
PHYSICAL REVIEW A 82, 063618 (2010)

Application of the static fluctuation approximation to the computation of the thermodynamic
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The static fluctuation approximation (SFA) is applied to compute the thermodynamic properties of a trapped
two-dimensional (2D) interacting hard-sphere (HS) Bose gas in the weakly and strongly interacting regime. A
mean-field approach involving a variational wave function is used to compute the mean-field energy as a function
of temperature for each harmonic oscillator (HO) state plugged into the SFA technique. In the variational
approach, a parameter α is introduced into the harmonic oscillator wave function in order to take into account the
changes in the width when the repulsive interactions between the bosons are increased. In the weakly interacting
regime, below the critical temperature, the total energy of all HO states (evaluated by our model) matches the non-
interacting result very well. However, beyond the critical temperature, we “fit” our energies to the classical limit
for 2D bosons in a trap by using a suitably proposed weighting function. We compare our results to earlier results
of mean-field theory. Further, we evaluate the density matrix arising from correlations between the HO orbitals.
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I. INTRODUCTION

The trapped two-dimensional (2D) interacting Bose gas
presents many challenges. The evaluation of the thermody-
namic properties represents just one of these challenges. It
is not a straightforward matter and usually requires path-
integral Monte Carlo (PIMC) calculations. In addition, many
properties of 2D trapped Bose gases have yet to be explored
both experimentally and theoretically [1]; various problems
remain open [2], such as the estimation of the BEC transition
temperature in a 2D interacting system and the explicit rela-
tionship between superfluidity and the quasicondensate. Two-
dimensional systems have generally become very interesting,
thanks to the interplay between BEC and Kosterlitz-Thouless
transitions and other issues [3]. It is therefore in order to
develop methods for exploring such systems.

Various methods and techniques have been used to investi-
gate the trapped 2D Bose gas. Variational methods [3,4], the
classical-field simulation technique [5], path-integral Monte
Carlo methods [1,6,7], as well as Hartree-Fock-Bogoliubov
theory [8] have all been applied. For example, Nho and Landau
[1] used a finite-temperature PIMC method and showed that
BEC can form at finite temperature. In order to perform
their calculations, they used only N = 27 hard-sphere bosons,
because a larger number required an extensive amount of
computational time.

In this article, our chief goal is to demonstrate an application
of the static fluctuation approximation (SFA) [9,10] in an
evaluation of the thermodynamic properties of a trapped,
2D hard-sphere (HS) Bose gas and to compare to the
corresponding 3D properties. Comparisons are also made with
corresponding 2D analytical results for the thermodynamic
properties. The relative advantage of the SFA is that it can
yield the thermodynamic properties of a system for a broad
range of temperature in one single calculation. One can
obtain easily using the SFA, the energy fluctuations, number
fluctuations, and thermodynamic properties, all as functions

of temperature. The SFA particularly invokes the role of the
energy fluctuations in the determination of the thermodynamic
properties. It essentially corrects for any approximations done
in the mean-field evaluation of the energy via the energy
fluctuations. This corrected energy is then incorporated into
the thermodynamic potential ln Q, where Q is the grand
canonical partition function from which all the thermodynamic
properties are evaluated. In addition, the SFA can handle a
large number of particles up to N ∼ 1000. On the other hand,
in other methods such as PIMC calculations, one can obtain the
thermodynamic properties for one temperature at a time only,
i.e., point by point. However, the SFA is limited in that it fails
at very strong interactions g > 0.01, whereas other methods,
such as PIMC calculations, are excellent in this regard as they
can deal with strongly interacting systems. The SFA works
very well mainly in the weakly to strongly interacting regime
up to g = 0.01.

Some of the properties we evaluate have been—to our
knowledge—rarely addressed in the literature, such as the
thermal behavior of the energy for each harmonic oscillator
(HO) state m and the number fluctuations 〈(�N̂m)2〉. Another
goal is to shed more light on the effects of dimensionality on
such systems by comparing 2D to 3D.

We thus consider N hard-sphere bosons in a 2D harmonic
trap in a broad range of temperature T . The interactions be-
tween the bosons are modelled by a δ function pseudopotential.
The energies for each HO state are evaluated using many-body
mean-field theory, and the thermodynamic properties are
obtained using SFA in 2D, applied earlier [11] to the 3D
trapped interacting Bose gas. It should be emphasized that,
with the SFA method applied here, we are able to use a large
number of particles, N = 1000. It should also be emphasized
that our goal is not to provide a method for computing the
energies but rather to obtain them for use in SFA. Nevertheless,
the mean-field model we present gives the energies accurately
in the condensate regime below the transition temperature but
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requires adjustment beyond the transition temperature toward
the classical regime, as will be shown later.

In our previous publication [11], we evaluated the
thermodynamic properties of the 3D trapped HS Bose gas.
The HO wave function was employed:

φn(x) = 1√
2n

√
πn!

exp (−x2/2)Hn(x), (1)

whose width was invariant with the change in the HS
repulsion. This gave reasonable results in the weakly
interacting regime; but the evaluation of the properties failed
in the strongly interacting regime. It is known that, at the
larger HS repulsion, the wave function of a trapped Bose
gas broadens significantly to several trap lengths. This has
been observed in other well-established methods, such as
the quantum variational Monte Carlo method [12,13]. On
going to stronger repulsive forces, our previous numerical
minimization technique for the function

f (µ,T ) =
{

N −
M∑

m=0

dm

exp[(〈Em〉 − µ)β] − 1

}2

(2)

failed to yield the correct chemical potential µ(T ) when the
interactions were increased beyond g = 1 × 10−3, where g is
the two-body interaction parameter and T the temperature. In
Eq. (2), N is the total number of particles, dm the degeneracy
of HO state m, 〈Em〉 the average energy, β = 1/(kBT ), kB

being Boltzmann’s constant, and M the total number of HO
states. This failure may be attributed to the incorrect behavior
of the energies presumably resulting from the invariance of the
width of the wave function (1) with g. It was observed that the
SFA failed at strong interactions of the order g = 1 × 10−2.
In the present investigation, we try to deal with the latter
issue, albeit for a trapped 2D interacting HS Bose gas, using a
mean-field (MF) variational approach. We therefore propose
to use a parameterized form of Eq. (1):

φn(x,α) = α1/4√
2n

√
πn!

exp(−αx2/2)Hn(
√

αx), (3)

where α is a variational parameter. This wave function is
normalized to 1 via the coefficient α1/4/

√
2n

√
πn!. The

inclusion of α makes the wave function flexible to variations
in the repulsive forces between the bosons.

Our key results are as follows. We find that the SFA is able
to reproduce the thermodynamic properties of a 2D trapped HS
Bose gas in the weakly interacting regime. It is found that the
specific heat capacity displays a phase transition, indicating
a possible true condensation in the zero-momentum state.
A macroscopic occupation of the zero-HO state is displayed
by the Bose-Einstein occupancy, and the number fluctuations
reveal some interesting features. Further, the 3D entropy is
smaller than the 2D one. The 2D internal energy and pressure
are larger than their 3D counterparts. At large repulsive
interactions, the 2D zero-HO state is depleted significantly
more than at a comparable interaction strength in 3D. Hence,
there are substantial differences between the thermodynamic
properties of the 2D and 3D cases, indicating again that they
are very distinct systems.

Previous theoretical work on the 2D Bose gas, whether
trapped [1–8,14–19] or uniform [20], is abundant. For exam-
ple, Pearson et al. [7] calculated finite-temperature properties
of 1000 hard-core bosons in an isotropic 2D HO potential
using PIMC calculations. The system that they were trying
to simulate was strictly 2D. They found that the transition
temperature decreases with increasing hard-core diameter; that
is, as the number of particles increases, very small values of
the s-wave scattering length as are required to avoid total
depletion of the condensate; and the difference between ideal
and interacting Bose gases virtually disappears if the range of
interactions is small enough.

