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Robust mesoscopic superposition of strongly correlated ultracold atoms
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We propose a scheme to create coherent superpositions of annular flow of strongly interacting bosonic atoms
in a one-dimensional ring trap. The nonrotating ground state is coupled to a vortex state with mesoscopic angular
momentum by means of a narrow potential barrier and an applied phase that originates from either rotation or
a synthetic magnetic field. We show that superposition states in the Tonks-Girardeau regime are robust against
single-particle loss due to the effects of strong correlations. The coupling between the mesoscopically distinct
states scales much more favorably with particle number than in schemes relying on weak interactions, thus
making particle numbers of hundreds or thousands feasible. Coherent oscillations induced by time variation of
parameters may serve as a “smoking gun” signature for detecting superposition states.
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I. INTRODUCTION

Quantum superpositions of macroscopically distinct states
are important for our understanding of quantum mechanics [1]
and carry great promise for enhanced precision measurement
techniques [2]. A conceptually simple example is the superpo-
sition |N,0〉 + |0,N〉, or NOON, where all N particles occupy
either one or the other of two accessible modes (e.g., spin
orientations). Due to their inherent fragility, such maximally
entangled NOON states [3] engineered in optics and spin
systems have been limited to ten particles [4]. The related
mesoscopic superpositions of flux states, consisting of 109

Cooper pairs observed in superconducting rings [5,6], have
proven more robust but their microscopic nature is debated
[7–10]. To date, proposals to create mesoscopic superpositions
of ultracold atoms have focused entirely on NOON and closely
related states [11–14], and have not yet been realized. Such
proposals suffer from severe limitations due to decoherence
[15] and the unfavorable scaling of precision and time scales
needed to produce these states [16,17].

In this paper, we propose a simple and experimentally
accessible scheme for producing large, robust quantum super-
position states of ultracold atoms. NOON states are very fragile
because the loss of a single constituent particle, if discriminant
between either of the two available modes, destroys the
superposition. We show that many-particle superposition states
can be made more robust by utilizing interactions between
the atoms. The intuitive assumption is that correlations due
to particle interactions spread single-particle observables over
many modes, which disguises the origin of any lost particle and
allows the superposition to survive. In addition, strong interac-
tions remove degeneracies and therefore decrease sensitivity
to environmental fluctuations.

II. THE SYSTEM

We apply this idea to bosonic atoms confined to a thin,
ring-shaped trap [18,19] that is intersected by a focused blue-
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detuned laser beam, which creates a potential barrier for the
atoms as illustrated in Fig. 1. One-dimensional Bose gases
with variable repulsive interactions have already been realized
in linear traps where the interactions were tuned by means of a
Feshbach resonance or by adjusting the trap geometry [20,21].
We model the system of N atoms of mass M in a loop of
circumference L by the one-dimensional Hamiltonian

H =
N∑

i=1

[
h̄2

2M

(
−i

∂

∂xi

− �

L

)2

+ bδ(xi) + g

N∑
i<j

δ(xi − xj )

]
,

(1)

where x = θL/2π is the atom’s position on the circumference
of the loop and g is the effective one-dimensional interaction
strength between the atoms [22]. The smallest nonzero kinetic
energy of a single particle,

E0 = 2π2h̄2/(ML2), (2)

provides a natural unit of energy for this system. The narrow
barrier with strength b is rotated with constant tangential
velocity v = h̄�/(ML) along the circumference of the ring
and the Hamiltonian (1) is formulated in the corotating frame
of reference. Alternatively, the rotational phase � can be
applied in a nonrotating system by means of a synthetic
magnetic field, as recently demonstrated at NIST [23].

In the absence of the barrier (b = 0), the angular momentum
in the ground state is quantized to integer multiples of
Nh̄ [24,25]. In this case, the Hamiltonian (1) describes the
integrable Lieb-Liniger model [26] with energies of different
angular momentum states shifted with respect to each other
by a Galilean transformation due to the rotational phase �. A
finite barrier (b > 0) couples states with different total angular
momentum, leading to the avoided level crossing seen in the
inset in Fig. 1. At the precise position of the avoided crossing,
an effective two-level system is realized with eigenstates being
50:50 superpositions of the two angular momentum states. By
adiabatically changing the applied phase from zero into the
avoided crossing, the superposition is created, while a rapid,
nonadiabatic procedure leads to coherent oscillations between
the two states. The oscillations with the period of �E/h̄, where
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FIG. 1. (Color online) Strongly correlated atoms trapped in a
narrow ring with a rotating barrier. The inset shows the energy levels
of the supercurrent states with total angular momentum K = 0 and
K = Nh̄, respectively, as a function of the rotational phase � (dashed
lines), and the lowest energy levels of N = 99 atoms in the Tonks-
Girardeau regime with barrier strength b/L = 0.008E0 (solid lines).

