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Kelvin-Tkachenko waves of few-vortex arrays in trapped Bose-Einstein condensates
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We have calculated the low-lying elementary excitations of three-dimensional few-vortex arrays in trapped
Bose-Einstein condensates. The number of different Kelvin-Tkachenko vortex wave branches found matches the
number of vortices in the condensate. The lowest odd-parity modes exhibit superfluid gyroscopic vortex motion.
Experimentally, these modes could be excited and observed individually or in connection with the formation and
decay of quantum turbulence.
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I. INTRODUCTION

Rotation exerted on a superfluid forces topological trans-
mutations in its structure as a result of the nucleation of
quantized vortices [1]. Such remarkable behavior sets quantum
liquids, including superconductors, superfluid helium, and
gaseous Bose-Einstein condensates, apart from Newtonian
fluids. Vortex degrees of freedom introduce additional normal
modes in the spectra of superfluid systems, altering their
dynamical properties. Excitations of multivortex systems are
pivotal to the understanding of the microscopic mechanisms
that govern quantum turbulence in superfluid systems [2,3].
Vortex waves are also relevant to the dynamics of quenched
quantum phase transitions, and such excitations are likely
to accompany spontaneously formed vortices in the birth of
superfluids [4,5]. Furthermore, the elementary excitations of
three-dimensional rotating vortex lattices may play a role in
post-glitch relaxation phenomena observed in rotating neutron
stars, the inner parts of which are thought to be filled by neutron
superfluids [6].

Quantized vortex lines in simple rotating superfluids ar-
range themselves into the same triangular lattice structure
as predicted for superconductors by Abrikosov [7]. Kelvin
waves are helical modes that propagate along the vortex
line. They have been extensively studied in classical fluids
since the seminal work by Thomson (Lord Kelvin) [8]. Their
dispersion relation has the characteristic long-wavelength form
ωK ≈ �k2 ln(1/|k|rc), where � denotes the circulation around
the axis of the vortex, rc is a core parameter, and k is
the wave vector. A similar dispersion relation holds also
for Kelvin waves of quantized vortex lines in superfluids
[9,10].

Vortex lattices support collective Tkachenko waves in
which the individual vortices trace elliptical trajectories around
their equilibrium positions in the plane perpendicular to the
axis oriented along the vortex lines [11,12]. In contrast to
axial Kelvin waves, transverse Tkachenko vortex waves have
thus far only been observed in superfluid systems. The generic
dispersion relation for Tkachenko waves in uniform systems,
ω2

T ≈ c2
s c

2
Tk4/(c2

s k
2 + 4�2), where cs and cT, respectively,

denote the propagation speed of sound and the Tkachenko
wave, changes its character from linear (stiff limit) to quadratic
(soft limit) as the rotation frequency � of the system is
increased [13]. Tkachenko waves in helium superfluids were
discussed using continuum theories by Fetter and Williams

[14,15], Sonin [13,16], and Baym and Chandler [17]. The stiff
modes were also detected in experiments [18].

Observations of vortices and their dynamical properties
become particularly transparent in weakly interacting quantum
gases. Orbital motion of a single quantum vortex was imaged
in a Bose-Einstein condensate of sodium gas by Anderson
et al. [19]. Such vortex motion is a manifestation of the
fundamental Kelvin wave. Kelvons of higher axial wave num-
bers were created and observed by Bretin et al. in elongated
Bose-Einstein condensates [20]. Further discussion of those
experiments can be found, e.g., in Refs. [10,21–23]. Direct
imaging of planar Tkachenko waves in rotating Bose-Einstein
condensates was reported by Coddington et al. [24]. Baym
explained the observed excitation frequencies by calculating
the Tkachenko modes in two dimensions using continuum
elasticity theory to account for the compressibility of the
condensate [25] (see also Refs. [26–30]).

In this paper, we obtain a complete microscopic description
of the lowest excitation modes of few-vortex arrays in harmon-
ically trapped rotating Bose-Einstein condensates by employ-
ing the Bogoliubov–de Gennes wave-function formalism in
fully three-dimensional configurations. We explicitly account
for both Kelvin and Tkachenko contributions to the collective
vortex motion and mode frequencies, and include finite-size
effects such as harmonic confinement and bending of vortex
lines. Together with sound waves, such elementary excitations
exhaust the low-lying collective modes in a vortex lattice
system. They are also the key to understanding more complex
phenomena such as the vortex interconnections inherent in
quantum turbulence.