One major point in the literature is the question of whether
one could observe a true condensate in a 2D trapped interacting
Bose gas. For example, the trapped interacting 2D Bose gas
was investigated as early as 1997 when Mullin [19] found
that, in the thermodynamic limit, there is no BEC in the
k = 0 momentum state for the 2D harmonic oscillator; but
BEC does exist in the lowest harmonic oscillator state, m = 0.
Afterward, Heinrichs and Mullin [6] investigated the behavior
of harmonic Bose systems in 2D using PIMC calculations.
It was found that, for a 2D Bose gas in the thermodynamic
limit, there is no phase transition to a Bose-condensed state,
even in a trap. Nevertheless, they stated that there should
be a macroscopic fraction of particles in the ground state
at finite temperature when the number of particles is finite.
In other investigations, Bayindir and Tanatar [14] found, by
employing the two-fluid model, that BEC may occur in 2D
traps if the short-range interactions are not too strong. Gies
et al. [8] showed that a trapped 2D dilute Bose gas can undergo
BEC below a transition temperature. Recently, Hadzibabik
et al. [18] found that, in 2D, long-range order is destroyed by
thermal fluctuations at any finite temperature, both in an ideal
and an interacting Bose gas. In addition, the trapped quasi-2D
Bose gas [1,5,17,18] and the equation of state of a weakly inter-
acting, homogeneous 2D Bose gas [20] have been considered.

The article is organized as follows. In Sec. II, we outline
the method used. In Sec. III, we analyze the SFA in 2D. In
Sec. IV, we present our results, where we make comparisons
with our previous 3D results. In Sec. V, we discuss density
matrices of HO orbitals. Finally, in Sec. VI, we present our
discussion and conclusions.

II. METHOD

A. Mean-field energies

We start with computing the mean-field energies for the
SFA using the form given by Eq. (3). Specifically, we
calculate the mean-field energy for each HO state. This
works well for temperatures less than the critical temperature
Tc; however, beyond Tc, our energies are lower than the
classical limit. In this latter regime, then, it was necessary to
readjust the energies by “fitting” them to the classical regime
via a “weighting function.” This was necessary in view of
our limited computational capabilities which precluded the
evaluation of n! in Eq. (3) for n > 150, and therefore we were
restricted to M = 150 states. As was done previously, we begin
by substituting Eq. (3) into the two-dimensional many-body
Hamiltonian in second quantization which, in units of the trap
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(h̄ωHO), reads:

Ĥ =
∫

d2rψ̂†(r)

[
−1

2
∇2 + Vext(r)

]
ψ̂(r)

+ 1

2

∫
d2rψ̂†(r)ψ̂†(r′)Vint(r − r′)ψ̂(r′)ψ̂(r), (4)

where

ψ̂(r) ≡
∑

n

b̂nφn(r,α) (5)

are the field operators, with b̂n (b̂†n) the bosonic creation
(annihilation) operators, and

φn(r,α) = φnx
(x,α)φny

(y,α) (6)

are the single-particle wave functions with n = nx + ny .
Vext(r) = (1/2)r2 is the external harmonic trap where r2 =
x2 + y2. It is then straightforward to evaluate the noninteract-
ing part of the Hamiltonian:

Ĥ0 =
M∑

m=0

Ê(0)
m N̂m, (7)

where Ê(0)
m is the noninteracting energy operator, N̂m = b̂

†
mb̂m

is the number operator, and M is the total number of states used.
For our present purposes, we define u = √

αx and v = √
αy.

Then we employ the recursion relation [21]

H ′′
m(u) = 2uH ′

m(u) − 2m Hm(u), (8)

the orthogonality relation for the Hermite functions∫ +∞

−∞
du e−u2

Hn(u)Hm(u) = 2n
√

πn!δn,m, (9)

and the relation∫ +∞

−∞
u2e−u2

H 2
n (u) du = √

π 2n n!

(
n + 1

2

)
(10)

in the evaluation of the many-body Hamiltonian (4). After
some straightforward algebra one arrives at

Ĥ0 =
M∑

m=0

(
α

2
+ 1

2α

)
(m + 1) b̂†mb̂m.

=
M∑

m=0

Ê(0)
m b̂†mb̂m. (11)

The noninteracting energy Ê(0)
m can then be obtained, as usual,

from the commutation relation

[b̂m,[Ĥ0,b̂m]] = Ê(0)
m , (12)

which leads to the expectation value

〈Ê(0)
m 〉 =

(
α

2
+ 1

2α

)
(m + 1). (13)

The parameterized interacting part of the Hamiltonian Ĥ1

is obtained after substituting Eq. (5) into the second term
on the right-hand side of Eq. (4) and using a δ function
pseudopotential for the pair interaction:

Vint(r − r′) = gδ(r − r′), (14)

where g is the interaction parameter in 2D. This leads to

Ĥ1 = g

2

∑
c1c2c3c4

b̂†c1
b̂†c2

b̂c3 b̂c4

×
∫

φ∗
c1

(r,α)φ∗
c2

(r,α)φc3 (r,α)φc4 (r,α) d2r, (15)

where ci are integers representing the HO states. Using the
same commutator (12) and substituting the forms for φn(r,α)
[Eq. (3)], we get the expectation value of the interacting part of
the energy, 〈Ê(1)

m 〉, in a manner similar to the method outlined
in Ref. [11]:

〈[b̂m,[Ĥ1,b̂m]]〉 = 〈
Ê(1)

m

〉 = 1

2
g

M∑
n=0

c̃2D(n,m)〈N̂n〉, (16)

where

〈N̂m〉 = dm

eβ(〈Ê(0)
m 〉−µ) − 1

(17)

is the occupancy of state m and dm = (m + 1). Initially,
〈N̂m〉 is evaluated with 〈Ê(0)

m 〉 = (m + 1) (i.e., α = 1) for the
noninteracting case and subsequently employed in Eq. (16).
After evaluating the interacting energies, Eq. (22) below is
used to calculate 〈N̂m〉 for the interacting case. The interaction
matrix c̃2D(n,m) in 2D resulting from the use of Eq. (3) is
given by

c̃2D(n,m) = 1

dm

∑
nx ,ny ,nz

mx,my,mz

2∏
i=1

[
Bni,mi

α

∫ +∞

−∞
exp

(−2αx2
i

)

×H 2
ni

(
√

αxi)H
2
mi

(
√

αxi)dxi

]
, (18)

where x1 = x, x2 = y, m = mx + my , n = nx + ny , and

Bni,mi
= 1

2ni+mi ni!mi!π
. (19)

Substituting xi = ui/
√

α, we recover the same form of Eq. (12)
in Ref. [11], but for 2D and with an additional factor of α, that
is,

c̃2D(n,m) = αc2D(n,m), (20)

where c2D(n,m) is given by

c2D(n,m) = 1

dm

∑
nx ,ny ,nz

mx,my,mz

2∏
i=1

×
[
Bni,mi

∫ +∞

−∞
exp

(−2u2
i

)
H 2

ni
(ui)H

2
mi

(ui) dui

]
.

(21)

Eventually, the total energy 〈Êm〉 in 2D for each state m can
be written

〈Êm〉 =
[
α

2
+ 1

2α

]
(m + 1) + 1

2
gα

M∑
n=0

c2D(n,m)〈N̂n〉, (22)
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and the total energy of the system is given by a sum over all
states:

Etotal =
M∑

m=0

〈Êm〉〈N̂m〉. (23)

It is shown later in Sec. IV B that Eq. (23) reproduces
the energies below the critical temperature reasonably well.
However, beyond the critical temperature and because of a
restricted number of states M , the energies lie lower than the
classical limit. To obtain correct energies 〈Êm〉 in the classical
limit, we propose multiplying Eq. (23) by a “weighting
function” w(T ) given by

w(T ) =
{

1, T � Tc

(T/Tc)γ , T > Tc

, (24)

where γ is an adjustable parameter. Hence γ is “fitted” to
the energies in the classical regime. This is done only for
mathematical convenience so as to enable us to use correct
values for 〈Êm〉 in the SFA.