�E is the level splitting at the avoided crossing [27], can
be used to detect the presence of superposition states. The
quantized total angular momentum is measured by dropping
the trap and observing the interference pattern develop a hole
(K = Nh̄) or a peak (K = 0) along the ring axis [19].

In order to observe coherent oscillations, the level splitting
�E should be larger than the rate of decoherence. We have
calculated how �E scales with particle number in different
regimes of interaction strength. While weak interactions lead
to NOON states, the unfavorable scaling of �E and sensitivity
to particle loss severely limit the attainable particle numbers.
In the strongly interacting regime, however, �E grows with
particle number and the superposition states become robust
against single-particle loss.

FIG. 2. (Color online) The level splitting �E between the ground
and first excited states at � = π is plotted over interaction strength
g for five atoms with b/L = 0.008E0. The top horizontal axis shows
the Lieb-Liniger parameter, γ = g2π 2/(E0LN ). The dashes on the
figure margins indicate analytic results for noninteracting (g = 0) and
strongly interacting atoms (g = ∞). Subplots show the distribution
of the total angular momentum for (a) g = 0 and (b) g = ∞.

FIG. 3. (Color online) The quality of the superposition before and
after removal of an atom. The dashed line shows the superposition
quality Q = 4P (0)P (Nh̄) for the ground state of the rotating system
with parameters as in Fig. 2. The solid line shows the average
superposition quality Q̄[−1] after the loss of an atom, as described
in the text. The crosses in inset (a) show Q̄[−1] vs atom number
in the Tonks-Girardeau regime, and the solid line shows the result
1 − 1/N for noninteracting fermions for comparison. The horizontal
bar visible for N = 6 estimates the error in the numerical result from
an insufficient number r of single-particle modes by extrapolating
from r = 14 (the reported result) to larger r by adding twice the
difference from the r = 12 result. All other results use r = 20. Inset
(b) shows the total angular momentum distribution after removal of
an atom with k = 1h̄ in the Tonks-Girardeau regime.

III. NUMERICAL SIMULATION

We have simulated the system for N = 5 particles by
numerical diagonalization of the Hamiltonian (1). In order
to obtain accurate results in the strongly interacting regime,
we have developed an effective Hamiltonian for the one-
dimensional Bose gas [28]. In Appendix A, we show that
a rescaled interaction strength, g̃ = g(1 + g/g0)−1, produces
exact energies and eigenstate projections for two particles
when the Hamiltonian is represented in a truncated occupation
number basis from r angular momentum modes with g0 ≈
rLE0/2, where we have ignored small energy-dependent
terms. For larger particle numbers, we use the same value
of g̃ and monitor the error by comparing with the exact
Lieb-Liniger result. We still find a significant improvement
compared to the unscaled Hamiltonian. We have used r = 20
modes for all calculations [except Fig. 3(a)]. In the Tonk-
Girardeau regime, where the error is largest, the relative error
after rescaling is less than 3%, which is a factor of 8 times
smaller than without the rescaling. In addition to the level
splitting �E shown in Fig. 2, the simulations also provide
insight into the nature and the robustness properties of the
superposition states as shown in Fig. 3.

IV. NONINTERACTING ATOMS

Before discussing the many-particle states in different
interacting regimes, we first consider the solutions for a single
atom in the system (see Appendix B). These are plane waves
with angular momentum nh̄ in the absence of the barrier.
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At � = π , the pairs of energy levels with k1 = −nh̄ and
k2 = (n + 1)h̄ are degenerate, but this degeneracy is lifted for
nonzero barrier strength b. Expressions for the energy levels εµ

and eigenstates are obtained using the transformation 	(x) =
φ(x)ei�x/L, where φ(x) = φ(x + L)ei�, and employing the
ansatz φ(x) = ei2παx/L + Ae−i2παx/L.

