional Fermi gases
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Similar to what has recently been achieved with Bose-Bose mixtures [G. Lamporesi, J. Catani, G. Barontini,
Y. Nishida, M. Inguscio, and F. Minardi, Phys. Rev. Lett. 104, 153202 (2010)], mixed-dimensional Fermi-Fermi
mixtures can be created by applying a species-selective one-dimensional optical lattice to a two-species Fermi
gas (σ ≡ {↑,↓}), in such a way that both species are confined to quasi–two-dimensional geometries determined
by their hoppings along the lattice direction. We investigated the ground-state phase diagram of superfluidity for
such mixtures in the BCS-BEC evolution, and found normal, gapped superfluid, gapless superfluid, and phase
separated regions. In particular, we found a stable gapless superfluid phase where the unpaired ↑ and ↓ fermions
coexist with the paired (or superfluid) ones in different momentum space regions. This phase is in some ways
similar to the Sarma state found in mixtures with densities, but in our case, the gapless superfluid phase is
unpolarized and most importantly it is stable against phase separation.
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I. INTRODUCTION

Atomic Fermi gases have emerged as a unique testing
ground for many theories of exotic matter in nature, allowing
for the creation of complex yet very controllable many-body
quantum systems, [1] where for instance observation of the
BCS-BEC crossover has so far been the most important
achievement in this field. Following this huge success with
single-species fermion mixtures, there has been increasing ex-
perimental interest in studying two-species Fermi-Fermi mix-
tures [2–7]. In particular, 6Li-40K mixtures have recently been
trapped and interspecies Feshbach resonances have been iden-
tified, opening a new frontier in ultracold atomic research to
study exotic many-body phenomena, one of which is the pos-
sibility of studying fermion pairing in mixed dimensions [8,9].

Mixed-dimensional atomic systems, in which two types
of particles live in different dimensions, can be created
with two-species Fermi-Fermi, Bose-Fermi, and Bose-Bose
mixtures by using species-selective optical lattice potentials.
This has recently been achieved with Bose-Bose mixtures [10]
by applying a one-dimensional optical lattice to a 41K-87Rb
mixture, where only 41K atoms feel the lattice potential and
are confined to a quasi–two-dimensional geometry, while
having negligible effect on 87Rb atoms, thus leaving the
87Rb atoms three dimensional. Motivated by this experimental
work, here we analyze Cooper pairing in mixed-dimensional
Fermi gases. We consider both single-species and two-species
fermion mixtures, and analyze the ground state phase diagrams
in the BCS-BEC evolution, which involves normal, gapped
superfluid, gapless superfluid, and phase separated regions. In
particular, the gapless superfluid phase, where the unpaired ↑
and ↓ fermions coexist with the paired (or superfluid) ones in
different momentum space regions, is in some ways similar to
the Sarma state found in mixtures with unequal densities [11],

*Current address: Department of physics, Faculty of Science
and Letters, Istanbul Technical University, 34469 Maslak, Istanbul,
Turkey.

but in our case, the gapless superfluid phase is unpolarized and
most importantly it is stable against phase separation. In this
way, our gapless superfluid phase is very similar to those of
Refs. [12,13] which are recently proposed for ultracold atomic
systems in other contexts.

The rest of this article is organized as follows. In Sec. II,
after introducing the Hamiltonian in Sec. II A, the corre-
sponding saddle-point self-consistency equations are derived
in Sec. II B, and their noninteracting limit is discussed
in Sec. II C. We numerically solve these equations in the
BCS-BEC evolution in Sec. III where we investigate the
normal-superfluid transition in Sec. III A the topological
gapless-gapped superfluidity transition in Sec. III B and the
ground state phase diagrams in Sec. III C. A brief summary
of our conclusions is given in Sec. IV. The details of the
self-consistency equations at T = 0 are further discussed
in Appendix A and the boundary equation for the normal-
superfluid transition is derived in Appendix B.

II. MIXED-DIMENSIONAL FERMI GASES

In this work, we analyze Cooper pairing in mixed-
dimensional Fermi gases, which seems to be a very promising
way to create superfluidity with mismatched Fermi surfaces,
and the physics involved is in some ways similar to that of
unequal density mixtures [14–17]. We consider only uniform
(homogenous) mixtures, but emphasize that the finite-size ef-
fects due to the confining trapping potentials (which are always
present in atomic systems) can be taken into account using the
local-density approximation (as a first approximation).