II. MODEL

The zero-temperature Bose-Einstein condensate ground-
state wave function φ(r) and its dynamics is modeled remark-
ably well by the Gross-Pitaevskii equation

ih̄∂tφ(r,t) = L(r,t)φ(r,t), (1)

where

L(r,t) = −h̄2∇2

2m
+ Vext(r) + g|φ(r)|2 − �Lz. (2)

In Eq. (2), the constant g determines the strength of s-wave
interactions between particles of mass m, Lz is the component
of the angular momentum operator parallel to the rotation
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FIG. 1. (Color online) Rotating ground states for different external angular rotation frequencies �′. Frames in the upper row show the
top x-y view of the condensate density along the rotation axis, while the frames in the bottom row display the corresponding side x-z view
perpendicular to the rotation axis. The frame sides are 14 a0 and 24 a0 in the extent.

axis, and the external potential Vext(r) = m[ω2
⊥(x2 + y2) +

ω2
zz

2]/2 is fixed by the transverse ω⊥ and axial ωz harmonic
frequencies. The norm of the wave function

∫
V

|φ(r)|2dr =
N yields the number of particles N in the system. We elect
h̄ω⊥ and a0 = √

h̄/mω⊥ to be the units of energy and length,
respectively. Our computational system is thus specified by the
dimensionless parameters ωz = 0.2 ω⊥, gN = 1000 h̄ω⊥a3

0 ,
and the trap rotation frequency is �.

The collective modes of the condensate are solutions to the
microscopic Bogoliubov–de Gennes equations

[L(r) − µ]uq(r) + M(r)vq(r) = Equq(r),
(3)

[L∗(r) − µ]vq(r) + M∗(r)uq(r) = −Eqvq(r),

where µ = 〈L(r)〉, M(r) = φ2(r), and uq(r) and vq(r) are the
usual quasiparticle amplitudes and Eq = h̄ωq are the corre-
sponding energies, where q uniquely labels the eigenstates.
We discretize Eqs. (3) using a finite-element discrete variable
representation [31,32] and diagonalize the resulting eigenprob-
lem using a parallelized implementation of an iterative Arnoldi
process (for details, see [33]). The collective oscillatory motion
of the condensate perturbed by the quasiparticle modes may be
visualized by the time-dependent probability density |φ̃q(r,t)|2
with

φ̃q(r,t) = φ(r) + p[uq(r)e−iωq t + v∗
q (r)eiωq t ], (4)

and the number p controls the amplitude of the quasiparticle
excitation mode relative to the ground state [34].

III. ROTATING GROUND STATES

Figures 1(a)–1(h) display rotating ground states calculated
using Eq. (1) for different external angular rotation frequencies
of the harmonic trap. Both the top view (upper row) and the
side view (lower row) of the condensate density isosurfaces are
shown. Values for the reduced rotation frequency �′ = �/ω⊥
and the angular momentum per particle L′ = 〈Lz〉/Nh̄ are
marked in the frames. In the states shown, vortex bending
is significant only near the condensate boundaries; however,
for L′ < 1, the single-vortex ground state is strongly bent.
For our parameters, the five-vortex ground state assumes the
shape of Olympic rings instead of a five-fold symmetric
ring. The six-vortex array has a single central vortex and
five satellite vortices, and the seven-vortex ground state

[Fig. 1(e)] completes the full two-“orbital” lattice. With
increasing values of �′, the centrifugal effect causes the cloud
to expand in the radial direction accompanied with the
corresponding axial shortening such that, for �′ = 0.98, the
shape of the cloud becomes roughly spherical [see Fig. 1(h)].
Eventually, at high enough rotation frequencies, the cloud
enters the two-dimensional regime where the lowest Landau-
level physics becomes relevant.

IV. COLLECTIVE MODES

When the system is pierced by quantized vortices, each
added vortex degree of freedom introduces new collective
modes in the system. The lowest Kelvin-Tkachenko mode
reduces to the fundamental Kelvin mode in the case of a
single vortex in the slow rotation limit and to the planar
Tkachenko mode in the rapidly rotating (two-dimensional)
system. Figure 2 illustrates the different vortex wave branches
for few-vortex arrays comprised of one to four vortices.
Diagrams on rows (1)–(4) apply to the respective ground
states shown in Figs. 1(a)–1(d), and the columns correspond
to different Kelvin-Tkachenko mode branches, the number
of which matches the number of vortices in the system.
The bullets mark the relative orientation of the vortices with
respect to their equilibrium position such that the numbers
inside them enumerate the vortices in counterclockwise order.
The two insets in Fig. 2 exemplify the interpretation of the
diagrams by displaying the locations and directions of motion
of the vortices in the x-y plane. Different axial wave numbers
n = 0,1,2, . . . are implicitly included in each diagram. All
modes in the first column describe in-phase oscillations of the
vortex array as a whole, while the last diagram of each row
corresponds to the torsional out-of-phase Kelvin-Tkachenko
modes. The diagrams in Fig. 2 represent a qualitatively correct
idealization of the actual vortex motion in which the vortices
rotate along noncircular trajectories in the direction indicated
by the arrows [34]. Denoting the displacement phase difference
between any two neighboring vortices by �ϕ, the Nv dis-
tinct vortex wave branches satisfy �ϕ = {0,1, . . . ,Nv − 1} 2π