For the case of � = π , the discrete solutions αµ, with
µ = 0,1,2, . . ., correspond to the single-particle energy levels
εµ = α2

µE0, and are the roots of 2πh̄2αµ/MLb = − tan(παµ)
for odd µ and αµ = (µ + 1)/2 for even µ. The νth avoided
crossing has a level splitting of ε2ν−1 − ε2(ν−1) ∼ b/L for
small barrier b � 2νE0L, but reaches a constant value
ε2ν−1 − ε2(ν−1) ∼ (ν − 1/4)E0 for large impenetrable barrier
b >∼ 2νE0L.

For noninteracting atoms, the energy gap �E is the energy
required to excite a single atom from the ground state across
the first avoided level crossing (see dash on the far left of
Fig. 2). Instead of a binary superposition, however, we find
a binomial distribution involving many different momenta, as
seen in Fig. 2(a).

V. TONKS-GIRARDEAU REGIME

The situation becomes more interesting when repulsive
interactions remove the near degeneracies of all angular mo-
mentum eigenstates except the K = 0 and the K = Nh̄ states.
The interacting quantum system is generally very difficult
to model and our numerical approach is limited to a small
number of particles. One exception is the Tonks-Girardeau
limit of strong interactions and low densities, where γ ≡
gML/(h̄2N ) � 1. Here, the bosons are strongly correlated as
they cannot pass each other and undergo fermionization. The
energy spectrum of the bosons in this limit is identical to that of
noninteracting spinless fermions [29], but the single-particle
momentum distribution is different and spreads ∝1/

√|k| over
an infinite range even at zero temperature [30]. Experiments
have already validated the features of fermionization of
ultracold atomic gases [20,31].

A calculation of the energy gap in the Tonks-Girardeau
limit proceeds as for noninteracting spinless fermions, using
the single-particle results. For simplicity, we assume an odd
number of particles N . The ground-state energy is found by
summing the lowest N single-particle levels, while the first-
excited-state energy is found by substituting the highest level
in the sum by the next higher level. The gap is given by the
difference between these two energies, �E = εN − εN−1, and
is marked on the far right of Fig. 2. In the weak barrier regime
determined by b � NE0L, we find that

�E = b/L + O(b2) (3)

scales independently of particle number, while the maximum
attainable gap energy is

�Emax = (N/2 + 1/4)E0. (4)

For a weak barrier and finite but strong interactions, the gap
energy shows power-law scaling with system size at constant
density �E/(NE0) ∼ Nα with α = −4/γ + O(γ −2), accord-
ing to Luttinger liquid theory [32,33], where NE0 is the energy
of the first supercurrent excitation.

The distribution of the total angular momentum in the
ground state is shown in Fig. 2(a) for noninteracting atoms
and Fig. 2(b) for the Tonks-Girardeau regime. The probability
of the system having an angular momentum of K , the neutral
atom equivalent of flux or current, is given by P (K) =
Tr(TKρ). Here, TK = ∑

n |K,n〉〈K,n| is the projector onto
states with total angular momentum K , where the sum
runs over all states with angular momentum K , and ρ =
|ψ〉〈ψ |/〈ψ |ψ〉 is the density operator. Figure 2(b) clearly
shows a superposition of two total angular momentum states,
where, for N atoms, the total momentum difference of the
two states is Nh̄. We quantify the quality of a superposition
between states with angular momentum K1 and K2 by

Q = 4P (K1)P (K2). (5)

As desired, the superposition quality Q varies between the
maximum value of 1 for an equal superposition and 0 for
angular momentum eigenstates. In Fig. 3, the dashed line
shows Q for the ground state (with K1 = 0 and K2 = Nh̄).
We see that Q is very close to 1 beyond the minimum of
�E at g ≈ 0.1E0L, where we also find that the distribution
of total angular momentum does not change any more. The
ground state is thus a binary superposition of total angular
momentum for sufficiently large g.

VI. NOON-STATE REGIME

The final feature of the �E curve in Fig. 2 that must
be explained is the minimum around g ≈ 0.1E0L. This is
a regime where interactions are too weak to strongly correlate
the atoms, but strong enough to remove the degeneracies
between states with intermediate angular momentum. We can
assume the ground state for � = π takes the NOON form,
|N,0〉 + |0,N〉, where the two numbers in the ket denote the
occupation number of the single-particle modes with angular
momentum 0 and h̄. For this to happen, the coupling to other
angular momentum modes must be negligible. As shown in
Appendix C, this gives the conditions

b
√

N/L � gN/2L � E0, (6)

where the mean interaction energy per particle is small
compared to the kinetic energy per particle and large compared
to the product of barrier energy and the square root of particle
number.

