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Low-temperature thermodynamics of the unitary Fermi gas: Superfluid fraction,
first sound, and second sound
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We investigate the low-temperature thermodynamics of the unitary Fermi gas by introducing a model based
on the zero-temperature spectra of both bosonic collective modes and fermonic single-particle excitations. We
calculate the Helmholtz free energy and from it we obtain the entropy, the internal energy, and the chemical
potential as a function of the temperature. By using these quantities and the Landau’s expression for the superfluid
density we determine analytically the superfluid fraction, the critical temperature, the first sound velocity, and
the second sound velocity. We compare our analytical results with other theoretical predictions and experimental
data of ultracold atoms and dilute neutron matter.

DOI: 10.1103/PhysRevA.82.063619 PACS number(s): 03.75.Ss, 03.70.+k, 05.30.−d, 67.10.−j

I. INTRODUCTION

In a system of fermions the unitary regime is the situation
in which re � n−1/3 � |a|, where n is total number density,
re is the effective radius of the interaction potential, and a is
the s-wave scattering length [1,2]. Thus the system is dilute
but the s-wave scattering length a greatly exceeds the average
interparticle separation n−1/3. It was shown experimentally
with dilute and ultracold atomic vapors that such systems
exist and are (meta)stable [3]. It has been suggested that
also the dilute neutron matter, which is predicted to fill
the crust of neutron stars [4], is close to the unitary Fermi
gas at a certain density range [5]. At low temperature, the
thermodynamic properties of the superfluid unitary Fermi gas
can be obtained from the spectrum of elementary excitations,
as done many years ago by Landau with the superfluid 4He
[6–9]. This approach has been adopted by Bulgac, Drut, and
Magierski [10] and also by Nishida [11] to calculate the
internal energy and the entropy of the unitary Fermi gas. It has
been also suggested by Haussmann, Punk, and Zwerger [12],
who proposed a way to calculate the lifetime of fermionic
excitations at zero temperature.

In this paper we adopt the Landau approach [6–9] by in-
troducing a thermodynamical model which uses the collective
bosonic excitations of the generalized hydrodynamics [13] and
the spectrum of fermionic single-particle excitations [14,15].
We calculate the Helmholtz free energy of the two-component
balanced unitary Fermi gas and from it we determine the
entropy, the internal energy, and the chemical potential. In
addition, we use the Laudau’s criterion to derive the superfluid
fraction and estimate the critical temperature of the system.
Finally, by using the obtained superfluid fraction and equations
of state we calculate the first sound and the second sound of
the unitary gas as a function of the temperature. Our results
are compared with previous theoretical predictions [10,16–21]
and experimental data [22–26].

II. COLLECTIVE AND SINGLE-PARTICLE EXCITATIONS

For any many-body system the weakly excited states, the
so-called elementary excitations, can be treated as a noninter-
acting gas of excitations [7,9]. In general, these elementary
excitations are the result of collective interactions of the

particles of the system, and therefore pertain to the system
as whole and not to its separate particles [7,9]. For the unitary
Fermi gas the mean-field extended BCS theory predicts the
existence of fermionic single-particle elementary excitations
characterized by an energy gap � [1,2]. The inclusion of
beyond-mean-field effects, namely quantum fluctuations of the
order parameter, gives rise to bosonic collective excitations
[1,2], which are density waves reducing to the Bogoliubov-
Goldstone-Anderson mode in the limit of small momenta [13].

The detailed properties of these elementary excitations
strongly depend on the approximations involved in the the-
oretical approach [1,2]. As previously stressed, in this paper
we extract the details of the zero-temperature elementary
excitations from a density functional approach based on
fixed-node diffusion Monte Carlo calculation [13] and from
recent path integral Monte Carlo simulations [14,15].

It is now well established [1,2,11] that the ground-state
energy E0 of the uniform unitary Fermi gas made of N atoms
in a volume V is given by

E0 = 3
5ξNεF , (1)

where E0 is the ground-state internal energy, ξ � 0.4 is a
universal parameter [27], and εF = h̄2(3π2n)2/3/(2m) is the
Fermi energy with n = N/V the number density and N the
number of atoms of the uniform system in a volume V .