A. Hamiltonian

To describe such mixed-dimensional Fermi gases in
a species-selective one-dimensional optical lattice (say in
the ẑ direction), we start with the real-space Hamiltonian
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(h̄ = kB = 1)

H =
∑

σ

∫
d3r ψ†

r,σ

[
− ∇2

2mσ

− µσ + V σ
OL(rz)

]
ψr,σ

− g

∫
d3r ψ

†
r,↑ψ

†
r,↓ψr,↓ψr,↑, (1)

where the pseudospin σ labels both the type and hyperfine
states of atoms represented by the creation operator ψ

†
r,σ , mσ is

the mass, and µσ is the chemical potential. Here, r ≡ (rx,ry,rz)

is the position with r⊥ =
√

r2
x + r2

y , V σ
OL = V0,σ sin2(πrz/dz)

is the optical lattice potential, dz is the lattice spacing, and
g � 0 is the strength of the attractive interaction (zero-range
and isotropic) between ↑ and ↓ fermions.

In order to obtain the momentum-space Hamiltonian, we
first expand the creation and annihilation field operators in
the orthonormal and complete basis set of Wannier functions
W (rz − ri

z) of the lowest energy states of the optical potential
near their minima (single-band approximation), and then take
the Fourier transform of the site operators. This corresponds to
the following substitution: ψr,σ = (1/

√
M)

∑
i,k ak,σWσ (rz −

ri
z)e−i(k⊥·r⊥+kzr

i
z), where k ≡ (kx,ky,kz) is the momentum with

k⊥ =
√

k2
x + k2

y , i labels the lattice sites, and M is the
total number of them. Keeping only the tunneling between
nearest neighbor sites and onsite interactions, and using
the orthonormality of the Wannier functions, the resultant
Hamiltonian can be written as

H =
∑
k,σ

ξk,σ a
†
k,σ ak,σ − g

∑
k,k′,q

b
†
k,qbk′,q, (2)

where b
†
k,q = a

†
k+q/2,↑a

†
−k+q/2,↓ creates fermion pairs

with center of mass momentum q and relative mo-
mentum 2k. Here, ξk,σ = εk,σ − µσ , where εk,σ =
k2
⊥/(2mσ ) + 2tσ [1 − cos(kzdz)] is the single-particle energy

dispersion, and tσ = ∫
drz W ∗(rz − ri

z)[−∂2/(2mσ∂r2
z ) +

V σ
OL(rz)]W (rz − r

j
z ) is the tunneling amplitude between any

nearest neighbor sites i and j .
Following the usual treatment, the strength of the attractive

interaction can be written in terms of an “effective” s-
wave scattering length aeff [18] as 1/g = −m+V/(4πaeff) +∑

k 1/(2εk,+), where m± = 2m↑m↓/(m↓ ± m↑), V is the
volume of the system, and εk,± = (εk,↑ ± εk,↓)/2. Note that
m+ is twice the reduced mass of the ↑ and ↓ fermions, and
that the equal mass case corresponds to |m−| → ∞. Here,
and throughout, the momentum space sums are evaluated
as

∑
k ≡ [V/(2π )3]

∫
d3k ≡ [V/(2π2)]

∫ π/dz

0 dkz

∫ ∞
0 k⊥dk⊥,

since the system at hand has a cylindrical symmetry around
the kz axis, and a translational symmetry along the ẑ direction,
so that the kz integrals are limited to the first Brillouin zone,
i.e., −π/dz � kz � π/dz. The resultant integrands are also
even functions of kz, and hence we integrate over half of the
Brillouin zone and multiply them by two.

In this article, for simplicity, we set t↓ = 1/(2m↓d2
z ) but

allow for the ↑ fermions to have different effective masses
along the lattice direction through a tight-binding dispersion

determined by t↑, so that

εk,↑ = k2
⊥

2m↑
+ 2t↑[1 − cos(kzdz)], (3)

εk,↓ = k2
⊥

2m↓
+ 1

m↓d2
z

[1 − cos(kzdz)]. (4)

Notice that when kFz,↓dz � π (i.e., the low-filling limit for
the ↓ species), where kFz,↓ is the Fermi momentum of ↓
fermions in the kz direction, Eq. (4) can be approximated
as εk,↓ ≈ k2/(2m↓). Next, we analyze the phase diagram of
the Hamiltonian given in Eq. (2) with the dispersions given
by Eqs. (3) and (4), within the saddle-point (mean-field)
approximation.