B. Variational optimization

In this section, we demonstrate how to obtain the optimal
variational parameter α as a function of g and T . The impor-
tance of α is revealed later. To optimize α, we differentiate
Eq. (23) with respect to α and set the resulting derivative equal
to zero. With some considerations to be discussed below, this
gives a compact form for the optimized α. We begin with

∂Etotal

∂α

∣∣∣∣
α=α0

=
[

1

2
− 1

2α2

] M∑
m=0

(m + 1)〈N̂m〉

+ 1

2
g

M∑
m=0

M∑
n=0

c2D(n,m)〈N̂n〉〈N̂m〉
∣∣∣∣
α=α0

= 0.

(25)

After a little algebra one gets

α2
0 =

∑M
m=0(m + 1)〈N̂m〉∑M

m=0

[
(m + 1)〈N̂m〉+ g

∑M
n=0 c2D(n,m)〈N̂n〉〈N̂m〉] ,

(26)

which shows that the optimal α = α0 depends on the
temperature, number of states M , and the interaction strength.
It is noted that, although Etotal is multiplied by w(T ) [Eq. (24)]
above, the same result (26) is obtained as without w(T ). In
the previous investigations of trapped HS Bose gases [12,13],
α was varied only as a function of the interaction at zero
temperature. Now α is varied additionally with T ; one can
show the thermal effect on the broadening as T is increased.
One might argue that the derivative of Eq. (25) should also
contain derivatives of the occupancy function, that is,

∂〈N̂k〉
∂α

= −
βdk

(
∂〈Êk〉
∂α

− ∂µ

∂α

)
eβ(〈Êk〉−µ)

[eβ(〈Êk〉−µ) − 1]2
. (27)

It follows that, according to (22), ∂〈Êk〉/∂α in (27) should
contain another derivative of the occupancy ∂〈N̂k〉/∂α, which
in turn yields another ∂〈Êk〉/∂α, and so on! Thus, at first

glance, it looks that ∂〈Êk〉/∂α is an infinitely differentiable
quantity with respect to α. However, if one considers the
normalization condition

N =
M∑

k=0

dk

eβ(〈Êk〉−µ) − 1
, (28)

then the constancy of N implies that

∂N

∂α
= 0 =

M∑
k=0

∂〈N̂k〉
∂α

= −β

M∑
k=0

dk

(
∂〈Êk〉
∂α

− ∂µ

∂α

)
eβ(〈Êk〉−µ)

[eβ(〈Êk〉−µ) − 1]2
. (29)

Hence, one can take ∂〈N̂k〉/∂α = 0 and there would
be no need to further differentiate the occupancy with
respect to α in Eq. (25). Further, one obtains∑M

k=0 dk(∂〈Êk〉/∂α)eβ(〈Êk〉−µ) = (∂µ/∂α)
∑M

k=0 dke
β(〈Êk〉−µ).

C. The SFA iterative procedure

In this section, we outline again briefly the iterative
procedure used to compute the energy fluctuations ϕF (m,T ) =
[〈(�E)2〉]1/2 used in the SFA method [11]. The main goal
is to solve Eq. (34) below for ϕF (m,T ) via a loop over all
temperatures T . But first, let us recall the following important
SFA equations used in the iterative procedure:

η0(m,T ) ≡ 1

2

{
1

exp[β(〈Êm〉 − µ + ϕm)] − 1

+ 1

exp[β(〈Êm〉 − µ − ϕm)] − 1

}
;

(30)

η1(m,T ) ≡ 1

2 ϕm

{
1

exp[β(〈Êm〉 − µ + ϕm)] − 1

− 1

exp[β(〈Êm〉 − µ − ϕm)] − 1

}
.

The procedure is then as follows: (i) One begins by initializing
the fluctuations ϕF (m,T ) and “true” correlations between the
number fluctuations 〈�N̂m�N̂k〉c for m 
= k and all values
of m and k up to a certain limit M . Next, one starts a loop
aimed at optimizing ϕF (m,T ) and 〈�N̂m�N̂k〉c for m 
= k. (ii)
At the beginning of each iteration, f (µ,T ) given by Eq. (2)
is minimized with respect to µ(T ) at each T in a range of
T . (iii) The resulting µ(T ) is used to compute the square
of the number fluctuations 〈(�N̂m)2〉, which is computed
from

〈(�N̂m)2〉 = η0(m,T )[1 + η0(m,T )]

+ η1(m,T )g
M∑

k 
=m

c̃2D(m,k)〈�N̂k�N̂m〉c, (31)

where η0(m,T ) and η1(m,T ) are given above by Eq. (30), and
c̃2D(m,k) is the two-dimensional interaction matrix obtained
from Eqs. (20) and (21). (iv) Subsequently, the ordinary
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correlations between the number fluctuations 〈�N̂m�N̂k〉 for
m 
= k are updated using 〈(�N̂m)2〉 in

〈�N̂m�N̂k〉 = 〈(�N̂m)2〉 δm,k + 〈�N̂m�N̂k〉c. (32)

(v) The “true” correlations are updated using the latter
〈�N̂m�N̂k〉 according to

〈�N̂m�N̂k〉c = η1(m,T )g
M∑

i 
=m

c̃2D(m,i)〈�N̂i�N̂k〉. (33)

(vi) Then, the energy fluctuations are computed using the
updated 〈�N̂m�N̂k〉c via

[ϕF (m,T )]2 = g

η1(m,T )

M∑
i 
=m

c̃2D(m,i)〈�N̂i�N̂m〉c. (34)

(vii) One then returns to step (iii) using the updated ϕF (m,T )
and 〈�N̂m�N̂k〉c and repeats steps (iii)–(vii) for a specified
number of iterations. (viii) When the total number of iterations
has been reached, the procedure increments the temperature
by a step �T and the whole procedure is repeated from steps
(ii)-(viii).

III. ANALYSIS

In this section, we analyze the SFA method in 2D in a
manner similar to Ref. [11]. The goal is again to show the
stability of the solutions and the thermal behavior of the energy
fluctuations; this time in 2D. The variational parameter α of
Eq. (3) is also addressed and reveals a strong dependence on
both T and g.

A. The variational parameter α

Figure 1 displays α versus T (i.e., T/Tc on a log10 scale)
for several values of the interaction parameter g: (open tri-
angles) g = 1 × 10−4, (solid circles) 1 × 10−3, (open circles)
1 × 10−2, (solid squares) 5 × 10−2, (open squares) 1 × 10−1,
(stars) 5 × 10−1. The same labels are used in all figures
containing g, except where indicated otherwise. The system is
a 2D trapped HS Bose gas of N = 1000 particles, M = 150
states, at a trapping frequency of ωHO = 2π × 10 Hz. Tc is
the critical temperature for noninteracting bosons in a 2D trap
given by

T 2D
c = h̄ωHO

kB

√
6

π
N1/2. (35)

For N = 1000, this has the value 11.833 nK, which is used
throughout this article, except where indicated otherwise.