Nv
,

where Nv is the number of vortices in the single orbital array.

A. Single vortex

In the univortex case, the sole vortex wave branch cor-
responds to the Kelvin waves of the quantized vortex [10].
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FIG. 2. Schematic representation of the Kelvin-Tkachenko mode
branches. Each diagram corresponds to a different vortex wave
branch. The two insets clarify the physics encoded in the diagrams.
Vortices denoted by the bullets are labeled by numbers in counter-
clockwise order. The arrows next to the numbered bullets indicate the
direction of the local vortex motion.

The lowest even-parity n = 0 quasiparticle excitation is the
fundamental Kelvin mode, which manifests itself as an
orbital motion (frequently referred to as vortex precession
in the literature) of the vortex line around its equilibrium
position [19,35–37]. The lowest odd-parity n = 1 Kelvin mode
corresponds to the gyroscopic precession of a tilted vortex
with a π -phase difference between the ends of the vortex line
[34]. Such gyroscopic vortex dynamics was experimentally
observed by Haljan et al. [38] and Hodby et al. [39] (see
also discussion by Stringari [40]). Modes with higher wave
numbers n trace the rest of the Kelvin wave spectrum with
increasing frequencies [10]. An external rotation applied to the
system stabilizes these Kelvin modes [41,42]. As a result, all
excitation energies are positive with respect to the condensate
energy and, therefore, such Kelvin modes rotate in the opposite
sense with respect to the superflow of the condensate. If the
stabilizing rotating drive is stopped, some of the lowest modes
are shifted to negative energies and those modes therefore
change their sense of rotation. The Kelvin modes of an isolated
vortex in a trapped Bose-Einstein condensate can be excited
via resonant coupling to the quadrupole mode, as detailed in
Refs. [10,20,21,23].

B. Double vortex

With two vortices in the condensate, their dynamics is
enriched by the vortex-vortex interaction. There are two
distinct Kelvin-Tkachenko branches corresponding to the two
diagrams shown in the row (2) in Fig. 2. The first one comprises
the “acoustic” modes, which exhibit an in-phase �ϕ = 0
elliptically polarized motion of the two vortices around their
respective equilibrium positions. The second branch is formed
by the “optical” modes, in which the orbital motion of the
vortex pair is out of phase with a phase difference �ϕ = π .
In the second branch, radial motion of the vortices is strongly
suppressed as a result of the angular momentum conservation.
Consequently, the dynamics appears as an azimuthal torsional
vibration [34]. Interestingly, for low momenta, the modes in

the optical branch have slightly lower excitation energies than
the acoustic modes.

C. Triple vortex

In the three-vortex ground state, the vortices arrange
themselves into the elementary triangular unit cell of the
Abrikosov vortex lattice as shown in Fig. 1(c). Corresponding
to the three vortex degrees of freedom, there are three branches
of vortex waves [34]. In the n = 0 mode of the first branch
with �ϕ = 0, all three vortices travel in unison around their
respective equilibrium positions, roughly preserving their
triangular relative orientation. The first odd mode n = 1 of
this branch describes gyroscopic vortex motion of the three-
vortex array as a whole. Such tilting modes were observed
experimentally by Smith et. al [43]. The schematic in the upper
inset of Fig. 2 illustrates the motion of the three vortices in the
second branch with �ϕ = 4π/3. This kind of three-vortex
oscillatory motion was observed by Yarmchuck and Packard,
who produced photographic movies of few-vortex arrays in
superfluid helium [44]. The third branch is comprised of
out-of-phase �ϕ = 2π/3 torsional Kelvin-Tkachenko modes.
As for the case of two vortices, this last Kelvin-Tkachenko
branch, referred to as twisting modes by Chevy [45], contains
the mode with the lowest oscillation frequency.