The exact dispersion relation of elementary (collective
and single-particle) excitations is not fully known [1,2]. In
Ref. [13] we have found the dispersion relation of collective
elementary excitations as

εcol(q) =
√

c2
1q

2 + λ

4m2
q4, (2)

where

c1 =
√

ξ

3
vF , (3)

is the zero-temperature first sound velocity, with vF =
(h̄/m)(3π2n)1/3 the Fermi velocity of a noninteracting Fermi
gas (see Fig. 1). Notice that the term with λ takes into account
the increase of kinetic energy due the spatial variation of the
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FIG. 1. (Color online) Elementary excitations of the unitary
Fermi gas: bosonic collective excitations εcol(p) (dashed line) and
fermionic single-particle excitations 2εsp(p) (solid line). The collec-
tive mode εcol(p) decays in the single-particle continuum when there
is the breaking of Cooper pairs, namely above εth = 2�0 (dotted line).
Zero-temperature parameters of elementary excitations: ξ = 0.42,
λ = 0.25, ζ = 0.9, and γ = 0.45.

density [13,28–32]. Expanding the dispersion relation (3) for
low momenta we get

εcol(q) = c1q + λ

8m2c1
q3, (4)

where the linear term is the familiar phonon dispersion
relation (the so-called Bogoliubov-Goldstone-Anderson mode
[1,2]) while the cubic correction depends on both the sound
velocity c1 and the gradient parameter λ. Recently Escobedo,
Mannarelli, and Manuel [33] have included an additional
dispersive term in the phonon spectrum on the basis of the ε

expansion of the effective field theory [34]. Here the dispersive
term depends on λ. In general, a gradient term with λ is
essential to describe accurately the zero-temperature surface
effects of a trapped system, in particular, with a small number
of atoms, where the Thomas-Fermi (local density, i.e., λ = 0)
approximation fails [13]. For the purposes of the present
paper fixing ξ = 0.42, that is, the Monte Carlo prediction
for a uniform gas of Astrakharchik et al. [35], we find that
the best agreement with Monte Carlo data is obtained with
λ = 0.25.

The collective modes of Eq. (4) are useful to describe cor-
rectly only the low-energy density oscillations of the system.
At higher energies one expects the emergence of fermionic
single-particle excitations starting from the threshold above
which there is the breaking of Cooper pairs [1,2,10,14]. At
zero temperature these single-particle elementary excitations
can be written as

εsp(p) =
√(

p2

2m
− ζ εF

)2

+ �2
0, (5)

where ζ is a parameter which takes into account the interaction
between fermions (ζ � 0.9 according to recent Monte Carlo
results [14]) with εF the Fermi energy of the ideal Fermi

gas. �0 is the zero-temperature gap parameter with 2�0 the
minimal energy to break a Cooper pair [1,2]. The behavior
of εsp(p) is shown in Fig. 1, where we plot also (dotted
line) the energy threshold εth = 2�0 above which there is
pair breaking and the continuum of single-particle excitations
[36]. Expanding εsp(p) around the minimum momentum p0 =√

2mµ = ζ 1/2pF , with pF = √
2mεF the Fermi momentum

of the ideal Fermi gas, we find

εsp(p) = �0 + 1

2m0
(p − p0)2, (6)

where the effective mass m0 is given by

m0 = m�0

2ζ εF

. (7)

Notice that the gap energy �0 of the unitary Fermi gas at zero
temperature has been calculated with Monte Carlo simulations
[14,38] and reads γ = �0/εF � 0.45.

III. ELEMENTARY EXCITATIONS
AND THERMODYNAMICS

As stressed in Sec. I and in the previous section, at very
low temperature the thermodynamic properties of the super-
fluid unitary Fermi gas can be obtained from the collective
spectrum given by Eq. (2) and considering an ideal Bose gas
of elementary excitations [6–8]. As T increases also the
fermionic single-particle excitations, given by Eq. (5) become
important. Thus there is also the effect of an ideal Fermi gas
of single-particle excitations.