One can see that α rises with T asymptotically, approach-
ing the value 1. That is, the width of the wave function
decreases with increasing temperature until α reaches 1 and
stops changing. Note that, whereas for g < 0.5 the value α

comes close to 1 at T/Tc ∼ 9, for g = 0.5, however, α → 0.9
as T → ∞. Thus, as the HS diameter (i.e., repulsion) rises,
the value of α drops further below 1 as T → ∞. The behavior
of α vs. T in Fig. 1 then differs for g = 0.5 than for the rest
of the g < 0.5: α approaches 0.9 instead of 1 as T → ∞. In
order to explain the reason for this difference, one needs to
inspect Eq. (26) a little closer. For this purpose, we plot the

5 × 10−1
1 × 10−1
5 × 10−2
1 × 10−2
1 × 10−3

g = 1 × 10−4

ωHO= 2π×10 Hz

(MF, 2D)

N = 1000 M = 150

T/Tc

α
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n
u
n
it

s
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a
−

1/
2

H
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)
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FIG. 1. (Color online) Mean-field (MF) variational parameter α

of Eq. (3) as a function of temperature (T/Tc in the log10 scale) at
various interaction strengths g. The system is a 2D trapped interacting
hard sphere Bose gas of N = 1000 particles, M = 150 states, and a
trapping frequency of ωHO = 2π × 10 Hz. Tc = 11.833 nK is the 2D
result for the critical temperature. (Open triangles) g = 1 × 10−4;
(solid circles) g = 1 × 10−3; (open circles) g = 1 × 10−2; (solid
squares) g = 5 × 10−2; (open squares) g = 1 × 10−1; and (stars)
g = 5 × 10−1.

two parts of the denominator in Eq. (26) as functions of T in
Fig. 2; that is, we define and plot

〈Enonint〉 =
M∑

m=0

(m + 1)〈N̂m〉 (36)

(down triangles) and

〈Iint〉 =
M∑

m=0

M∑
n=0

c2D(n,m)〈N̂n〉〈N̂m〉 (37)

(solid circles), where for N = 1000, M = 150, and T → ∞,
the value of 〈Iint〉 → (∼2.2 × 104) as displayed in Fig. 2

〈Enonint〉
〈Iint〉

M = 150
N = 1000

T/Tc
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n
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〈I
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O
)
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2.0 × 104

1.0 × 104

0.0 × 100

FIG. 2. Temperature behavior of Eqs. (36) (down triangles) and
(37) (solid circles) displaying the limit of T → ∞. The system is a
2D harmonically trapped Bose gas of N = 1000 particles and ωHO =
2π × 10 Hz trapping frequency.
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FIG. 3. (Color online) SFA energy fluctuations ϕF (m = 0,T )
{i.e., log10[ϕF (m = 0,T )]} as a function of T for the same system of
Fig. 1 and the given values of g. (Open circles) g = 1 × 10−2; (solid
circles) g = 1 × 10−3; and (open triangles) g = 1 × 10−4. φF is in
units of h̄ωHO.

which extends up to T/Tc = 34; that is, 〈Iint〉 goes to a
well-defined limit in the high-temperature regime regardless of
the value of g. Further, 〈Enonint〉 → (∼5 × 104) when T → ∞.
This is because 〈N̂k〉 in (37) is independent of g since they
are the occupancies for a noninteracting system, and the
matrix c2D(n,m) given by Eq. (21) is always the same and
independent of T and g. It is only when 〈Iint〉 is multiplied
by g that the interactions change with g. For g < 0.5, such
as g = 0.1, one can use (26) to estimate the T → ∞ limit
of α to be simply ∼

√
5 × 104/(5 × 104 + g × 2.2 × 104) =

0.98, i.e., it approaches 1. Note that one simply multiplies
the limit of 〈Iint〉 by g. Consequently, the same estimate
leads to ∼

√
5 × 104/(5 × 104 + g × 2.2 × 104) = 0.905 for

g = 0.5, i.e., it does not approach 1. In comparison, the
thermal de Broglie wavelength decreases with increasing
T as well, until, beyond the transition temperature, the
system enters the classical regime. By analogy, the thermal
de Broglie wavelength is indirectly described by α. In
conjunction, the transition from the quantum to the classical
regime might also be described by α. Indeed, when α → 1
asymptotically, the size of the bosons → constant, as they
become now classical particles whose size is constant with
temperature.

B. Fluctuations

Figure 3 displays the SFA energy fluctuations for the lowest
HO state log10[φF (m = 0,T )] as a function of temperature
at several values of g. The system is the same as in Fig. 1.
Here, φF for g > 1 × 10−4 has maxima at T < Tc, and beyond
them φF (m = 0,T ) decreases steeply with T in the lower-
temperature regime T/Tc < 1, until it becomes constant at
higher temperatures, T/Tc � 1. This behavior for φF differs
remarkably from that in the 3D regime displayed in Fig. 2
of our previous publication [11]. It can also be seen that φF

generally increases with increasing g.
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M = 150
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FIG. 4. SFA energy fluctuations φF (m = 0,T ) {i.e.,
log10[φF (m = 0,T )]} as a function of the number of iterations
for the same systems in Fig. 3 at T = 1.2 × 10−9 K. The same
legends are used as in Fig. 3.

C. Stability of the solutions

Here, we check again the convergence of the SFA iterations.
The same systems as in Fig. 3 are considered. Figures 4 and 5
display log10[φF (m = 0,T )] for T = 1.2 × 10−9 K and 3.0 ×
10−8 K, respectively. Figures 6 and 7 are the same, except for
the HO state m = 1. Again, all these figures reveal that the
SFA converges after a relatively small number of iterations,
Niter. Thus, we can safely say that the SFA is applicable to
2D. Further, the SFA at T = 3.0 × 10−8 K converges almost
immediately, i.e., after 1 or 2 iterations; whereas at T = 1.2 ×
10−9 K it takes 15–20 iterations for convergence. Thus, for
lower temperatures in the nanokelvin regime, a larger number
of iterations is required to obtain a stable solution.

D. Convergence of a physical quantity with M

In what follows, we check whether M = 150 is enough
to achieve reasonable convergence of an estimated quantity,
such as the energy. For this purpose, we display in Fig. 8 the
total energy Etotal [Eq. (23) multiplied by h̄ωHO/(NkBTc)]
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g = 1 × 10−2

(SFA, 2D)
T = 3.0 × 10−8 KωHO= 2π × 10 Hz

M = 150

N = 1000

Niter
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FIG. 5. As in Fig. 4; but at T = 3.0 × 10−8 K.
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FIG. 6. As in Fig. 4; but for HO state m = 1.

as a function of M and at the indicated temperatures T :
(open circles) T = 0.3Tc, (solid circles) 0.7Tc, (open triangles)
1.0Tc, and (solid triangles) 1.5Tc. The system is a 2D
harmonically trapped hard sphere Bose gas of N = 1000
and g = 1 × 10−3. One can see that M = 150 is enough
for Etotal to be a convergent quantity up to the transition
temperature Tc. In fact, the convergence for T � Tc begins
already at M = 120. For T > Tc, clearly a larger number
M is needed. But since we “fit” the energies beyond Tc to
the classical limit using a “weighting” function w(T ) given
by Eq. (24), we do not need to worry about M being large
enough or not beyond the transition. What matters, is only the
condensate regime. Another question was whether the values
of c2D(n,m) are really significant beyond 150 states; that is,
we needed to check whether the matrix elements c2D(n >

150,m) or c2D(n,m > 150) have really any significant effect
on the convergence of a physical quantity. This was done by
computing the energies in the presence of a cutoff introduced
into the interactions, i.e., by setting c2D(n,m > 150) = 0 and
c2D(n > 150,m) = 0. Our concentration was particularly on
the low-temperature regime below Tc. In Fig. 8 the effect
of the latter setting is displayed by the “times” labels for
T = 1.0Tc (cutoff). One can see that the data obtained by using
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FIG. 7. As in Fig. 5 but for m = 1.
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FIG. 8. (Color online) Convergence of the total energy Etotal

[multiplied by h̄ωHO/(NkBTc)] with the total number of states
M at several temperatures T . The system is a 2D harmonically
trapped hard sphere Bose gas of N = 1000 and g = 1 × 10−3. (Open
circles) T = 0.3Tc, where Tc is the transition temperature. (Solid
circles and open triangles) 0.7Tc and 1.0Tc, respectively. (Solid
triangles) Temperature above the transition, 1.5Tc. (Xs) Special
case for M > 150 when a cutoff in the interactions is present, i.e.,
c2D(n > 150,m) = c2D(n,m > 150) = 0.

a cutoff (times) are indistinguishable from the data without
a cutoff (open triangles), i.e., by using values for c2D(n,m)
beyond 150 states. The reason is because the occupancies
〈N̂m〉 are very small for the higher m in the low-temperature
regime; in fact limm→∞〈N̂m〉 = 0 for T � Tc. Therefore,
the magnitude of the summands c2D(n,m)〈N̂n〉〈N̂m〉 in (37)
become very small compared to the (m + 1)〈N̂m〉 in (36) for
m or n exceeding 150. It is thus concluded that the role of
the higher states is very much undermined in the condensate
regime.