The energy splitting �E can now be calculated under the
assumption that particles only access the two modes with k = 0
and k = h̄. The Schrödinger equation is solved by eliminating
states with intermediate angular momentum to yield (see
Appendix C)

�E = bN

gN−1

2

L

N

(N − 1)!
. (7)

We find that �E is small and decreases faster than expo-
nentially with atom number N . This makes the NOON state
experimentally difficult to prepare through tuning � due to
the long coherence times required [16]. This difficulty can be
overcome by creating a superposition in the strongly correlated
regime first and then adiabatically reducing g. The time to
reach the NOON state is then no longer limited by �E. The
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many-body dynamics involved in this process is left for future
study.

VII. PARTICLE LOSS

Important limiting processes for the lifetime of ultracold
atom experiments involve the loss of particles from the
trap, e.g., due to collisions with high-energy atoms from the
background gas. When the environment gains information
about the state of the system, this may lead to the collapse
of the superposition. We consider the most detrimental case of
information about the angular momentum of the atom being
gained by the environment. The resulting state, after complete
removal of a single atom with angular momentum kh̄ from the
N -atom ground state |	〉, is modeled by

∣∣	[−1]
k

〉 = ak|	〉/
√

〈	|a†
kak|	〉. (8)

We measure the robustness of the superposition state under
particle loss by the averaged quality,

Q̄[−1] =
∑

k

Q
[−1]
k nk/N, (9)

where

Q
[−1]
k = 4P [−1](−kh̄)P [−1]((N − k)h̄) (10)

is averaged over the angular momentum kh̄ of the lost particle
weighted by the probability of finding an atom in mode k and
nk = 〈	[−1]

k |a†
kak|	[−1]

k 〉. Figure 3 shows Q̄[−1] after single-
particle loss alongside the Q for the ground state as a function
of the interaction strength g. The regime around g ≈ 0.1E0L

features a high superposition quality but poor robustness
against single-particle loss, as expected for NOON states. In
the Tonks-Girardeau regime, however, robustness increases
dramatically and, surprisingly, Q̄[−1] is still of the order of 1.
Figure 3(b) demonstrates that the binary superposition is
maintained even after removal of an atom, while Fig. 3(a)
shows how robustness increases with atom number. The
increased robustness is consistent with the spread-out nature of
the single-particle momentum distribution. Measuring a single
particle’s momentum is not sufficient to determine the total
angular momentum of the state.

VIII. CONCLUSION

We have presented a scheme for producing a robust binary
superposition with strongly correlated atoms in the ground
state of a rotating system. A barrier couples two states that
differ by angular momentum Nh̄, where N is the number
of atoms and the maximally achievable level splitting is
proportional to N . Due to this favorable scaling, mesoscopic
superpositions involving hundreds or thousands of atoms
become feasible. For example, loading 100 atoms of 7Li into
a ring trap with radius 50 µm leads to a mean particle spacing
of 3.1 µm. An energy gap of �E ≈ 25E0 ≈ 45h̄ Hz (half
the limiting value) could be realized in the Tonks-Girardeau
regime with a barrier rotating at angular speed ω = 0.29 × 2π

Hz. Such states are much less fragile than the related NOON
states, and we expect a robustness of Q̄[−1] > 1 − 1/N =
0.99, based on extrapolating from Fig. 3(a).
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APPENDIX A: EFFECTIVE HAMILTONIAN
FOR NUMERICAL SIMULATIONS

For the numerical calculations, we perform an exact
diagonalization of the Hamiltonian in a truncated Hilbert
space. In order to improve the accuracy of the truncated
calculation, we have developed an effective Hamiltonian that
involves rescaling the interaction constant as detailed in the
following. We start with the second quantized form of the
Hamiltonian H = HK + HB + HI , where HK , HB , and HI

are the Hamiltonians describing the kinetic energy of the
atoms, the barrier, and the interactions between the atoms,
respectively. These are given by

HK =
∫

dx 	̂†(x)
h̄2

2M

(
−i

∂

∂x
− �

L

)2

	̂(x),

HB =
∫

dx b δ(x) 	̂†(x)	̂(x), (A1)