D. Quadruple vortex

The four-vortex array supports four branches of Kelvin-
Tkachenko vortex waves [34]. There are in-phase �ϕ = 0 and
out-of-phase �ϕ = π/2 branches, respectively, corresponding
to the first and last columns of the row (4) in Fig. 2. The motion
in the second branch �ϕ = π may be viewed as that of a pair
of vortex molecules such that the internal motion of vortices in
each molecule is in phase, while the relative motion between
the two-vortex molecules has a π -phase difference. Vortex
motion in the remaining third branch is illustrated in the lower
inset of Fig. 2, i.e., �ϕ = 3π/2 and the internal motion of each
vortex molecule is out of phase; in addition, the relative motion
between these two-vortex molecules has a π -phase difference.

E. Spectra

Figure 3(a) shows the energies of the lowest quasipar-
ticle excitation modes for the three-vortex ground state of
Fig. 1 as functions of their axial momenta defined by
kz = √〈uq(r)| − ∂2

z |uq(r)〉 + 〈vq(r)| − ∂2
z |vq(r)〉. The three

different Kelvin-Tkachenko branches are labeled using the
markers indicated in the figure. The lowest odd-parity modes
of each branch correspond to the tilted gyroscopic motion
of the vortices. Above the Kelvin-Tkachenko branches in
energy lie the sound waves with their characteristic linear
dispersion relation, which becomes curved due to the density
inhomogeneity. The lowest corotating center-of-mass mode
has the frequency ω⊥ − � and, at � = ω⊥, it grows without
a bound causing the whole condensate to spiral out of the trap
because of the centrifugal weakening of the effective trapping
potential.

In Fig. 3(b), we have plotted the n = 0 modes of each
Kelvin-Tkachenko branch with markers �, �, �, and �
corresponding to the diagrams in the last, second to last,
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FIG. 3. (Color online) (a) Spectrum of low-lying quasiparticle states calculated for an array of three vortices with �′ = 0.74. Excitation
energies Eq are plotted as functions of their momenta kz (a number next to a mode denotes its axial wave number n). (b) Selected low-lying
Kelvin-Tkachenko mode excitation energies Eq as a function of the trap rotation frequency �. The straight lines are plotted to guide the eye.

third to last, and fourth to last column of each row of Fig. 2,
respectively. These modes tend toward the zero-point energy as
� is increased, becoming the constituents of the lowest Landau
level in the rapid rotation limit. In addition, the gyroscope
modes corresponding to the first odd-parity n = 1 states in the
first column of Fig. 2 are plotted. The faster the cloud rotates,
the more energy (torque) is required to tilt the axis of rotation
of the system, reflecting the fundamental feature (conservation
of orbital angular momentum) of gyroscopes to maintain their
orientation with respect to the distant stars. The lowest axial
dipole modes, with frequencies at 0.2 h̄ω⊥ that are unaffected
by the rotation, are joined by the horizontal line.

V. CONCLUSIONS

To conclude, we have computed the low-lying elementary
excitation modes of three-dimensional few-vortex arrays in ro-
tating trapped Bose-Einstein condensates. The lowest-energy
Kelvin-Tkachenko excitations correspond to an oscillating tor-
sional motion of the vortex array in the plane perpendicular to
the rotation axis. The lowest odd axial modes exhibit superfluid
gyroscopic vortex dynamics. The Kelvin-Tkachenko waves
could be created in ultracold atomic gases experimentally
using a suitable combination of laser potentials [20,24], or
they might become spontaneously excited in quenched phase
transitions [4,5]. Continuous imaging methods should allow

experimental investigation of the dynamics of these vortex
waves [5]. In superfluid helium, vibrating wire experiments
[46,47] might enable experimental investigation of such
elementary excitations.

In multivortex systems, vortex-vortex interactions enrich
the internal dynamics of the superfluid. As in the case
of a single vortex [10], time-dependent Gross-Pitaevskii
simulations show that certain Kelvin-Tkachenko waves of
multivortex arrays can be excited by resonantly populating
the counter-rotating quadrupole mode that couples to these
vortex waves. Resonant amplification of multivortex Kelvin-
Tkachenko waves can lead to vortex reconnections when the
amplitude of the modes exceeds the intervortex spacing, setting
off quantum turbulence in these superfluid systems. In the
future, systematic investigation of the interaction dynamics
of vortex waves in Bose-Einstein condensates may shed
light on the microscopic mechanisms that govern quantum
turbulence, such as vortex reconnections, cascades, and the
role of Kelvin-Tkachenko waves in transport and dissipation
of turbulent energy.
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