IV. RESULTS

In our previous work [11], we explained why we
were not able to introduce more than M = 100 states in
our three-dimensional calculations. This was because the
computation required to evaluate the 3D interaction matrix
c(k,m) for more than 100 states was very expensive. Even
in the present two-dimensional case, although we were able
to reach 150 states, the computational time required was
substantial. In fact, our computer was not able to evaluate
the factorial of n for HO states n > 150 needed in the
normalization of the HO wave function, Eq. (3). This remains
a technical problem that one needs to solve. In any case, our
focus is not on the evaluation of the energies.

A. Chemical potential

Figure 9 displays the MF chemical potential µ(T ) as a
function of T for several values of g. [Note the new label
g = 2 × 10−1 (times).] The system is the same as in Fig. 3, and
µ(T ) was obtained by the same technique previously outlined
in Ref. [11]. For g � 1 × 10−3, µ(T ) is constant at T < Tc

and decreases almost linearly at T > Tc. For g > 1 × 10−3, a
small bump develops around Tc; but then µ(T ) decreases again
with increasing T . One can see that µ(T ) in 2D from T/Tc = 1
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FIG. 9. (Color online) MF chemical potential µ(T ) vs. T for
the same system of Fig. 1. The same legends are used as in
Fig. 1; but with additional Xs for g = 2 × 10−1, and the solid line
for the 3D result at g = 1 × 10−4 and M = 50. µ(T ) is in units
of h̄ωHO.

to T/Tc = 3 almost matches the 3D result (solid line, M = 50)
in the weakly interacting regime, although the two results
most likely will deviate significantly beyond T/Tc = 3. The
two-dimensional µ(T ), however, lies slightly higher than the
3D µ(T ) between T/Tc ≈ 1.2 and ≈ 2.7.

B. Energies

Figure 10 displays the MF energy Etotal [Eq. (23) multiplied
by h̄ωHO/(NkBTc)] versus T for a two-dimensional, trapped,
HS interacting Bose gas of N = 1000 particles, M = 150
HO states, and trapping frequency ωHO = 2π × 10 Hz. The
systems are some of the same contained in Fig. 1. [Note
the new label g = 1 × 100 (times).] The crosses display what
happens when α is not allowed to vary with T and instead is
kept constant at 1 for g = 1.0. The upper frame displays the
temperature range from T/Tc = 0 to T/Tc = 3. The lower
frame is a magnification of the upper frame for T � Tc

only and is presented for a closer inspection of the lower
T (condensate) regime. The dashed line in the upper frame
displays the analytical result for the classical limit, and the
solid line in the lower frame the analytical result for the
condensate regime, both given by Pethick and Smith [22]:

E

NkBTc

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
ξ (3)

ξ (2)

(
T

Tc

)3

: T � Tc

2

(
T

Tc

)[
1 − ξ (2)

23

(
T

Tc

)2
]

: T > Tc,

(38)

where ξ (3) = 1.202 and ξ (4) = 1.645. The parameter γ of
the “weighting function” (24) was set to 0.5 in order for
our energies to catch up with the energies of Eq. (38) in the
classical regime.

If α is not allowed to vary, i.e., if the wave function
(1) is used instead of (3), the thermal behavior of the total
energy begins to follow an unphysical character. First, the
energy displays an unphysical minimum at some T , beyond
which it begins to rise again. Second, the energy is very
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FIG. 10. (Color online) Average MF energy per particle, Etotal

[multiplied by h̄ωHO/(NkBTc)], for a system of N = 1000 particles,
M = 150 states, and the given g compared to analytical results from
Pethick and Smith [22]: The dashed line (slightly hidden behind the
solid squares) in the upper frame is the result for T > Tc, and the
solid line in the lower frame the result for T � Tc, both evaluated
by Eq. (38). The radial trapping frequency is ωHO = 2π × 10 Hz.
(Xs) g = 1.0, very strong interaction; (open squares) g = 1 × 10−1;
(open circles) g = 1 × 10−2; (solid circles) g = 1 × 10−3; and (open
triangles) g = 1 × 10−4. The crosses reveal the energies evaluated
with α being held fixed at 1 for g = 1.0. The lower frame is a
magnification of the upper frame for T � Tc only. The energies
Etotal[h̄ωHO/(NkBTc)] are unitless.

much overestimated in this T regime for g = 1.0. One can
therefore see the importance of allowing the wave function
to be flexible via a variational parameter, particularly for the
strongly interacting regime. Using a flexible wave function, our
energies for T � Tc match the analytical result very closely in
the weakly interacting (condensate) regime even up to g = 0.1,
as displayed in the lower frame of Fig. 10, and are almost
insensitive to changes in g.

In the very strongly interacting regime, g > 1 × 10−1, the
energies begin to deviate considerably from the noninteracting
result. However, we do not observe the “bump” in the energies
as in Ref. [14]. For g = 1 (crosses), our energies at T > Tc

lie notably higher than the classical limit. Thus, for weak
interactions, our MF model with a variational parameter
reproduces the energies quite accurately in the condensate
regime (T � Tc).

Figure 11 displays the MF energies Etotal[h̄ωHO/(NkBTc)]
for systems of the given N and the same g = 1 × 10−2,
M = 150, and ωHO = 2π × 10 Hz [(Solid squares) N = 100,
(open circles) 300, (solid circles) 500, (open triangles) 700,
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FIG. 11. (Color online) Average MF energy Etotal [multiplied by
h̄ωHO/(NkBTc)] for a two-dimensional trapped HS Bose gas with
g = 1 × 10−2, M = 150 states, ωHO = 2π × 10 Hz, and different
N . (Solid squares) N = 100; (open circles) N = 300; (solid circles)
N = 500; (open triangles) N = 700; and (solid triangles) N = 900.
The dashed line in the upper frame is the classical result at T > Tc,
and the solid line in the lower frame is for T � Tc as given by Pethick
and Smith [22], Eq. (38). The lower frame is a magnification of the
upper frame for T � Tc only. The energies Etotal[h̄ωHO/(NkBTc)] are
unitless.

and (solid triangles) 900]. In the following figures containing
different N , the same latter legends are used. The upper frame
is for 0 � T/Tc � 2.5; whereas the lower frame is a magnifi-
cation of the upper frame for 0 � T/Tc � 1 only. The energies
are almost insensitive to changes in N in the given range.

The discreteness of the model described in Sec. II allows us
to obtain the energies for each HO state m. Figure 12 displays
〈Êm〉/N for two arbitrarily chosen m as a function of T for the
same systems of Fig. 11. Figure 12(a) displays the results for
HO state m = 0, Fig. 12(b) that for m = 19, and Fig. 12(c) is
a magnification of Fig. 12(b) for T � Tc only.

