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Quantum localization and bound-state formation in Bose-Einstein condensates
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We discuss the possibility of exponential quantum localization in systems of ultracold bosonic atoms with
repulsive interactions in open optical lattices without disorder. We show that exponential localization occurs in
the maximally excited state of the lowest energy band. We establish the conditions under which the presence
of the upper energy bands can be neglected, determine the successive stages and the quantum phase boundaries
at which localization occurs, and discuss schemes to detect it experimentally by visibility measurements. The
discussed mechanism is a particular type of quantum localization that is intuitively understood in terms of the
interplay between nonlinearity and a bounded energy spectrum.
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I. INTRODUCTION

The phenomenon of Anderson localization in disordered
quantum systems [1] was originally discovered in the context
of the study of electrons in a crystal with imperfections [2].
In fact, it is much more general [3] and has been observed
in a variety of systems, including light waves in random
media [4,5]. Despite remarkable efforts, Anderson localization
has not been observed directly in crystals, owing to the
high electron-electron and electron-phonon interactions. It has
finally been observed in noninteracting Bose-Einstein con-
densates in one-dimensional quasiperiodic optical lattices [6],
which feature a crossover between extended and exponentially
localized states, as in the case of purely random disorder in
higher dimensions; moreover, the effects of random disorder
in optical lattices can also be simulated by manipulating the
interactions in multispecies mixtures [7]. These achievements
are due to the unprecedented degree of control over the
system physical parameters, in particular the vanishing of the
interaction strength, that ultracold atoms offer.

Indeed, ultracold degenerate gases in optical lattices pro-
vide an unprecedented toolbox for the experimental realization
of what were once just toy models sketching the key features of
complex condensed matter systems. One prominent example
is the Bose-Hubbard model [8,9], which was originally
introduced as a variant of the better-known Hubbard model
and whose properties were later discussed at length in the
context of the description of superfluid 4He trapped in porous
media. The suggested realization in optical lattices loaded
with ultracold bosonic atoms [10] was soon achieved in a
spectacular breakthrough experiment [11]. Driven by this
brilliant result, a growing number of investigations have
focused on the possibility of using optical lattices to realize
various phenomena of considerable interest in condensed
matter physics [12,13]. Among these, in the last years much
attention has been devoted to the study of localized quantum
phases in many-body systems. For instance, it has been shown
that it is possible to use boundary dissipation [14] or the control
of the sign of the local interactions, exploiting Feshbach
resonances, to switch from the repulsive Hubbard model to the
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attractive one, whose ground state may feature a collapse of all
the atoms of the system into a single site of the lattice [15–17].
The transition to collapse is essentially due to the combination
of the nonlinear dependence of the local Hamiltonian on the
site occupation, which makes energetically favorable those
states that are characterized by a concentration of all atoms in
a single site.

In the present work we describe a route to quantum
localization in many-boson systems with repulsive interactions
that has one important feature in common with the transition
to collapse discussed in Refs. [15–17]. The basic idea is to
consider the maximally excited state in the lowest energy
band of an interacting system in a nontranslationally invariant
lattice. Within the Bose-Hubbard framework this is just the
eigenstate with highest energy of a Hamiltonian H with
repulsive interactions. This state is then the eigenstate with
lowest energy (i.e., the ground state) of a new Hamiltonian
H ′ equal to minus the original Hamiltonian: H ′ = −H . The
rotated Hamiltonian has attractive interactions (instead of
repulsive interactions) and a negative tunneling amplitude.
However, this can be turned positive again by a π -phase
shift on every other lattice site. If one can show the oc-
currence of exponential localization in the highest excited
state of the repulsive Hamiltonian, this phenomenon is then
completely equivalent to the collapse in the ground state of
the corresponding attractive model. In the latter case, upon
increasing the intensity of the attraction, the particles form
a bound state with increasing mass, which appears to be
localized if the correlation length becomes smaller than the
lattice spacing. The two mechanisms differ in that the former
is not realized as an on-site collapse in the ground state of
a system with attractive interactions, but rather as a proper
exponential localization in the maximally excited state of the
lowest energy band in systems with repulsive interactions. It
is thus a mechanism that is solely due to the interplay between
nonlinearity and an energy spectrum bounded from above. The
latter in turn is a fundamental feature associated with the fact
that the Bose-Hubbard Hamiltonian preserves the total particle
number.