B. Self-consistency equations

At low temperatures (T ≈ 0), the saddle-point self-
consistency (order parameter and number) equations are
sufficient to describe the BCS-BEC evolution of superfluidity
[19,20]. For the Hamiltonian given in Eq. (2) the saddle-point
action is S0 = �0/T , where

�0 = |�|2
g

+
∑

k

(ξk,+ − Ek,+) + T
∑
k,s

ln[f (−Ek,s)] (5)

is the saddle-point thermodynamic potential. Here, f (x) =
1/[exp(x/T ) + 1] is the Fermi function, Ek,s = (ξ 2

k,+ +
|�|2)1/2 + γsξk,− is the quasiparticle energy when γ1 = 1
or the negative of the quasihole energy when γ2 = −1, and
Ek,± = (Ek,1 ± Ek,2)/2. In addition, � is the order parameter
and ξk,± = εk,± − µ±, where µ± = (µ↑ ± µ↓)/2. Note that
the symmetry between quasiparticles and quasiholes is broken
when ξk,− 
= 0.

The saddle-point condition δ�0/δ�
∗ = 0 leads to an

equation for the order parameter,

− m+V

4πaeff
=

∑
k

[
1 − f (Ek,1) − f (Ek,2)

2Ek,+
− 1

2εk,+

]
, (6)

where, as usual, g is eliminated in favor of the effective s-wave
scattering length aeff via the relation given above [19,20]. The
order parameter equation has to be solved self-consistently
with the number equations. At the saddle point, the relation
Nσ = −∂�0/∂µσ leads to

N↑ =
∑

k

[|uk|2f (Ek,1) + |vk|2f (−Ek,2)], (7)

N↓ =
∑

k

[|uk|2f (Ek,2) + |vk|2f (−Ek,1)], (8)

where |uk|2 = (1 + ξk,+/Ek,+)/2 and |vk|2 = (1 −
ξk,+/Ek,+)/2 are the usual coherence factors. At T = 0,
Eqs. (6), (7), and (8) can be simplified considerably as shown
in Appendix A.

In order to analyze the phase diagram at T = 0, we solve
the saddle-point self-consistency equations and check the
stability of these solutions for the uniform superfluid phase
using the compressibility (or the curvature) criterion [21–23].
This says that the compressibility matrix κ(T ) with elements
κσ,σ ′(T ) = −∂2�0/(∂µσ ∂µσ ′) needs to be positive definite,
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and it is related (identical) to the condition that the curvature

∂2�0

∂�2
= |�|2

∑
k,s

[
0.5 − f (Ek,s)

E3
k,+

+ f ′(Ek,s)

E2
k,+

]
(9)

of the saddle-point thermodynamic potential �0 with respect
to the saddle-point parameter � needs to be positive. Here,
f ′(x) = df (x)/dx. When at least one of the eigenvalues of
κ(T ), or the curvature ∂2�0/∂�2, is negative, the uniform
saddle-point solution does not correspond to a minimum of �0,
and a nonuniform superfluid phase, e.g., a phase separation, is
favored.

C. Noninteracting limit

Before presenting our numerical results, let us first analyze
the noninteracting g → 0 limit. In this limit, since 1/aeff →
−∞, the order parameter vanishes � → 0, and at T = 0
Eqs. (7) and (8) can be written as Nσ = ∑

k θ (−ξk,σ ), where
θ (x) is the Heaviside step function. Evaluating the k-space
sums, the density nσ = Nσ/V of the σ fermions becomes

nσ = mσkFz,σ

2π2
(µσ − 2tσ ) + mσ tσ

π2dz

sin(kFz,σ dz), (10)

µσ = 2tσ [1 − cos(kFz,σ dz)], (11)

where kFz,σ � 0 corresponds to the Fermi momentum of the
σ fermions in the kz direction, which is related to the chemical
potential via Eq. (11).

Note that, in the low-density (kFz,↓dz � π ) limit, expand-
ing out Eqs. (10) and (11) to the lowest nontrivial orders
(third and second orders, respectively) in kFz,↓dz, we obtain
n↓ ≈ m↓kFz,↓(µ↓ − t↓k3

Fz,↓d2
z /3)/(2π2) and µ↓ ≈ t↓k2

Fz,↓d2
z .

Combining these two expressions, and setting kFz,↓ = kF,↓
or t↓ = 1/(2m↓d2

z ), the density of ↓ fermions acquires the
usual form n↓ ≈ k3

F,↓/(6π2). In addition, when t↑ → 0 and
kFz,↑ = π/dz, Eq. (10) reduces to the density of ↑ fermions in
each (isolated) two-dimensional plane along the kz direction,
N↑/(MA) = m↑k2

F,↑/(4π ), which is of the usual form, where
we used V = ALz with A being the area of the system
in the (x,y) plane and Lz being the system size in the ẑ
direction. Here, M = Lz/dz is the number of two-dimensional
planes, i.e., the number of lattice sites, in the ẑ direction.
Having discussed the noninteracting limit, next we analyze
the BCS-BEC evolution.