Figure 12 reveals how the energy for state m = 0 rises up
to a certain temperature, becomes constant up to T = Tc, and
then kinks to higher energies. The energies for state m = 19, on
the other hand, decrease with increasing T from 0 to ∼0.5Tc

but then kink at Tc and rise again with T . This kink becomes
more pronounced as the number of particles N rises and is
almost absent for a low number, such as N = 100. This may
indicate the absence of a phase transition for low N . The
latter kink is artificial and results from the function w(T )
[Eq. (24)] suddenly switching from 1 to (T/Tc)γ . This causes
the discontinuity in the specific heat capacity in Fig. 16. (It is
known that there is indeed a discontinuity in Cv for bosons in
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Ê
m

=
19

10.80.60.40.20

24

23

22

21

20

19

(b) m = 19

T/Tc

Ê
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FIG. 12. (Color online) Average MF energy per particle of HO
state m, 〈Êm〉, as a function of T for the same systems in Fig. 11.
The same legends are used as in Fig. 11. (a) Energies for HO state
m = 0; (b) HO state m = 19 for the same systems of frame (a); and
(c) magnified view of frame (b) for T � Tc only.

two-dimensional harmonic traps [23].) The transition is thus
governed by a sudden change in the thermal behavior of the
system, i.e., the wave function. The occupancy of each state
〈N̂k〉 seems to play a major role in the behavior of 〈Êm〉 up to
T = Tc. The lower energy levels become sparsely occupied at
higher temperatures, causing 〈N̂k〉 to drop substantially. As a
result, the first term on the right-hand side of Eq. (22) takes
over; and since α becomes constant at higher T , as displayed
in Fig. 1, the energies 〈Êm〉 reach a plateau toward T = Tc.
Figure 13 displays 〈Êm〉 for some systems of Fig. 10 with
the same labels for the same N and different g indicated.
Figures 13(a), 13(b), and 13(c) display the same HO states
as in Fig. 12. (Figure 13(a) is in log10 scale.) The energy
of the ground state 〈Êm=0〉 seems to rise significantly with
increasing g. A notable feature is the energy minimum of HO
state m = 19 for g = 1 × 10−1 observed in frame (b) (open
squares).
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FIG. 13. (Color online) Average MF energy per particle for HO
state m, 〈Êm〉, for the same system of Fig. 1 at the given values of
g. The legends are as in Fig. 1. (a) HO state m = 0 (log10 scale,
ground state); (b) HO state m = 19 for the same systems of (a);
(c) magnified view of (b) in the regime T � Tc. 〈Êm〉 is in units of
h̄ωHO.

C. Occupancies

Figure 14 displays occupancies 〈N̂n=0〉 [Eq. (17)] as a
function of T for the same systems of Fig. 13 at the given
values of g. We also display the 3D result (crosses) from
Ref. [11] for the same N and ωHO but using M = 45 states.
One can see that, even as g becomes large (0.1), the occupancy
〈N̂0〉/N does not reveal any change in its profile. The reason is
because our mean-field model is very simplistic and hence has
its limitations as any other mean-field model. Whereas, on the
one hand, our model reproduces the mean-field energies we
need for the SFA very well as we demonstrated in Figs. 10 and
11, the model is unable, on the other hand, to reproduce the
condensate depletion, particularly in the strongly interacting
regime. The reason is because when g is increased, the
parameter α decreases as can be deduced from Eq. (26) and
Fig. 1. That is to say, these two parameters compete with
each other, such as can be seen in Eq. (22), where there is

(1 × 10−3, (3D))
0.1

0.01
0.001

g = 0

↙
(M = 45)
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M = 150
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FIG. 14. (Color online) Average MF fractional occupancy of
state m = 0, 〈N̂0〉/N , as a function of T for the same systems as
in Fig. 1 at the given values of g. The same legends are used as in
Fig. 13, with additional crosses for the three-dimensional result at
g = 1 × 10−3 and the solid line for the noninteracting case g = 0.

the coefficient gα in the interacting part of the energy. We
would like then to argue that we are aware of this fact but that
we are nevertheless able to demonstrate condensate depletion
by “artificially” disallowing a variational optimization of the
wave function in a special figure (Fig. 15) for the occupancies.
The latter displays 〈N̂0〉/N at the indicated values of g for
the same 2D system of Fig. 14 but with α held fixed at 1
for all temperatures. But we must remind the reader that our
goal is not to explore the condensate depletion but rather the
thermodynamic properties which are reproduced largely in
the bulk of this article. Thus, Fig. 15 very much speaks for
itself: in the absence of a variational optimization, condensate
depletion can be obtained by increasing g; however, the width
of the wave function remains the same. Finally, the depletion
in Fig. 14 is more pronounced for the two-dimensional
system than for the three-dimensional case of Ref. [11]. Thus,
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g = 0.00

MF (2D)
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FIG. 15. (Color online) Demonstration of artificial condensate
depletion via the occupancies 〈N0〉/N in the absence of variational
optimization. The variational parameter α is fixed to 1. The system
is a 2D harmonically trapped Bose gas of N = 1000 particles at a
trapping frequency of ωHO = 2π × 10 Hz. (Solid line) Occupancy
in the noninteracting case g = 0; (open circles) g = 0.01; (crosses)
0.02.
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reducing the dimensions of the system (i.e., increasing the
confinement) enhances the depletion of the m = 0 condensate
in the low-temperature regime.

D. Thermodynamic properties

To evaluate the thermodynamic properties, we used the SFA
in 2D. This is the first time that the SFA is used to explore a
2D trapped system. The SFA method was outlined previously
[11] and we shall not explain it again. Its two-dimensional
reformulation is pretty much straightforward. In passing, we
shall shed more light on the effect of interactions and number of
particles on the thermodynamic properties of two-dimensional
trapped HS Bose gases.

1. Specific heat capacity

Figure 16 displays the specific heat capacity per particle,
Cv/(NkB), where kB is Boltzmann’s constant, for a system
of N = 1000, M = 150, and ωHO = 2π × 10 Hz, at several
values of g. The systems are the same as in Fig. 3. The three-
dimensional result of Ref. [11] for g = 1 × 10−4 and M = 45
is also displayed (solid line). The dashed line is the analytical
result of Grether et al. [24] given by

Cv

NkB

= (d + δ)

2

(
d + δ

2
+ 1

) (
T

Tc

)(d+δ)/2
g(d+δ)/2+1(1)

g(d+δ)/2(1)

(39)

for T � Tc, and

Cv

NkB

= (d + δ)

2

[(
d + δ

2
+ 1

)
g(d+δ)/2+1(z1)

g(d+δ)/2(z1)

− d + δ

2

g(d+δ)/2(z1)

g(d+δ)/2−1(z1)

]
(40)

for T > Tc. Note that our Cv/(NkB) matches that of Grether
et al. closely, except in the neighborhood of Tc. That sharp
feature of the transition is missing in our case. Instead, our
result displays a discontinuity at Tc which arises from the
kinks in the energies at Tc displayed in Figs. 12 and 13. It is

(g = 0, Grether et al.)
(1 × 10−4, M = 45, 3D)

1 × 10−4
1 × 10−3

g = 1 × 10−2

(SFA, 2D)
ωHO= 2π × 10 Hz
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FIG. 16. (Color online) SFA specific heat capacity Cv as a
function of temperature for the same systems of Fig. 3. The solid
line is for the three-dimensional result at g = 1 × 10−4 and M = 45.
The same legends are used as in Fig. 3. Cv/(NkB ) is unitless.
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FIG. 17. (Color online) SFA specific heat capacity Cv in units of
NkB for the same systems of Fig. 12.

possible that the SFA energy fluctuations were able to soften
the transition of our Cv at Tc. The two-dimensional result lies
lower than the three-dimensional result. The transitional peak
is higher in 3D than in 2D. We note that the three-dimensional
Cv was plotted against T/Tc with Tc for the three-dimensional
result (4.5113 nK) and the two-dimensional Cv with Tc for the
two-dimensional result (11.833 nK). This approach is followed
in the rest of the figures comparing to three-dimensional
results. In addition, similarly to our findings in Ref. [11] for the
three-dimensional case, the two-dimensional Cv does not seem
to change very much with g in the weakly interacting regime.
However, when g is held constant and N is changed, it is found
that the response of Cv is stronger to changes in N than changes
in g. The same conclusions apply to the case of fixed g and
varying N in Ref. [11]. Figure 17 displays the latter case for
the same systems of Fig. 12 at g = 1 × 10−2, M = 150, and
the given values of N . Here Tc is fixed at 11.83 nK. Figure 17
shows that there is absolutely no peak for lower N, such as
100. Thus, it seems that, for low N , there is no BEC transition
into the m = 0 HO state.