In the following we will investigate the properties of the
maximally excited state of the one-dimensional repulsive
Bose-Hubbard model defined on open lattice chains. Such
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analysis, besides resorting to exact diagonalization for systems
of very small size, will be carried out for larger systems using
numerical solutions obtained with a controllable recursive
algorithm as well as a semiclassical approach when the size of
the problem makes the numerical computation impractical.
We will show that, depending on the physical parameters
of the system, the maximally excited state of the repulsive
Bose-Hubbard Hamiltonian defined on an open chain features
three different phases of which the first one, associated to
small values of the local repulsion, is characterized by a
relative atomic population spread on all sites of the lattice.
At intermediate values of the on-site interaction there occurs
a second phase in which a macroscopic fraction of the atoms
begins to localize in a single site while the remainder of the
atomic population is still spread over the lattice. Finally, we
will show that for large values of the on-site repulsion the
maximally excited state is characterized by an exponential
localization in the center of the lattice, and we will investigate
the decay rate both numerically and analytically. We will then
determine the physical conditions such that the overlap of the
maximally excited state of the lowest energy band with the
lowest states of the upper bands can be neglected, and we
will discuss how to detect experimentally the three different
behaviors by measurements of the visibility.

II. MODEL AND METHODS

Let us consider a system of N ultracold atoms with repulsive
on-site interactions described by a Bose-Hubbard model on a
one-dimensional lattice of M sites:

H = U

2

d∑
j=−d

n̂j (n̂j − 1) − T

d−1∑
j=−d

(â†
j âj+1 + H.c.). (1)

One needs to consider open chains to look, even in
principle, for the possibility of true localization. Indeed, in a
translationally invariant geometry the atoms would be unable
to localize on a definite site. Namely, even in the presence
of strong repulsive on-site interactions, the maximally excited
state would be essentially a Schrödinger-cat state, i.e., a super-
position of localized states characterized by a flat distribution
of the atomic density over the entire lattice [17]. In Eq. (1)
d = (M − 1)/2, âj (â†

j ) are the bosonic annihilation (creation)

operators on the j th site, n̂j = â
†
j âj are the occupation number

operators, U > 0 is the strength of the repulsive nonlinear
on-site interaction, and T is the hopping amplitude between
neighboring sites.

In order to determine an optimized analytic approximation
to the maximally excited state of the Hamiltonian (1) on a finite
open chain we proceed by a dynamical variational method and
compare results with those obtained by exact diagonalization.
We follow the route adopted for the corresponding attractive
model [16,17], introducing a macroscopic trial state of the
form |φ̃〉 = eiϕ |φ〉, where ϕ is a time-dependent phase and |φ〉
is a coherent state of the form

|φ〉 = 1√
N !

(
d∑

j=−d

φj â
†
j

)N

|�〉. (2)

Here |�〉 is the vacuum state and the coherent-state constants,
φj ∈ C for j = 1, . . . ,M , must satisfy the normalization
condition

∑M
j=1 |φj |2 = 1. The complex quantities φj describe

the on-site bosonic states by the on-site population |φj |2
and the macroscopic local phase arg φj . The request that the
trial state satisfies the Schrödinger equation on the average,
〈φ̃|i∂t − H |φ̃〉 = 0, identifies the time derivative ϕ̇ with an
effective Lagrangian for the dynamical variables φj and the
corresponding effective Hamiltonian [18]:

H = U

2
N (N − 1)

d∑
j=−d

|φj |4 − T N

d−1∑
j=d

(φ∗
j φj+1 + c.c.). (3)

Maximizing the latter with respect to the variables φj under
the normalization constraint, one obtains a semiclassical
variational approximation to the maximally excited energy
eigenstate of the system. The first term of Eq. (3), i.e., the
on-site interaction term, does not depend on the phases of the
on-site variables φj , while the hopping term, at arbitrarily fixed
values of |φj | and |φj+1|, is maximized by a phase difference
±π . Therefore, except for an irrelevant global phase factor,
the values φj associated to the maximally excited state can
be assumed to be real quantities with alternating signs. By
defining xj = |φj |, and taking into account the property of
invariance under mirror reflection (xj = x−j ) with respect to
the center of the finite chain, Eq. (3) can be recast in the
equivalent forms

H
N

= U

2
(N − 1)

⎛
⎝x4

0 + 2
d∑

j=1

x4
j

⎞
⎠ + 2T

d∑
j=1

xjxj−1,

(4)

H = �

⎛
⎝x4

0 + 2
d∑

j=1

x4
j

⎞
⎠ +

d∑
j=1

xjxj−1.

Introducing the dimensionless ratio of the interaction to
kinetic energy scales, � = U (N − 1)/(8T ), one can solve
the problem for different values of � and maximize Eq. (4)
using the hyperspherical representation of the variables xj to
enforce automatically their exact normalization and can then
compare the atomic distribution densities so obtained with
those provided by exact diagonalization for small samples.
The latter in turn can be performed very efficiently with the
help of augmented recursive Lanczos algorithms [19]. The
result of this comparison is reported in Fig. 1.