III. SADDLE-POINT APPROXIMATION

In this section, we consider only equal density mixtures,
where n↑ = n↓, at zero temperature. For these mixtures,
first we analyze the amplitude of the order parameter |�|,
the chemical potential sum µ+, and the chemical potential
difference µ− as a function of the tunneling amplitude t↑
and effective scattering length 1/(kF,↓aeff) for fixed values
of kF,↓dz. Here, kF,↓ is an “effective” Fermi momentum for
↓ fermions defined through the three-dimensional density
n↓ = k3

F,↓/(6π2), where n↓ is given by Eq. (10). Then, using
the stability criterion given in Eq. (9), we construct the phase
diagrams. For simplicity, we mainly present our results for the
equal mass (m↑ = m↓) mixtures, but we also briefly mention
the effects of mass anisotropy m↑ 
= m↓ on the phase diagrams.

-0.4

0

0.4

0.8

-0.3 -0.2 -0.1 0 0.1

1/(kF,↓aeff)

|∆|

µ+

µ−

FIG. 1. (Color online) Saddle-point solutions for the amplitude
of the order parameter |�|, the chemical potential sum µ+ = (µ↑ +
µ↓)/2, and the chemical potential difference µ− = (µ↑ − µ↓)/2
shown (in units of εF,↓) as functions of the effective s-wave scattering
parameter 1/(kF,↓aeff ). (µ− is shown only for weak interactions
where it is relevant). These data correspond to the case where
m↑ = m↓, t↑ = εF,↓, and kF,↓dz = 0.1. The arrow shows the location
of the topological gapless-superfluid-to-gapped-superfluid transition
discussed in the text.

A. Normal-superfluid transition

Using kF,↓ and εF,↓ = k2
F,↓/(2m↓) as our length and energy

scales, respectively, we solve Eqs. (A1), (A2) and (A3)
numerically. For instance, in Fig. 1 we show self-consistent
solutions of |�|, µ+, and µ− as functions of 1/(kF,↓aeff), when
m↑ = m↓, t↑ = εF,↓, and kF,↓dz = 0.1. When the scattering
parameter is smaller than a critical value, i.e., 1/(kF,↓aeff) <∼−0.32, the saddle-point solution is µ↓ = µ+ − µ− → 1 (in
units of εF,↓) since |�| = 0, indicating that the mixture is a
normal Fermi gas. Beyond this critical value, the superfluid
order parameter |�| becomes nonzero, indicating a quantum
phase transition from the normal to a superfluid phase.

This transition can be understood from earlier works on
Cooper pairing with mismatched Fermi surfaces. For instance,
in the case of Fermi gases with unequal densities in purely
three dimensions, a superfluid-to-normal phase transition has
been recently observed beyond a critical density difference
depending on the value of the scattering parameter [14–17].
This transition occurs when the difference in the chemical
potentials (or Fermi momenta) reaches what is known as the
Clogston-Chandrasekhar limit [24,25]. In our case, the main
mechanism is the same. As can be extracted from Eq. (11), the
mismatch is inevitable in some parts of the k space even for the
equal density mixtures considered in this analysis. Therefore,
it is energetically more favorable for the mixture to be in the
normal phase until a critical scattering parameter is reached,
beyond which Cooper pairing is possible.

B. Topological gapless-gapped superfluidity transition

With further increase in the scattering parameter, |�|
increases quite rapidly and µ+ decreases, with a kink in the
former quantity at 1/(kF,↓aeff) ≈ −0.22. (We also expect a
weak kink in µ+ at the same point, but it is not clearly
seen in the data.) Therefore, the BCS-BEC evolution in
mixed-dimensional Fermi gases is nonanalytic, i.e., it is not
a crossover. Recall that, in usual three-dimensional mixtures,
the evolution of |�| and µ+ is analytic for all 1/(kF,↓aeff),
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(a)
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ky/kF,↓
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k
z
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(b)

-1

ky/kF,↓

-0.3

0

0.3

k
z
d
z

0 1

FIG. 2. (Color online) Contour maps of (a) the quasiparticle
excitation energy Ek,1, and (b) the negative of the quasihole excitation
energy Ek,2, shown as a function of momentum components kz (in
units of 1/dz) and ky (in units of kF,↓) in the kx = 0 plane. These data
correspond to the case where m↑ = m↓, t↑ = εF,↓, kF,↓dz = 0.1, and
1/(kF,↓aeff ) = −0.25. The excitations are gapless (Ek,s � 0) at the
white region boundaries.

and the evolution is just a crossover. The kink in |�| is more
pronounced for lower values of t↑, and it signals a topological
quantum phase transition as discussed next.