2. Internal energy

Figures 18 and 19 display the same cases as Figs. 16 and
17, respectively, but for the internal energy per particle 〈U 〉/N .
The dashed line is the analytical result of Grether et al. [24]
given by

U

N
= h̄ωHOδ

2
+ (d + δ)

2

g(d+δ)/2+1(z1)

g(d+δ)/2

1

β
, (41)

with z1 = exp[β(µ − δh̄ωHO/2)], δ = 2, d = 2, and gn(z1)
the Bose function. The SFA result matches almost exactly the
analytical result of Grether et al. in the weakly interacting
regime. Again, the same features are observed: 〈U 〉/N in
the range of g considered shows only little response to
changes in g and responds strongly to changes in N . The
three-dimensional result at g = 1 × 10−4 from Ref. [11] is
included in Fig. 18 here as well (solid line). One observes that
the two-dimensional case yields larger internal energies than
in 3D. For example, at T = 3Tc in Fig. 18, 〈U 〉/N ∼ 150;
whereas the three-dimensional case yields ∼75. In addition,
Fig. 18 of Ref. [11] displays a kink in 〈U 〉 vs. T ; whereas in
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Grether et al.
(1 × 10−4, M = 45, 3D)
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FIG. 18. (Color online) SFA average internal energy per particle
〈U〉/N as a function of temperature for the same systems (with the
3D result) of Fig. 16. (Dashed line) Analytical result due to Grether
et al. [24]. The same legends are used as in the latter figures. 〈U〉 is
in units of h̄ωHO.

Figs. 18 and 19 here this kink is absent. It can therefore be
concluded that the 2D confinement yields an increase in the
internal energy.

3. Entropy

As before, Figs. 20 and 21 display the entropy per particle
〈S〉/(NkB) for our previous systems considered in Figs. 16 and
17, respectively. The dashed line shows the analytical result of
Grether et al. [24] for T � Tc given by

S

NkB

=
[

(d + δ)

2
+ 1

] (
T

Tc

)(d+δ)/2
g(d+δ)/2+1(1)

g(d+δ)/2(1)
. (42)

Here we have used d = δ = 2, Tc = 1.1833 × 10−8 K, and
gn(1) is the Bose function at 1, where n is an integer. Our
SFA entropy for T � Tc matches that of Grether et al. exactly.
This proves that SFA reproduces the entropy accurately in the
weakly interacting regime at T � Tc. The three-dimensional
result at g = 1 × 10−4 and M = 45 from Fig. [21] of Ref. [11]
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FIG. 19. (Color online) SFA average internal energy 〈U〉 as a
function of temperature for the same systems of Fig. 17. The same
legends are used as in Fig. 11. 〈U〉 is in units of h̄ωHO.
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FIG. 20. (Color online) SFA average entropy 〈S〉 as a function
of temperature for the same systems of Fig. 16 plus the three-
dimensional result. (Dashed line) Analytical result for T � Tc from
Grether et al. [24]. The same legends are used as in Fig. 16. 〈S〉/(NkB )
is unitless.

is included in Fig. 20 (solid line). The three-dimensional case
yields a lower entropy than the corresponding two-dimensional
case. Hence one can conclude that a much lower order exists
in the three-dimensional case than the two-dimensional one.
Further, we note that 〈S〉 rises initially up to T = Tc but then
begins to flatten out as in the three-dimensional case. It seems
also insensitive to changes in g within the range considered
and responds strongly to variations in N .

4. Pressure

One of the thermodynamic properties rarely mentioned in
the literature on Bose gases in traps is the pressure. Here we are
able to evaluate it as a function of temperature. Figures 22 and
23 display the pressure 〈P 〉 vs. T for the previous systems in
Figs. 16 and 17, respectively. Figure 22 displays a slight kink in
〈P 〉 at T ∼ Tc and 〈P 〉 rises almost linearly after T = Tc. The
pressure is again unaffected by variations in g and responds
strongly to variations in N . Further, the pressure in Fig. 22 is
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FIG. 21. (Color online) SFA average entropy 〈S〉 as a function
of temperature for the same systems of Fig. 17. The same legends are
used as in Fig. 17. 〈S〉/(NkB ) is unitless.
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(1 × 10−4, M = 45, 3D)
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FIG. 22. (Color online) SFA average pressure 〈P 〉 (×�), where
� is the volume of the system, as a function of temperature for the
same systems of Fig. 16 (with the three-dimensional result included).
The same legends are used as in Fig. 16. 〈P 〉 (×�) is in units of h̄ωHO.

larger than the three-dimensional case (solid line) by a factor
of ∼2 at T/Tc = 1.5. The two-dimensional confinement thus
enhances the pressure.

E. Number fluctuations

In what follows, we display the behavior of the SFA number
fluctuations 〈(�N̂m)2〉 as a function of temperature. The goal is
to delve deeper into the characteristics of the discrete structure
of the current model.

Figure 24 displays an overview of the thermal behavior of
the number fluctuations 〈(�N̂m)2〉 [Eq. (31)] for a large number
of states m, beginning with m = 1, the first excited state from
Fig. 24(a) and then going down sequentially to state m = 147
in Fig. 24(d). The system is a two-dimensional, trapped, HS
Bose gas of N = 1000 particles and g = 1 × 10−3. Some
interesting features are revealed. 〈(�N̂1)2〉 displays two peaks
at T ∼ 0.5Tc and ∼0.9Tc. As one goes to higher states m,
these peaks begin to disappear at m = 3. Beyond Tc 〈(�N̂m)2〉
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FIG. 23. (Color online) SFA average pressure 〈P 〉 (×�) for the
same systems of Fig. 17. The same legends are used as in Fig. 17.
〈P 〉 (×�) is in units of h̄ωHO.
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FIG. 24. (Color online) Overview of the SFA average number
fluctuations, 〈(�N̂m)2〉, for the given HO states m vs. temperature.
The system is a trapped HS Bose gas of N = 1000 particles and
g = 1 × 10−3. (a) HO states m = 1 to 3; (b) m = 13 to 27 in steps
of 2; (c) m = 37 to 97, again in steps of 10; (d) similarly, again for
m = 107 to 147 in steps of 10.

decays down to zero, apparently only for the lower-lying
states m < 10. For the states m = 13 up to 27 (in steps of
2), 〈(�N̂m)2〉 displays a universal maximum at Tc, beyond
which the fluctuations decay. They nevertheless still have some
significant value at T ∼ 7Tc. For states m = 37 up to 97 (again
in steps of 10), the behavior of 〈(�N̂m)2〉 begins to change
toward a lower decay rate beyond Tc, until at, say m = 107 to
147 (steps of 10), 〈(�N̂m)2〉 actually rises only with increasing
T and does not decay. It can be further seen that 〈(�N̂m)2〉 in
general decreases with increasing m.