The Helmholtz free energy F0 of the uniform ground state
coincides with the zero-temperature internal energy E0 and is
given by

F0 = E0 = 3
5ξNεF . (8)

The free energy Fcol of the collective excitations is instead
given by (see also [6–8])

Fcol = 1

β

∑
q

ln [1 − e−βεcol(q)], (9)

while the free energy Fsp due to the single-particle excitations
is

Fsp = − 2

β

∑
p

ln [1 + e−βεsp(p)]. (10)

Here β = 1/(kBT ) with T the absolute temperature, and kB

is the Boltzmann constant. The total free energy F = F0 +
Fcol + Fsp reads

F = NεF 	

(
T

TF

)
, (11)

where 	(x) is a function of the scaled temperature x = T/TF ,
with TF = εF /kB , given by

	(x) = 3

5
ξ + 3

2
x

∫ +∞

0
ln [1 − e−ε̃col(η)/x]η2dη

− 3x

∫ +∞

0
ln [1 + e−ε̃sp(η)/x]η2dη. (12)
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Notice that the discrete summations have been re-
placed by integrals, ε̃col(η) =

√
η2(λη2 + 4ξ/3), and ε̃sp(η) =√

(η2 − ζ )2 + γ 2. We observe that, by using the expansions (4)
and (6) for the elementary excitations, adopting the Maxwell-
Boltzmann distribution for fermionic single particles instead
of the Fermi-Dirac one, and under the further assumption that
λ = 0, this formula becomes exactly the simple model,

	(x) � 3

5
ξ − π4

√
3

80 ξ 3/2
x4 − 3

√
2π

2
ζ 1/2γ 1/2x3/2e−γ /x, (13)

proposed by Bulgac, Drut, and Magierski [10]. We call this
equation the BDM model.

From the Helmholtz free energy F we can immediately
obtain the chemical potential µ, that is, defined as

µ =
(

∂F

∂N

)
T ,V

. (14)

The chemical potential reads

µ = εF

[
5

3
	

(
T

TF

)
− 2

3

T

TF

	′
(

T

TF

) ]
, (15)

where 	′(x) = d	(x)
dx

and one recovers µ0 = ξεF in the limit
of zero temperature.

The entropy S is related to the free energy F by the formula,

S = −
(

∂F

∂T

)
N,V

, (16)

from which we get

S = −NkB	′
(

T

TF

)
. (17)

In addition, the internal energy E, given by

E = F + T S, (18)

can be written explicitly as

E = NεF

[
	

(
T

TF

)
− T

TF

	′
(

T

TF

)]
. (19)

To conclude this section we observe that the pressure P of
the unitary Fermi gas is related to the free energy F by the
simple expression,

P = −
(

∂F

∂V

)
N,T

. (20)

We can then write the pressure as

P = 2

3
nεF

[
	

(
T

TF

)
− T

TF

	′
(

T

TF

)]
. (21)

In Fig. 2 we plot various thermodynamical quantities obtained
with our model, Eq. (12), as a function of the scaled
temperature T/TF : the scaled free energy F/(NεF ), the scaled
entropy S/(NkB), the scaled chemical potential µ/εF ,and the
scaled internal energy E/(NεF ).

A. Gas of dilute and ultracold atoms

It is interesting to compare our model, given by Eqs. (11)
and (12), with other theoretical approaches and also with the
available experimental data.
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FIG. 2. (Color online) Thermodynamical quantities of the unitary
Fermi gas deduced from our model. Zero-temperature parameters of
elementary excitations: ξ = 0.42, λ = 0.25, ζ = 0.9, and γ = 0.45.

In Fig. 3 we report the data of internal energy E (top panel)
and chemical potential µ (bottom panel) obtained by Bulgac,
Drut, and Magierski [10] with their Monte Carlo simulations
(solid circles) of the atomic unitary gas. We insert also the
very recent experimental data of Horikoshi et al. [25] for the
unitary Fermi gas of 6Li atoms but extracted from the gas
under harmonic confinement (open squares with error bars).
In the figure we include the results of two models: our model
(solid line), that is, given by Eqs. (19) and (12); the BDM
model (dashed line), that is, given by Eqs. (19) and (13).