The excitation spectrum of quasiparticles is determined by
energies Ek,1 and Ek,2. At k-space points, the condition Ek,s =
0 defines Fermi surfaces of quasiparticles in momentum space
where the quasiparticle excitation spectrum changes from a
gapped to a gapless phase. These changes in the Fermi surfaces
of quasiparticles are topological in nature [26], and we identify
topological quantum phase transitions associated with the
disappearance or appearance of momentum space regions of
zero quasiparticle energies when either 1/(kF,↓aeff), t↑, and/or
kF,↓dz is changed. Note that the topological transition occurs
without changing the symmetry of the order parameter as the
Landau classification demands for ordinary phase transitions.

We illustrate the gapless superfluid phase in Fig. 2, where
contour maps of Ek,s are shown as functions of kz and ky

in the kx = 0 plane, when m↑ = m↓, t↑ = εF,↓, kF,↓dz = 0.1,
and 1/(kF,↓aeff) = −0.25. In Fig. 1, these data correspond to a
point that is slightly on the left-hand side of the transition point

(a)

-1 0 1

ky/kF,↓

-0.3

0

0.3

k
z
d
z

(b)

-1 0 1

ky/kF,↓

-0.3

0

0.3

k
z
d
z

FIG. 3. (Color online) Contour maps of the momentum distribu-
tions (a) nk,↑ for the ↑ fermions, and (b) nk,↓ for the ↓ fermions, shown
as a function of momentum components kz (in units of 1/dz) and ky (in
units of kF,↓) in the kx = 0 plane. These data correspond to the case
considered in Fig. 2, where m↑ = m↓, t↑ = εF,↓, kF,↓dz = 0.1, and
1/(kF,↓aeff ) = −0.25. Note that when Ek,1 > 0 and Ek,2 > 0, then
nk,↑ = nk,↓. However, when Ek,1 � 0 and Ek,2 > 0, then nk,↑ = 1
and nk,↓ = 0; and when Ek,1 > 0 and Ek,2 � 0, then nk,↑ = 0 and
nk,↓ = 1. The densities are 1 (0) in the bright yellow (black) regions.

indicated by an arrow. The excitations are gapless (Ek,s � 0)
at the white region boundaries.

The topological transition could be potentially observed
through the measurement of the momentum distribution nk,σ

of the fermions [27], which can be extracted from Eqs. (7)
and (8). For k-space regions where Ek,1 > 0 and Ek,2 > 0,
the corresponding momentum distributions are equal: nk,↑ =
nk,↓. However, when Ek,1 � 0 and Ek,2 > 0, then nk,↑ = 1
and nk,↓ = 0. Similarly, when Ek,1 > 0 and Ek,2 � 0, then
nk,↑ = 0 and nk,↓ = 1. We illustrate these cases in Fig. 3 for
the parameters of Fig. 2. Note that, although there are excess
(or unpaired) ↑ or ↓ fermions in different regions of the k
space, i.e., the bright yellow regions, there are equal numbers
of ↑ and ↓ fermions in total. The size of the yellow regions may
look very different in (a) and (b) due partly to the difference
in scaling factors in kz and ky .
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This topological transition is quantum (T = 0) in nature,
but its signatures should still be observed at finite temperatures
within the quantum critical region, where the momentum
distributions are smeared out due to thermal effects. In
addition, while thermodynamic quantities such as atomic
compressibility, specific heat, and spin susceptibility have
power-law dependences on the temperature in the BCS side,
they have exponential dependences on the temperature and the
minimum energy of quasiparticle excitations in the BEC side,
again signaling the existence of a quantum phase transition
at T = 0. Having discussed the topological classification
of possible superfluid phases, we are ready to present the
saddle-point phase diagrams at T = 0, including the stability
analysis (positive curvature criterion) of the solutions.

C. Ground state phase diagrams

In Fig. 4, ground state phase diagrams are shown as
a function of the tunneling amplitude t↑ and the effective
s-wave scattering parameter 1/(kF,↓aeff) for fixed values of
(a) kF,↓dz = 0.1 and (b) kF,↓dz = 1. We indicate normal (N),
gapped uniform superfluid (SF), gapless uniform superfluid
(gSF), and phase-separated (PS) regions. The normal phase is
characterized by a vanishing order parameter (� = 0), while
the gapped superfluid and gapless superfluid phases are both
characterized by � > 0 and ∂2�0/∂�2 > 0, but with distinct
k-space topologies as discussed above. In the gSF phase,
the unpaired ↑ and ↓ fermions coexist with the paired (or

0
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2

-0.5 -0.25 0 0.25 0.5 0.75

t ↑
F
,↓

1/(kF,↓aeff)
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N
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µ
+

=
0gS

F PS

0
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-2.4 -1.6 -0.8 0 0.8

t ↑
F
,↓

1/(kF,↓aeff)