V. DENSITY MATRIX OF HARMONIC
OSCILLATOR ORBITALS

In this section, we show the density matrices arising from
the correlations between some of the HO states. The goal is to
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make further use of the wave function (3) involving discrete
energy levels and extract further information from it, such as
the strength of the correlations via the density matrix. The
density matrix can be defined by

ρ(r,r′; α) = 〈ψ̂†(r,α)ψ̂(r′,α)〉. (43)

Substituting

ψ̂(r,α) =
∑
m

b̂mφm(r,α), (44)

with

φm(r,α) = φmx
(x,α)φmy

(y,α) (45)

into Eq. (43) for the two-dimensional case, we get

ρ(r,r′; α) =
∑

mx,my,nx ,ny

φmx
(x,α)φmy

(y,α)

×φnx
(x ′,α)φny

(y ′,α)〈N̂m〉δnx+ny,mx+my
, (46)

under the condition that nx + ny = mx + my = m, where
φmx

(x,α) is given by Eq. (3). Thus, the amplitude of the density
matrix is determined by the weight 〈N̂m〉. It is interesting to
examine the individual components of ρ(r,r′; α), that is, the
different combinations of the mx,my,nx , and ny orbitals. For
this purpose, we define

ρmx,my,nx ,ny
(r,r′; α) = φmx

(x,α)φmy
(y,α)

×φnx
(x ′,α)φny

(y ′,α)〈N̂m=mx+my
〉

× δnx+ny,mx+my
, (47)

with r = xi + yj and r′ = x ′i + y ′j and plot some of them in
Figs. 25–29. Figure 25 displays ρ1111(r,r′; α) at T = 3.81 ×
10−8 K, signaling the correlations of first-excited HO modes
with themselves. The temperature here is not very important,
since it only determines the weight 〈N̂m〉 and not the structure.
Except for the rectangular-like patches on the density surface,
ρ1111(r,r′; α) is largely zero. Obviously, the correlations are
only significant for certain values of r and r′ lying within
those patches. The zero values of the density correspond to
H1(x) becoming zero at x = 0 and similarly for the rest of the
coordinates. This means that correlations with particles in the
first-excited state positioned along one of the coordinate axes
is entirely zero for this density matrix.

Figure 26 displays ρ40,2,40,2(r,r′; α) at the same temperature
as in Fig. 25. A wavy, sinusoidal-like structure is observed with
hills and valleys. The amplitude of this structure is very low,
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FIG. 25. (Color online) Density matrix of the mx = 1, my = 1,
nx = 1, and ny = 1 HO modes, ρ1111(r,r′; α).
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FIG. 26. (Color online) Density matrix of the mx = 40, my = 2,
nx = 40, and ny = 2 HO modes, ρ40,2,40,2(r,r′; α).
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FIG. 27. (Color online) Density matrix of the mx = 1, my = 1,
nx = 2, and ny = 0 HO modes, ρ1120(r,r′; α).
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FIG. 28. (Color online) Density matrix of the mx = 2, my = 0,
nx = 2, and ny = 0 HO modes, ρ2020(r,r′; α).
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FIG. 29. (Color online) Density matrix of the mx = 1, my = 50,
nx = 1, and ny = 50 HO modes, ρ1,50,1,50(r,r′; α).
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indicating that the correlations between low- and high-lying
HO states such as 2 and 40 are very weak (order ∼10−9), as can
be seen from the figure. On the other hand, a striped structure
is obtained on plotting ρ1120(r,r′; α), as displayed in Fig. 27.
It seems that rectangular patches or stripes arise in the density
matrix whenever one of the HO states is 1. Further, it seems
that the presence of the zeroth-HO state φ0(y ′,α) in

ρ1120(r,r′; α) = φ1(x,α)φ1(y,α)φ2(x ′,α)φ0(y ′,α) (48)

causes the density to remain continuous along r ′, whereas
along r it becomes discontinuous. Note that ρ1120 forms areas
of zero-correlation stripes. Further, a smooth, almost planar,
surface is observed for ρ2020(r,r′; α), displayed in Fig. 28.
This seems to arise due to the connection to the HO ground
state. The correlations here are much larger than in any of
the previous figures. Figure 29 displays ρ1,50,1,50(r,r′; α) with
a patched structure similar to Fig. 25, except that there are
several layers for these patches.

VI. DISCUSSION AND CONCLUSIONS

In summary, then, we presented an application of the
SFA to the evaluation of the thermodynamic properties of
a two-dimensional, trapped, HS Bose gas and provided a
comprehensive examination of these properties. The energies
necessary for the SFA were obtained by a mean-field model
which reproduced the energies of the system reasonably
well in the HO condensate regime but required some
artificial adjustment in order to reproduce the energies in the
high-temperature classical regime. However, our goal was not
to calculate energies; the present approach can be viewed as
a simple method to obtain the energy for each HO state m.
The SFA technique used here had been employed earlier for the
three-dimensional trapped HS Bose gas [11]. Once again, the
SFA provided stable solutions to the fluctuations of the energy,
even after only a small number of iterations. The advantage of
the SFA was demonstrated in that it reproduced the thermo-
dynamic properties of a 2D harmonically trapped HS Bose
gas for a broad range of temperature in one single calculation.
However, the SFA failed at very strong interactions as we were
not able to go beyond g = 0.01. It was found that there were
substantial differences between the thermodynamic properties
of a trapped HS Bose gas in 2D and 3D. Condensation in the
m = 0 HO state was obtained but not in the zero-momentum
state. The two-dimensional condensate in the m = 0 state is
depleted more than its three-dimensional counterpart.

A. Weighting function

The necessity for multiplying Eq. (23) by a “weighting
function” of the form (24) signals that the wave function (3)
needs further development in order to take into account the
thermal variations more accurately, particularly in the high-
temperature regime. On the other hand, it may also suggest a
thermal variation for the interaction parameter g.

B. SFA internal energy

The differences between the two-dimensional and three-
dimensional 〈U 〉/N , as revealed by Fig. 18, display that a
reduced dimensionality causes a stronger confinement and

hence lower degrees of freedom for the bosons. Now, these
are only able to move in the xy plane within a circle whose
radius is defined by the external harmonic trap. As a result, the
rate of the collisions between the particles in 2D is larger than
in 3D, causing the internal energy and the pressure to be larger
as well.

C. SFA energy fluctuations

An increase in g causes stronger energy fluctuations, which
decay with temperature T . Going to even larger values of g,
such as 0.1 and beyond, causes SFA to break down again, as in
the three-dimensional case. Thus, whereas the SFA provides
thermodynamic properties in the weakly interacting regime, it
fails to do so for the very strongly interacting regime, g > 0.01.
The failure happens in the iterative scheme of the procedure.
In fact, if one could evaluate the SFA energy fluctuations
analytically, without resorting to an iterative procedure, the
thermodynamic properties could be evaluated easily in the
very strongly interacting regime.

D. MF condensate depletion

The enhancement of the m = 0 HO condensate depletion
in the two-dimensional case, as compared to the three-
dimensional case in Fig. 14, is due to the fact that it is more
difficult for bosons to correlate with each other in 2D. That is,
the confinement into the xy plane reduces the chance for pair
correlations that build the condensate.

E. MF correlations

Figures 25–29 reveal that correlations between even HO
states m > 0 and the condensate m = 0 are strong. However,
odd states correlate only weakly with the state m = 0. The
correlations between high states such as m = 50 and low ones,
e.g., m = 1, are vanishingly small; yet they reveal interesting
structures. Further, the correlations between excited states
(m > 0) themselves follow complicated patterns, as revealed
by the complicated structures of the components of the density
matrix.

F. Importance

A new projected Gross-Pitaevskii-equation approach was
employed by Bezett and Blakie [16] in order to investigate
the critical properties of a trapped Bose-Einstein condensate.
It was noted that the susceptibility and heat capacity are
not easy to measure in atomic gases, and finite-size effects
have a profound effect on the critical properties of a system.
Hence the importance of the present investigation. If developed
further, the SFA can open more doors for the study of the
thermodynamic properties of the trapped two-dimensional
Bose gas in the strongly interacting regime.
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