HI =
∫

dx
g

2
	̂†(x)	̂†(x)	̂(x)	̂(x),

where 	̂†(x) and 	̂(x) are the Schrödinger field operators with
standard bosonic commutation relations. We transform into a
truncated angular momentum basis with

	̂(x) = 1√
L

∑
k

ei2πkx/Lâk, (A2)

where â
†
k and âk create and destroy an atom with angu-

lar momentum kh̄, respectively. We introduce the effective
Hamiltonian in the truncated basis by H̃ = H̃K + H̃B + H̃I

with

H̃K =
r/2∑

k=−r/2+1

E0

(
k − �

2π

)2

â
†
kâk,

H̃B = b

L

r∑
k1,k2=−r/2+1

â
†
k1

âk2 , (A3)

H̃I = g̃

2L

r/2∑
k1,k2,q=−r/2+1

â
†
k1

â
†
k2

âk1−q âk2+q,

which becomes formally exact and identical to H of Eq. (A1)
for r → ∞ and g̃ = g. Here, r is the number of angular
momentum modes used in the simulation, which we choose
to be even. Choosing finite r effectively truncates the Hilbert
space and constitutes an approximation that is expected to
converge toward the exact result for large r . We have used up to
r = 36 for testing convergence. The results presented in Figs. 2
and 3 have been obtained with r = 20 [except for Fig. 3(a)].
While at this level the ground- and excited-state energies
have already converged to the level of machine precision for
small g up to the NOON-state regime (g ≈ 0.1E0L), we find
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slow convergence with increasing r in the strongly interacting
Tonks-Girardeau regime, where we can compare with exact
results from the Bose-Fermi mapping [29].

Using an effective Hamiltonian for our numerical calcula-
tions is a way to significantly improve the accuracy. Formally,
the effective Hamiltonian is introduced by a transformation
of the full Hamiltonian onto the truncated Hilbert space that
preserves a subset of the exact eigenvalues [28]. Here, we use
a convenient approximate form that solely involves a rescaling
of the interaction constant g in Eq. (A3), found by considering
the simple system of two interacting particles at b = 0 and
� = 0, which we solve analytically.

We look for the ground state of H for two par-
ticles and write the general wave function as |ψ〉 =∑∞

k1,k2=−∞ Ck1,k2 â
†
k1

â
†
k2

|vac〉. Substituting this into the
Schrödinger equation and making use of bosonic symmetry
Ck1,k2 = Ck2,k1 , we obtain the set of simultaneous equations,

[
E − E0

(
k2

1 + k2
2

)]
Ck1,k2 = g

L

∞∑
q=−∞

Ck1−q,k2+q . (A4)

All terms in the Hamiltonian conserve total angular momentum
and we can expect the ground state to have zero angular
momentum where k1 = −k2. It follows that the right-hand
side of Eq. (A4) is independent of k1. Using this, it is easy to
show that C−q,q ∝ (E − 2E0q

2)−1 and

L

g
=

∞∑
q=−∞

C−q,q = L

g̃
− L

g0
, (A5)

where L/g̃ = ∑r/2
q=−r/2+1 C−q,q is the result that we would

obtain from the truncated Hamiltonian H̃ of Eq. (A3).
The term −L/g0 accounts for the sum over the remaining
angular momentum modes and thus defines g0. By rearranging
Eq. (A5), we find that both the energy E and the coefficients
C−q,q obtained from diagonalizing the effective Hamiltonian
H̃ agree with the exact results if the interaction strength is
rescaled to

g̃ = g/(1 + g/g0), (A6)

where g0 is given by

L

g0
= 2

E0r
+ 2E − E0

6E2
0r

3
+ O(r−5). (A7)

The terms beyond the first on the right-hand side explicitly
depend on the energy E of the solution. Due to their scaling
with the number of single-particle modes r , these terms can be
neglected when r2E0 � E − E0. For more than two particles,
the formally exact effective Hamiltonian contains three and
more particle interaction terms, which we will ignore here [28].
For the calculations in this work, we approximate the effective
Hamiltonian by H̃ of Eq. (A3) with g0 = rLE0/2.