(b)

N

N

SF

µ
+

=
0

gSF

FIG. 4. (Color online) Ground state phase diagrams shown as
a function of the tunneling amplitude t↑ (in units of εF,↓) and the
effective s-wave scattering parameter 1/(kF,↓aeff ). Here, we consider
equal density (n↑ = n↓) and equal mass (m↑ = m↓) mixtures, for
fixed values of kF,↓dz = 0.1 in (a) and kF,↓dz = 1 in (b). We
show normal (N), gapped uniform superfluid (SF), gapless uniform
superfluid (gSF), and phase-separated (PS) regions. The PS region
in (b) is close to the normal-superfluid transition boundary, but it is
very small and not shown. There is no phase transition across µ+ = 0
(green-dashed) line; it is shown only as a reference point.

superfluid) ones in different k-space regions, but there are no
unpaired fermions in the SF phase, i.e., all ↑ and ↓ fermions
are paired. The gSF phase is in some ways similar to the Sarma
state found in mixtures with unequal densities [11], but in our
case, the gapless superfluid phase is unpolarized and most
importantly it is stable against phase separation. The phase-
separated region is characterized by ∂2�0/∂�2 < 0, but this
region could also be of the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO)-type superfluid having spatial modulations [28,29].
Such a possibility is not considered in this study, and it is left
as an important problem to address in the future.

We can understand these phase diagrams as follows. For
a fixed t↑, when the scattering parameter is smaller than a
critical value, the potential energy is not sufficient to cause
pairing due to mismatch of the Fermi surfaces, and the mixture
is a normal Fermi gas with � = 0. As shown in Fig. 4(a) the
critical scattering parameter decreases with increasing t↑, since
increasing t↑ decreases the mismatch for lower values of t↑.
In the normal region, when t↑ = 0, the Fermi surface of the
↑ fermions is a cylindrical shell in the k space with height
kFz,↑ = 2π/dz and radius kF,↑. However, in the low-filling
limit of ↓ fermions, the Fermi surface of the ↓ fermions is
more like a spherical shell with radius kF,↓. Note that for
equal mass and equal density mixtures considered here, the
k-space volumes enclosed by the cylindrical and spherical
Fermi surfaces must be equal. Therefore, at t↑ = 0, there is a
large mismatch between the two Fermi surfaces when kF,↑ �
kF,↓ � π/dz, and increasing t↑ from zero decreases kFz,↑ and
increases the ratio kF,↑/kF,↓. When this happens, the Fermi
surface of the ↑ fermions looks like a prolate spheroid (like
an American football). This decreases the mismatch for small
values of t↑ as long as kF,↑ <∼ kF,↓, and it is qualitatively what
happens along the normal-superfluid transition boundary in
Fig. 4(a), when kF,↓dz = 0.1 � π .

In Fig. 4(b) we show the same phase diagram for a higher
value of kF,↓dz = 1. Similar to Fig. 4(a) the critical scatter-
ing parameter for the normal-superfluid transition decreases
initially with increasing t↑, since increasing t↑ decreases the
mismatch for lower values of t↑. In contrast, beyond a critical
value of t↑ [e.g., t↑ >∼ εF,↓ in Fig. 4(b)] the critical scattering
parameter increases with increasing t↑. This is because, since
increasing t↑ decreases kF,z and increases the ratio kF,↑/kF,↓,
it eventually increases the mismatch of the two Fermi surfaces
after kF,↑ > kF,↓. When this happens, the Fermi surface of
the ↑ fermions changes from a prolate spheroid to an oblate
spheroid (a disk-shaped ellipsoid). For the case considered in
Fig. 4(a) where kF,↓dz = 0.1, we found that this occurs beyond
t↑ >∼ 100εF,↓, but it is not shown. In general, for equal mass
and equal density mixtures, such a change is expected to occur
beyond t↑ >∼ 1/(2m↑d2

z ), and this expectation is consistent with
our numerical findings.

In addition, in Fig. 4 the solid black lines correspond to the
transition boundary between the gapless superfluid (gSF) and
gapped superfluid (SF) phases. However, the stability criterion
given in Eq. (9) is not satisfied in some parts of the gapless
superfluid region, indicating a phase separation. This occurs
between the dashed-blue and the solid-black lines in Fig. 4(a)
In contrast, phase separation occurs in a tiny region very close
to the normal-superfluid transition boundary (solid red line)
in Fig. 4(b) and it is not shown. The gapless superfluid phase
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phase is in some ways similar to the Sarma state found in
mixtures with unequal densities [11], but in our case, gSF is
unpolarized and most importantly it is stable against phase
separation in a considerably large region as shown in the
figures. In this way, our gSF phase is similar to those of
Refs. [12,13], which are recently proposed for ultracold atomic
systems in other contexts.