The critical temperature Tc of the superfluid-normal phase
transition has been theoretically estimated to be around 0.2TF .
In particular, the theoretical estimations are as follows: 0.23
[10], 0.225 [16], 0.152 [17], 0.15 [14], 0.245 [20], and 0.248
[21]. Notice that these values are all much smaller than the
prediction of the mean-field extended BCS theory which is
Tc/TF = 0.50 [1,2,16]. Recent experiments with 40K [24] and
6Li [25] atoms have measured the condensate fraction of the
unitary Fermi gas and both suggest Tc/TF = 0.17. Another
very recent experiment [26] has deduced Tc/TF = 0.157 from
the behavior of the thermodynamic functions.

Our model is based on zero-temperature elementary excita-
tions and its thermodynamical quantities do not show a phase
transition. Nevertheless, the results shown in Fig. 3 strongly
suggest that our model works quite well in the superfluid
regime, but also slightly above the critical temperature (Tc �
0.15) suggested by two theoretical groups [14,17]. We have
also verified that the term with λ in Eq. (12) plays a marginal
role. The main difference between our model and the BDM
model is instead due to the low-momentum expansions of
the elementary excitations and to the use of the Maxwell-
Boltzmann distribution instead of the Fermi-Dirac one.

B. Dilute neutron matter

Quantum Monte Carlo data of the dilute neutron matter
close to the unitarity limit have been produced at finite
temperature by Wlazlowski and Magierski [19]. The data have
been obtained for the uniform neutron matter at the density
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FIG. 3. (Color online) Atomic unitary Fermi gas. (Top panel)
Scaled internal energy E/(NεF ) as a function of the scaled tem-
perature T/TF . (Bottom panel) Scaled chemical potential E/(NεF )
as a function of the scaled temperature T/TF . Solid circles, Monte
Carlo simulations [10]; open squares with error bars, experimental
data of Horikoshi et al. [25]; solid line, our model [i.e., Eq. (19)
with Eq. (12)]; dashed line, BDM model [10] [i.e., Eq. (19) with
Eq. (13)]. Zero-temperature parameters of elementary excitations are
as follows: ξ = 0.42, λ = 0.25, ζ = 0.9, and γ = 0.45.

n = 0.003 fm−3, where TF � 5 × 1010 Kelvin (for compar-
ison, TF � 10−7 Kelvin in ultracold atomic vapors). In the
neutron matter, the effective radius of the neutron-neutron
interaction potential is re � 2.8 fm and the neutron-neutron
scattering length is a � −18.5 fm. This means that in the
calculations of Wlazlowski and Magierski [19] re < n1/3 =
d = 6.93 fm < |a|. Thus this dilute neutron matter is close
but not equal [5] to the unitarity Fermi gas (re � d � |a|)
[5]. Consequently, the zero-temperature parameters of the
elementary excitations, extracted from the spectral weight
function [15], are slightly different from those of the unitary
Fermi gas with a negligible effective range: ξ � 0.46, ζ �
0.82, and γ � 0.29 [19].

In Fig. 4 we plot the scaled internal energy E/(NεF ) versus
the scaled temperature T/TF of the nuclear matter obtained
by Wlazlowski and Magierski [19] with their Monte Carlo
simulations (solid circles with error bars). On the basis of
the known zero-temperature parameters of the elementary
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FIG. 4. (Color online) Dilute neutron matter at the density n =
0.003 fm−3. Scaled internal energy E/(NεF ) as a function of the
scaled temperature T/TF . Solid circles, Monte Carlo simulations
[19]; solid line, our model [i.e., Eqs. (15) and (19) with Eq. (12)];
dashed line, BDM model [10] [i.e., Eqs. (15) and (19) with
Eq. (13)]. Zero-temperature parameters of elementary excitations are
as follows: ξ = 0.46, λ = 0.25, ζ = 0.82, and γ = 0.29.

excitations we can compare their finite-temperature results
with our model (solid line) and the BDM model (dashed
line). This value is smaller than that of the atomic unitary
Fermi gas because the scaled energy gap γ = �/εF of the
neutron matter at n = 0.003 fm−3 is smaller than the scaled
energy gap of the (atomic) unitary Fermi gas. Moreover, the
estimated critical temperature for this dilute neutron matter is
Tc/TF � 0.09 [19].