APPENDIX B: SINGLE-PARTICLE SPECTRUM

The Hamiltonian describing the system of a one-
dimensional loop with a rotating barrier is given in Eq. (1).
For a single atom, analytic solutions can be found. We write

the wave function as 	(x) = φ(x)ei�x/L and substitute this
into the Schrödinger equation to obtain

− h̄2

2M

∂2

∂x2
φ(x) + bδ(x)φ(x) = εφ(x), (B1)

where the boundary conditions require φ(x) = φ(x + L)ei�.
The first derivative of the wave function at the Dirac δ barrier
is discontinuous and is found by integrating the Schrödinger
equation over the barrier:

dφ

dx

∣∣∣∣
x=+0

− dφ

dx
ei�

∣∣∣∣
x=L−0

= 2Mb

h̄2 φ(0). (B2)

With the ansatz φ(x) = ei2παx/L + Ae−i2παx/L and using the
boundary condition for the wave function, we find A = ei2παS

and S = sin(πα + �/2)/ sin(πα − �/2). Substituting this
into Eq. (B2) yields

4πh̄2α

MLb
= cot(πα − �/2) + cot(πα + �/2), (B3)

which has to be solved for α. The discrete solutions αµ with
µ = 0,1,2, . . . correspond to the single-particle energy levels
εµ = α2

µE0. For the case of � = π , Eq. (B3) is simplified to
2πh̄2αµ/MLb = − tan(παµ) for odd µ and αµ = (µ + 1)/2
for even µ.

APPENDIX C: CONDITIONS FOR EXISTENCE AND
ENERGY GAP FOR NOON STATE

The values of the experimental parameters needed to create
a NOON state in this system are determined by three factors
[16]. First, we want the states |0,N,0〉 and |0,0,N〉 to be
degenerate. (Here we describe the state of the system in
the occupation number basis where the three numbers in the
ket represent the −h̄, 0, and h̄ angular momentum modes,
respectively.) This is achieved when � = π , which is the
condition we are considering here.

Second, the two states must be, at most, weakly coupled to
and energetically well separated from other states, otherwise
the ground state will be a superposition of many states.
This is achieved by requiring a minimum interaction strength
to energetically separate the states |0,N − n,n〉, where n =
1, . . . ,N − 1 from |0,N,0〉 and |0,0,N〉. At the same time, the
interaction should be weak enough to not couple strongly to
other states through interactions. We can estimate these criteria
by considering two simple two-level systems. First we consider
the states |0,N,0〉 and |0,N − 1,1〉, where |0,N − 1,1〉 is the
state that is coupled most strongly to |0,N,0〉 through the
barrier term in the Hamiltonian. The Hamiltonian for this
two-state system is

He = g

L
(N − 1)|0,N − 1,1〉〈0,N − 1,1|

+ b

L

√
N (|0,N,0〉〈0,N − 1,1|

+ |0,N − 1,1〉〈0,N,0|), (C1)
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where we have ignored a constant energy term. Starting with
the ansatz |	〉 = a0|0,N,0〉 + a1|0,N − 1,1〉, we find∣∣∣∣a0

a1

∣∣∣∣ = g(N − 1)

2b
√

N
+

√(
g(N − 1)

2b
√

N

)2

+ 1. (C2)

We must also consider the relative amplitudes of the states
|0,N,0〉 and |1,N − 2,1〉, where |1,N − 2,1〉 is the state that
is coupled most strongly to |0,N,0〉 through the interaction
term in the Hamiltonian. The Hamiltonian for this two-state
system is

He =
[

2E0 + g

L
(2N − 3)

]
|1,N − 2,1〉〈1,N − 2,1|

+ g

2L

√
N (N − 1)(|0,N,0〉〈1,N − 2,1|

+ |1,N − 2,1〉〈0,N,0|). (C3)

Again, we have ignored a constant energy term. This time we
start with the ansatz |	〉= a0|0,N,0〉+ ã1|1,N − 2,1〉 and find∣∣∣∣a0

ã1

∣∣∣∣ = 2E0L + g(2N − 3)

g
√

N (N − 1)

+
√(

2E0L + g(2N − 3)

g
√

N (N − 1)

)2

+ 1. (C4)

To create a NOON state, we require |a0/a1|,|a0/ã1| � 1,
which is achieved when

b
√

N

L
� gN

2L
� E0. (C5)

We see that the mean interaction energy per particle needs
to be much smaller than the kinetic energy per particle and
much larger than the barrier energy times the square root of
the number of particles. E0 is inversely proportional to the
square of the circumference of the loop L2 and the mass M of
the atoms. Therefore, it is easier to fulfill condition (C5) with
lighter atoms and smaller rings. As the number of particles
are increased, it will be experimentally unattainable to reach
the small interaction strength and the barrier height needed to
make a NOON state.