Before concluding, we would like to comment on the
phase diagram of mixed-dimensional two-species Fermi-
Fermi mixtures. When ↑ and ↓ fermions have different masses,
the phase boundaries shift left (right) when the ↑ species is
heavier (lighter) than the ↓ fermions. For instance, in the
case of 6Li-40K mixtures, the t↑ → 0 limit of the normal-
superfluid boundary for the case considered in Fig. 4(a) shifts
to 1/(kF,↓aeff) ≈ −0.6 when m↑ = 6.64m↓ (when 40K atoms
correspond to ↑) and to 1/(kF,↓aeff) ≈ 0.6 when m↑ = 0.15m↓
(when 6Li-atoms correspond to ↑).

IV. CONCLUSIONS

Motivated by a very recent experiment involving mixed-
dimensional Bose-Bose mixtures [10], here we investigated
the ground state phase diagram of superfluidity for mixed-
dimensional Fermi-Fermi mixtures in the BCS-BEC evolution.
In this recent experiment, a species-selective one-dimensional
optical lattice was applied to a two-species mixture of bosonic
atoms, such that only one of the species feels the lattice
potential and is confined to a quasi-two-dimensional geometry,
while having negligible effect on the other, thus leaving it
three dimensional. We considered a similar problem with
two-species mixtures of fermionic atoms, where both species
are confined to quasi–two-dimensional geometries determined
by their hoppings along the lattice direction.

We considered equal-density mixtures at zero temperature,
and after solving the saddle-point self-consistency equations,
we constructed the phase diagrams using some stability crite-
rion. We found normal, gapped superfluid, gapless superfluid,
and phase separated regions. The gapped superfluid and gap-
less superfluid phases are identified with the disappearance or
appearance of momentum space regions of zero quasiparticle
energies. In particular, we found a stable gapless superfluid
phase where the unpaired ↑ and ↓ fermions coexist with
the paired (or superfluid) ones in different momentum space
regions. This phase is in some ways similar to the Sarma state
found in mixtures with unequal densities [11], but in our case,
the gapless superfluid phase is unpolarized and most impor-
tantly it is stable against phase separation. We also argued that
the topological transition from the gapped superfluid to the
gapless superfluid could be potentially observed through the
measurement of the momentum distribution [27].

There are several ways to extend this work. First, the
possibility of FFLO-type superfluid phases [28,29], where
Cooper pairs have finite center of mass momentum, leading
to a spatially modulated phase, is not considered in this study.
This is an important problem to address due to its relevance to
condensed-matter systems. Second, our calculation is based
on the saddle-point self-consistency equations, which are
known to be sufficient to qualitatively describe the entire
BCS-BEC evolution, at least for the usual three-dimensional
mixtures at low temperatures. However, corrections beyond the

saddle point could be important in stabilizing or destablizing
especially the gapless superfluid phase [30]. Third, we used
a single-band model to describe the optical lattice potential,
and the effects of higher bands could become important near
the strongly interacting regime. Lastly, atomic systems are
not uniform since confining trapping potentials are always
present, and finite-size effects due to such potentials could
also be analyzed.
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APPENDIX A: SELF-CONSISTENCY EQUATIONS AT T = 0

For numerical purposes, the self-consistency equations can
be simplified as follows. At zero temperature, since the Fermi
function f (x) turns into a Heaviside step function θ (−x),
Eqs. (6), (7), and (8) become

m+V

4πaeff
=

∑
k

[
1

2εk,+
− 1 − θ (−Ek,1) − θ (−Ek,2)

2Ek,+

]
, (A1)

N↑ =
∑

k

[|uk|2θ (−Ek,1) + |vk|2θ (Ek,2)], (A2)

N↓ =
∑

k

[|uk|2θ (−Ek,2) + |vk|2θ (Ek,1)], (A3)

where the k-space sums are
∑

k ≡ [V/(2π )3]
∫

d3k ≡
[V/(2π2)]

∫ π/dz

0 dkz

∫ ∞
0 k⊥dk⊥. Note that pairing occurs only

in the k-space regions where both Ek,1 and Ek,2 have the same
(positive) sign. When Ek,1 � 0 and Ek,2 � 0 or vice versa, the
second term (on the right-hand side) of Eq. (A1) inside the
parentheses vanishes, reflecting that the pairing is not allowed
for those k-space regions, and the quasiparticle and quasihole
excitations are gapless.