Figure 1 shows that the semiclassical solution provides an
excellent approximation to the maximally excited state that
becomes more and more accurate with increasing strength of
the interaction and of the localization of the atoms at the center
of the lattice and can thus be extended to systems of much
larger size that cannot be investigated by exact diagonalization.
More important, Fig. 1 shows that as the � parameter varies the
atomic density profile in the maximally excited state crosses
three different phases. The first one, associated with small
values of �, is characterized by the absence of localization; the
third one, associated with very large values of �, corresponds
to a complete concentration of all the atoms of the system
in the center of the lattice; finally, the second one, associated
with intermediate values of �, corresponds to the onset of the
localization of a significant fraction of the atomic population
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FIG. 1. (Color online) The atomic density profile 〈nj 〉/N in the
maximally excited state of Hamiltonian (1) obtained by exact diag-
onalization (full black squares) and by the semiclassical variational
approximation (empty circles linked by the solid line) for different
values of the dimensionless energy ratio � in an open chain of M =
9 sites and N = 9 atoms. All quantities plotted are dimensionless.

in the central site, while the distribution of the remainder of
the atomic population over the entire lattice stays finite.

III. EXPONENTIAL LOCALIZATION AND VISIBILITY

We now investigate in detail the exponential nature of the
localization in the maximally excited state. The presence of
an exponential decay is reported (on a logarithmic scale)
in Fig. 2. It shows the behavior of the relative occupation
〈ni〉/N as a function of the distance from the center of the
lattice. The occurrence of an exponential localization allows
us to introduce a simple and effective method to obtain an
excellent analytical approximate solution to the problem of
the maximization of the effective Hamiltonian. We introduce a
dimensionless parameter χ and assume |φj | = χj ∀ j ∈ [1,d],
with |φ0| = 1 − 2χ2(1 − χ2d )/(1 − χ2) in order to satisfy
normalization. Within this setting the maximization of the
effective variational Hamiltonian can be performed analyti-
cally. Exploiting the condition χ � 1, necessary to have a
state localized in the central site, one finds the approximate
analytical solution χ = �/8.

It is worth observing that the expression for χ that
determines the approximate solution to the maximally excited
state of the system does not depend on the size of the chain.
On the other hand, it depends on the number of atoms
in the lattice through �. In Fig. 3 we have compared the
exact numerical solution of the variational problem with the
approximate analytical solution for different value of � within
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FIG. 2. (Color online) Atomic density distribution (on a logarith-
mic scale) associated with the maximally excited energy eigenstate
in the localized phase obtained by exact diagonalization (solid lines
and full symbols) and by the semiclassical variational approximation
(dashed lines and empty symbols) for a chain of M = 9 sites and
N = 9 atoms. From top to bottom: circles and lines (� = 1.0);
squares and lines (� = 2.0); diamonds and lines (� = 3.0). All
quantities plotted are dimensionless.

the interval compatible with localization. One sees that even at
moderate values of � the analytical approximation reproduces
the essential features of the exact localized quantum solution.

The onset of localization in the maximally excited state can
be naturally captured either by analyzing the behavior of the
relative occupation of the central site 〈n0〉/N or by looking at
the factor f0 = 1 − 〈n0〉/N that measures the relative atomic
population outside the central site. The upper panel of Fig. 4
shows that for small values of � the ratio f0 is enhanced. In this
regime and for very long chains, such that the border effects
can be neglected, f0 → 1 − 1/M . The ratio begins to decrease
at the onset of localization at the critical value �c 
 0.7, finally
vanishing asymptotically in the limit � → ∞.
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FIG. 3. (Color online) Atomic density distribution (on a loga-
rithmic scale) as a function of the distance from the center of the
lattice for an open chain of M = 21 sites and N = 21 atoms. Solid
lines and filled symbols: exact numerical solution of the variational
problem. Dashed lines and empty symbols: approximate analytical
solution χ = �/8. From top to bottom: lines and triangles (� = 2.0);
lines and circles (� = 5.0); lines and squares (� = 10.0); lines and
diamonds (λ = 20.0). All quantities plotted are dimensionless.
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FIG. 4. (Color online) Relative atomic population ratio f0 = 1 −
〈n0〉/N (upper panel) and visibility V (lower panel) as functions of
� for open chains of different size at unit filling. Solid lines: chain
of M = 11 sites and N = 11 atoms. Dashed lines: chain of M = 21
sites and N = 21 atoms. Dot-dashed lines: chain of M = 31 sites and
N = 31 atoms. All quantities plotted are dimensionless.

The rationale for the study of f0 lies in the fact that it
is directly associated with the visibility V , a quantity that
can be actually measured by looking at the relative difference
between the maximum and the minimum of the momentum
interference pattern [6]. The visibility is related to the overall
coherence [20] according to the relation

V = Smax − Smin

Smax − Smin
, (5)

where Smax and Smin are the maximum and minimum values
of the momentum distribution function:

S(K) = 1

M

M∑
l,m=1

eiK(l−m)〈a†
l am〉. (6)

In the lower panel of Fig. 4 we report the behavior of the
visibility as a function of �. We see that the visibility is
very sensitive to the onset of localization. It is approximately
constant around its maximum when the atoms are delocalized
over the lattice at small values of � and begins to decrease
exponentially, at the onset of the transition in the center of the
lattice, for �c 
 0.7.