Finally, in order to obtain the superposition, the states
|0,N,0〉 and |0,0,N〉 must be coupled. By calculating the
coupling strength, we will also be able to calculate the energy-
level splitting between the ground and first excited states. There
is no direct first-order coupling between the two states, but they
do couple through intermediate states. We have already argued
that the population in states other than |0,N,0〉 and |0,0,N〉 is
small. In this regime and at � = π , it is a good approximation
to consider just the 0 and 1 angular momentum modes. States
that have atoms with other angular momentum modes have a
larger kinetic energy associated with them. This makes the
states energetically unfavorable and only provides a small
addition to the coupling strength between |0,N,0〉 and |0,0,N〉.

The Schrödinger equation for this system can be written as
a set of simultaneous equations,

λan = tnan + Vn,n−1an−1 + Vn,n+1an+1. (C6)

Here, an is the coefficient of state |0,N − n,n〉, λ are
the eigenenergies that solve the system, tn = 〈0,N − n,

n|H |0,N − n,n〉= gn(N − n)/L+ const, Vn,n+1 = 〈0,N − n,

n|H |0,N − n − 1,n + 1〉 = b
√

(N − n)(n + 1)/L, and H is
the Hamiltonian. We can systematically eliminate coefficients
of intermediate states leaving just a0 and aN :

aN =
[

(λ − t0)(λ − t1) · · · (λ − tN−1)

V01V12 · · ·VN−1,N

+ AN

]
a0. (C7)

To prove by induction that this is the general form, we add
another atom to the system and eliminate aN using the addi-
tional equation λaN = tNaN + VN,N−1aN−1 + VN,N+1aN+1.
This leaves just a0 and aN+1 and gives

aN+1 =
[

(λ − t0)(λ − t1) · · · (λ − tN )

V01V12 · · ·VN,N+1
+ AN+1

]
a0, (C8)

where

AN+1 = AN

(λ − tN )

VN,N+1

− VN,N−1

VN,N+1

(λ − t0)(λ − t1) · · · (λ − tN−2)

V01V12 · · · VN−2,N−1

−AN−1
VN,N−1

VN,N+1
, (C9)

and A1 = 0.
We are now left with two simultaneous equations,

λa0 = t(λ)a0 + V (λ)aN,
(C10)

λaN = t(λ)aN + V (λ)a0,

where

V (λ) = V01V12 · · · VN−1,N

(λ − t1)(λ − t2) · · · (λ − tN−1)
,

(C11)
t(λ) = t0 − ANV (λ).

FIG. 4. (Color online) NOON state energy-level splitting as a
function of atom number. The line shows the energy-level split-
ting calculated using Eq. (7), where b/L = 0.008E0 and g/L =
4πb

√
N/L(N − 1). In the regime where the NOON state is formed,

it is adequate to describe the system using just the 0 and h̄ angular
momentum modes. The results from the numerical simulation are
shown by the red crosses. The energy-level splitting decreases rapidly
as the number of particles is increased. We see the numerical result
break down for N > 11 due to limited numerical accuracy. The
analytic result is still valid beyond this point.

063623-6



ROBUST MESOSCOPIC SUPERPOSITION OF STRONGLY . . . PHYSICAL REVIEW A 82, 063623 (2010)

When the amplitudes of states other than |0,N,0〉 and |0,0,N〉
are small, Eq. (C10) gives the ground- and first-excited-state
energies, because |0,N,0〉 and |0,0,N〉 have the lowest ener-
gies of the uncoupled system. If we assume t(λ0) ≈ t(λ1) ≈
t(t0) and V (λ0) ≈ V (λ1) ≈ V (t0), then we have a simple two-
level system and the energy-level splitting is given by �E =

λ1 − λ0 = 2V . As a result, we obtain Eq. (7). For large N ,
this expression is dominated by the inverse factorial and thus
becomes exceedingly small. We have verified the assumptions
by expanding around t0 and find it is valid under the conditions
given in Eq. (C5). We compare Eq. (7) with a full numerical
solution of the two-mode model of Eq. (C6) in Fig. 4.
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and L. You, Phys. Rev. A 81, 053619 (2010).

[12] P. Bader and U. R. Fischer, Phys. Rev. Lett. 103, 060402
(2009).

[13] C. Weiss and Y. Castin, Phys. Rev. Lett. 102, 010403
(2009).