In order to perform the integration over k⊥ by hand, we
need to find the k-space regions where the excitations are
gapless, i.e., Ek,1 � 0 or Ek,2 � 0. The zeros of Ek,1 and Ek,2

are determined by real and positive solutions of

0 = (1 − m2
+/m2

−)x2 + 2(ξkz,+ − m+ξkz,−/m−)x

+ ξkz,↑ξkz,↓ + |�|2, (A4)

where x = k2
⊥/(2m+) and ξkz,± = εkz,± − µ±. Here, we

introduced εkz,± = (εkz,↑ ± εkz,↓)/2, where εkz,σ = 2tσ [1 −
cos(kzdz)] is the energy dispersion in the kz direction. Solutions
of this equation (x< and x>) depend on kz, and they give
the locations of the zeros of Ek,1 and Ek,2 in the k⊥-axis as
a function of kz. For instance, if both x< and x> are real
and positive, then Ek,1 is gapless for x< � k2

⊥/(2m+) � x>

in some kz region z<,1 � kz � z>,1, and Ek,2 is gapless for
x< � k2

⊥/(2m+) � x> in some other kz region z<,2 � kz �
z>,2. If only x> is real and positive, Ek,1 is gapless for
0 � k2

⊥/(2m+) � x> in some kz region z<,1 � kz � z>,1, and
Ek,2 is gapless for 0 � k2

⊥/(2m+) � x> in some other kz region
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z<,2 � kz � z>,2. If there is no real and positive solution, then
the excitations are always gapped.

Given the gapless k-space regions, Eq. (A1) can be
written as

π

aeff
=

(∫ z>,1

z<,1

+
∫ z>,2

z<,2

)
dkz ln

⎡⎣x> + ξkz,+ +
√(

x> + ξkz,+
)2 + |�|2

x< + ξkz,+ +
√(

x< + ξkz,+
)2 + |�|2

⎤⎦ −
∫ π/dz

0
dkz ln

⎛⎝ 2εkz,+

ξkz,+ +
√

ξ 2
kz,+ + |�|2

⎞⎠ , (A5)

where the first term on the right-hand side is coming from the gapless, but the second term is from the gapped k-space regions.
Similarly, Eq. (A2) can be written as

4π2n↑
m+

= −
(∫ z>,1

z<,1

+
∫ z>,2

z<,2

)
dkz

[
x> −

√(
x> + ξkz,+

)2 + |�|2 − x< +
√(

x< + ξkz,+
)2 + |�|2]

+ 2
∫ z>,1

z<,1

dkz(x> − x<) +
∫ π/dz

0
dkz

(√
ξ 2
kz,+ + |�|2 − ξkz,+

)
, (A6)

where again the first two terms on the right-hand side are
coming from the gapless, but the third term is from the gapped
k-space regions. The density of ↓ fermions can be obtained by
substituting 1 → 2 in the integration limits of the second term.
Our numerical calculations show that integrating k⊥ by hand
as described above and calculating the remaining kz integral
numerically is a much more stable approach compared to the
one where both integrations are calculated numerically. In
particular, this approach converges much faster than the latter
on the BCS side, where integrations involve gapless k-space
regions.

APPENDIX B: NORMAL-SUPERFLUID PHASE
BOUNDARY AT T = 0

The phase boundary for the normal-superfluid transition
can be found from Eqs. (6), (7) and (8) by setting � = 0.
Therefore, at the transition boundary, the self-consistency
equations are uncoupled, i.e., the gap equation determines the
critical effective scattering length, and the chemical potentials
are determined by the number equations. At zero temperature,
this leads to

m+V

4πaeff
=

∑
k

[
1

2εk,+
− 1 − θ (−ξk,↑) − θ (−ξk,↓)

2ξk,+

]
, (B1)

Nσ =
∑

k

θ (−ξk,σ ). (B2)

Note that Eq. (A2) is the number equation for noninteracting
fermions, and it has already been solved in Sec. II C. Similar
to Appendix A, we can also simplify Eq. (6) by finding the
zeros of ξk,σ . This leads to

− π

aeff
=

∫ kFz,<

0
dkz ln

(
ξkz,+

ξkz,+ − m<

m+
ξkz,<

)

+
∫ kFz,>

0
dkz ln

(
εkz,+

ξkz,+ − m>

m+
ξkz,>

)

+
∫ π/dz

kFz,>

dkz ln

(
εkz,+
ξkz,+

)
, (B3)

where kFz,< ≡ min{kFz,↑,kFz,↓} and kFz,> ≡ max{kFz,↑,

kFz,↓}. For instance, when kFz,< ≡ kFz,↓, then <≡↓ and >≡↑
in the integrands. Here, we again emphasize that integrating
k⊥ by hand as described above and calculating the remaining
kz integral numerically are a much more stable approach
compared to the one where both integrations are calculated
numerically.
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