In agreement with the findings of Fig. 3, also the results of
Fig. 4 show that our model (solid line) works quite well in the
entire superfluid regime, but also above Tc.

IV. SUPERFLUID FRACTION

The total number density n of the unitary Fermi gas can be
written as

n = ns + nn, (22)

where ns is the superfluid density and nn is the normal density
[1]. At zero temperature nn = 0 and n = ns , while at finite
temperature the normal density nn is finite and increases by
increasing the temperature. Correspondingly, the superfluid
density ns decreases and becomes equal to zero at a critical
temperature Tc. The normal density is given by

nn = nn,col + nn,sp, (23)

that is, the sum of the normal density nn,col due to collective
excitations and the normal density nn,sp due to the single-
particle excitations. According to the Landau’s approach [6],
the gas of collective excitations εcol(p) which move with drift
velocity v has a distribution fB(εcol(p) − p · v), with

fB(εcol(p)) = 1

eβεcol(p) − 1
(24)

063619-4



LOW-TEMPERATURE THERMODYNAMICS OF THE UNITARY . . . PHYSICAL REVIEW A 82, 063619 (2010)

the Bose-Einstein distribution of collective excitations, and
total linear momentum,

P = m nn,col v, (25)

where the normal density nn,col is given by [6–8]

nn,col = −1

3

∫
p2

m

dfB(εcol(p))

dεcol

d3p
(2πh̄)3

. (26)

Similar results hold for the normal density nn,sp due to single-
particle fermionic excitations. It is then easy to derive the
superfluid fraction,

ns

n
= 1 − �

(
T

TF

)
, (27)

where the universal function �(x) of the scaled temperature
x = T/TF is given by

�(x) = 1

x

∫ +∞

0

eε̃col(η)/xη4

(eε̃col(η)/x − 1)2
dη

+ 2

x

∫ +∞

0

eε̃sp(η)/xη4

(eε̃sp(η)/x + 1)2
dη, (28)

a where ε̃col(η) =
√

η2(λη2 + 4ξ/3), and ε̃sp(η) =√
(η2 − ζ )2 + γ 2. The function �(x) can be approximated as

�(x) � 3
√

3π4

40ξ 5/2
x4 +

√
2πγ

x
ζ 3/2e−γ /x, (29)

by using the expansions (4) and (6) for the elementary
excitations, adopting the Maxwell-Boltzmann distribution for
fermionic single particles instead of the Fermi-Dirac one, and
assuming λ = 0.

In Fig. 5 we plot the superfluid fraction ns/n of the unitary
Fermi gas as a function of the scaled temperature T/TF ,
obtained by using Eq. (27) with Eq. (28) (solid line) and
Eq. (29) (dashed line). The figure shows that the superfluid
fraction becomes zero at Tc/TF = 0.34. This value clearly
overestimates the critical temperature with respect to all
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FIG. 5. (Color online) Superfluid fraction ns/n of the unitary
Fermi gas as a function of the scaled temperature T/TF , obtained by
using Eq. (27) with Eq. (28) (solid line) and Eq. (29) (dashed line).
Parameters of the elementary excitations are as follows: ξ = 0.42,
λ = 0.25, ζ = 0.9, and γ = 0.45.

other beyond-mean-field determinations [10,14,16,17,20,21].
Remarkably, the approximate formula, Eq. (29), is very close
to the full one, Eq. (27), up to T/TF � 0.15.

V. SOUND PROPAGATION AT FINITE TEMPERATURE

The analysis of the sound propagation in the superfluid
unitary Fermi gas at finite temperature can be done on the
basis of the equations of superfluid hydrodynamics [6,8],
where superfluid and normal densities and velocities depend
on space and time. In our problem the constitutive equations to
be inserted in the equations of superfluid hydrodynamics are
Eq. (11) of the entropy S and Eq. (21) of the pressure P.