[14] A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A
80, 043616 (2009).

[15] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).

[16] D. W. Hallwood, K. Burnett, and J. Dunningham, J. Mod. Opt.
54, 2129 (2007).

[17] D. R. Dounas-Frazer, A. M. Hermundstad, and L. D. Carr, Phys.
Rev. Lett. 99, 200402 (2007).

[18] S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M.
Stamper-Kurn, Phys. Rev. Lett. 95, 143201 (2005).

[19] C. Ryu, M. F. Andersen, P. Clade, V. Natarajan, K. Helmerson,
and W. D. Phillips, Phys. Rev. Lett. 99, 260401 (2007).

[20] T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125
(2004).

[21] E. Haller et al., Science 325, 1224 (2009).
[22] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
[23] Y.-J. Lin et al., Nature (London) 462, 628 (2009).
[24] F. Bloch, Phys. Rev. A 7, 2187 (1973).
[25] A. Y. Cherny, J.-S. Caux, and J. Brand, Phys. Rev. A 80, 043604

(2009).
[26] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
[27] A. Nunnenkamp, A. M. Rey, and K. Burnett, Phys. Rev. A 77,

023622 (2008).
[28] K. Suzuki and S. Y. Lee, Prog. Theor. Phys. 64, 2091 (1980).
[29] M. Girardeau, J. Math. Phys. 1, 516 (1960).
[30] A. Lenard, J. Math. Phys. 5, 930 (1964).
[31] B. Paredes et al., Nature (London) 429, 277 (2004).
[32] V. A. Kashurnikov, A. I. Podlivaev, N. V. Prokof’ev, and B. V.

Svistunov, Phys. Rev. B 53, 13091 (1996).
[33] A. Y. Cherny and J. Brand, Phys. Rev. A 79, 043607 (2009).
[34] D. Greeneberger, M. A. Horne, and A. Zeilinger, in Bell’s

Theorem, Quantum Theory, and Conceptions of the Universe,
edited by M. Kafatos (Kluwer Academic, Dordrecht, 1989),
pp. 73–76.

063623-7

http://dx.doi.org/10.1103/PhysRevLett.54.857
http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1126/science.1170730
http://dx.doi.org/10.1126/science.290.5492.773
http://dx.doi.org/10.1038/35017505
http://dx.doi.org/10.1103/PhysRevA.78.012109
http://dx.doi.org/10.1103/PhysRevA.78.012109
http://dx.doi.org/10.1103/PhysRevA.75.042106
http://dx.doi.org/10.1103/PhysRevA.75.042106
http://dx.doi.org/10.1088/0031-8949/2009/T137/014022
http://dx.doi.org/10.1088/0031-8949/2009/T137/014022
http://dx.doi.org/10.1103/PhysRevLett.95.173601
http://dx.doi.org/10.1103/PhysRevLett.95.173601
http://dx.doi.org/10.1088/1367-2630/8/9/182
http://dx.doi.org/10.1103/PhysRevA.81.053619
http://dx.doi.org/10.1103/PhysRevLett.103.060402
http://dx.doi.org/10.1103/PhysRevLett.103.060402
http://dx.doi.org/10.1103/PhysRevLett.102.010403
http://dx.doi.org/10.1103/PhysRevLett.102.010403
http://dx.doi.org/10.1103/PhysRevA.80.043616
http://dx.doi.org/10.1103/PhysRevA.80.043616
http://dx.doi.org/10.1103/RevModPhys.75.715
http://dx.doi.org/10.1080/09500340701427128
http://dx.doi.org/10.1080/09500340701427128
http://dx.doi.org/10.1103/PhysRevLett.99.200402
http://dx.doi.org/10.1103/PhysRevLett.99.200402
http://dx.doi.org/10.1103/PhysRevLett.95.143201
http://dx.doi.org/10.1103/PhysRevLett.99.260401
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1126/science.1175850
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1103/PhysRevA.7.2187
http://dx.doi.org/10.1103/PhysRevA.80.043604
http://dx.doi.org/10.1103/PhysRevA.80.043604
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/PhysRevA.77.023622
http://dx.doi.org/10.1103/PhysRevA.77.023622
http://dx.doi.org/10.1143/PTP.64.2091
http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1063/1.1704196
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1103/PhysRevB.53.13091
http://dx.doi.org/10.1103/PhysRevA.79.043607