IV. ROLE OF HIGHER BANDS

A most serious issue concerns the possibility that in the
process of driving the system in the maximally excited state of
the lowest energy band, the lowest states of the higher energy
bands may get significantly populated. The problem is then to
establish under what conditions the relative overlap between
these states and the maximally excited level of the lowest band
is negligible. We thus need to consider the two-band Bose-
Hubbard Hamiltonian with intraband and interband interaction

terms [21]. One needs to add to the lowest-band Bose-Hubbard
Hamiltonian (1) both the Bose-Hubbard Hamiltonian of the
first upper energy band,

H2 = U2

2

d∑
j=−d

n̂
(2)
j

[
n̂

(2)
j − 1

] − T2

d−1∑
j=−d

[
â

(2)†
j â

(2)
j+1 + H.c.

]
,

(7)

and the interband interaction terms

HI = Eg

d∑
j=−d

n̂
(2)
j + W

d∑
j=−d

4n̂j n̂
(2)
j + [

â
†
j â

†
j a

(2)
j â

(2)
j + H.c.

]
.

(8)

In Eqs. (7) and (8) Eg is the energy gap between the first excited
level of the optical lattice potential and the relative ground
state, while â

(2)
j , â

(2)†
j , and n̂

(2)
j are, respectively, the on-site

bosonic annihilation, creation, and number operators relative
to the first upper energy band. The Hamiltonian parameters
of the two bands are obviously not independent: Resorting to
the standard harmonic approximation for the optical lattice
potential one has that T2 
 9.4T , U2 
 3U/4, and W 
 U/2.
Hence, the total Hamiltonian HT = H + H2 + HI depends
only on the two independent parameters ε = Eg/8T , which
measures the width of the energy gap, and the previously
introduced � = U (N − 1)/(8T ), which expresses the ratio of
the interaction to kinetic energy scales. Going again through
the same dynamical variational procedure for the two-band
model HT and finite values of the gap ε, we solve the
maximization problem in the previously determined range of
values of � that are compatible with exponential localization
in the maximally excited state of the lowest energy band.
As we can see from Fig. 5, the relative atomic population
outside the central site f0 is quite unaffected by the interband
energy gap width until the latter becomes small enough to
allow a relative population r = ∑d

j=−d〈n′
j 〉/N of the first

upper band that is comparable with f0. If the energy gap is
further reduced, the occupation outside the central site begins
to increase exponentially even if the population of the central
site remains a substantial fraction of the total number of atoms
until ε 
 � and Eg 
 U (N − 1). This finding allows us to
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FIG. 5. (Color online) Relative atomic population outside the
central site f0 (squares) and relative population of the upper energy
band r (circles) as a function of the gap width ε for different values of
the energy ratio �. Filled symbols: � = 2. Empty symbols: � = 3.
All quantities plotted are dimensionless.
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conclude that if the lattice is loaded with a total number of
atoms N � Eg/(10U ), one can safely disregard the presence
of the upper energy bands.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have introduced and discussed a mech-
anism of exponential localization in the maximally excited
state for systems of ultracold bosonic atoms with repulsive
interactions in open optical lattices. The properties of the
maximally excited state have been studied as a function of
the Hamiltonian parameter both with numerical and analytical
techniques in order to determine the region of the parameter
space in which exponential localization take place and the
dependence of the exponential decay on the Hamiltonian
parameters. Finally, we have discussed how the transition
to localization can be detected experimentally by visibility
measurements, and we have established the physical condi-
tions under which the overlap with the upper energy bands
can be neglected. This localization mechanism depends on
the properties of the maximally excited state that stem from
the interplay of nonlinearity and a bounded energy spectrum.
Because it is not a ground-state property, it does not require

the presence of random disorder, attractive local potentials, or
ad hoc truncations of the Hilbert space.

At first sight it would seem that to populate the maximally
excited state of a system in realistic experiments is an
extremely challenging goal to achieve. However, thanks to the
exceptional properties of controllability and manipulability
of optical lattice systems, the predicted phenomenon might
be observed first by cooling the system in the presence of a
strong local field favoring a substantial atomic population at
the center of the lattice. After switching off instantaneously
the local field the system would remain, with probability
close to unity, in the strongly localized maximally excited
state. Repeated transitions to delocalization and exponential
relocalization could then be observed simply by varying the
energy ratio � by changing the depth of the lattice and/or by
tuning the scattering length.
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