According to Landau [6,8] any superfluid system admits a
density wave, the first sound, where the velocities of superfluid
and normal components are in-phase, and the first sound
velocity is given by

u1 =
√

1

m

(
∂P

∂n

)
S̄,V

, (30)

where S̄ = S/N is the entropy per particle. In addition, the
superfluid system supports a temperature wave, called second
sound [6,8], where the velocities of superfluid and normal
components are out-of-phase, and the second sound velocity
reads

u2 =
√√√√ 1

m

S̄2(
∂S̄
∂T

)
N,V

ns

nn

. (31)

Notice that first sound and second sound are given by Eqs. (30)
and (31) in the hypothesis that these two modes are decoupled.
As stressed by Taylor et al. [18] this hypothesis is fulfilled as
long as R/(R + 1) � (u2

1 − u2
2)/(4u2

1u
2
2), where R = (c̄p −

c̄v)/c̄v is the Landau-Placzek ratio [39] with c̄p the equilibrium
specific heat per unit mass at constant pressure and c̄v the
equilibrium specific heat per unit mass at constant density c̄v .
This inequality is met also if R is not small due to the fact that
the speeds of the first and second sound of the unitary Fermi
gas are never very close (see below).

By using our expression (21) for the pressure P and
( ∂P

∂n
)S̄,V = (5/3)P/n [18] the finite-temperature first sound

velocity becomes

u1 = vF

√
5

9
	

(
T

TF

)
− 5

9

T

TF

	′
(

T

TF

)
. (32)

From this formula and Eq. (12) it is immediate to find that for
T → 0 one has u1 → c1 = vF

√
ξ/3. By using our expression

(17) for the entropy S the finite-temperature second sound
velocity can be instead written as

u2 = vF

√√√√−1

2

	′( T
TF

)2

	′′( T
TF

) 1 − �
(

T
TF

)
�

(
T
TF

) . (33)

From this formula, Eqs. (12) and (27) with Eq. (28), it is
not difficult to show that for T → 0 one has u2 → c1/

√
3 =

vF

√
ξ/3. In Fig. 6 we plot the first sound velocity u1 and

second sound velocity u2 as a function of the scaled temper-
ature T/Tc. These quantities are obtained by using Eqs. (32)
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FIG. 6. (Color online) (Dashed line) Scaled first sound velocity
u1/vF of the unitary Fermi gas as a function of the scaled temperature
T/Tc, obtained using Eq. (32) with ξ = 0.42, λ = 0.25, γ = 0.5,
and ζ = 0.9. (Solid line) Scaled second sound velocity u2/vF of the
unitary Fermi gas as a function of the scaled temperature T/Tc,
obtained using Eq. (33) with ξ = 0.42, λ = 0.25, ζ = 0.9, and
γ = 0.45.

and (33). The figure shows that u1 is weakly dependent on the
temperature T while u2 strongly depends on T between T = 0
and Tc, where it vanishes because ns = 0. These results are in
qualitative agreement with the recent predictions of Taylor

et al. based on a T-matrix finite-temperature equation of state
for the unitary Fermi gas [18].

VI. CONCLUSIONS

We have described the elementary excitations of the unitary
Fermi gas as made of collective bosonic excitations and
fermionic single-particle ones. This approach has been used
many years ago by Landau with the superfluid 4He [6] but it is
also presently adopted to model other many-body systems,
like atomic nuclei [40]. We stress that our approximation
of noninteracting elementary excitations does not take into
account the damping of collective modes, which becomes very
important by increasing the temperature. We have obtained
an analytical expression for the Helmholtz free energy and
the superfluid fraction, showing that they are sound to
study the thermodynamics of the unitary Fermi system, but
only well below the calculated critical temperature of the
superfluid phase transition. We believe that this approach to
the low-temperature thermodynamics can be extended to the
full BCS-BEC crossover of the Fermi gas with two equally
populated spin components. In this case the model requires
the knowledge of zero-temperature elementary excitations at
finite values of the interaction strength 1/(kF aF ).
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