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Gradient corrections to the local-density approximation for trapped superfluid Fermi gases
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Two species superfluid Fermi gas is investigated on the BCS side up to the Feshbach resonance. Using
the Greens’s function technique gradient corrections are calculated to the generalized Thomas-Fermi theory
including Cooper pairing. Their relative magnitude is found to be measured by the small parameter (d/Rr)*,
where d is the oscillator length of the trap potential and Rrp is the radial extension of the density n in the
Thomas-Fermi approximation. In particular, at the Feshbach resonance the universal corrections to the local
density approximation are calculated and a universal prefactor ky = 7/27 is derived for the von Weizsicker—type

correction ky (22 /2m)(V2n'/? /n'/?).
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I. INTRODUCTION

Fermi gases below the degeneracy temperature have been
the subject of intensive research in the last years both exper-
imentally and theoretically (see for reviews [1,2]). Particular
interest has been devoted to the possible superfluid state whose
creation and properties have been studied for both negative and
positive values of s-wave scattering lengths a, characterizing
the interaction between the particles. At the Feshbach reso-
nance [3-7] a becomes infinity and certain universal behavior
shows up. An important aspect of the problem is that the gas
is trapped and thereby is inhomogeneous. When the energy
gap function exceeds the level spacing near the Fermi sea a
local density approximation (LDA) is applicable. As a simplest
approach in its spirit neglecting the space gradients of the
density and the gap function the Thomas-Fermi theory was
generalized to include superfluid pair correlation results [8],
when the system is treated in the generalized Hartree-Fock
method [9]. Since the Thomas-Fermi approximation is widely
used in case of trapped gases it is desirable to investigate
systematically the corrections to it, even if they are expected
to be small for large particle numbers, except in the surface
region (here the gradient corrections make explicitly visible
the limits of the usual LDA results). For particle numbers,
however, which are treated in Monte Carlo simulations the
Thomas-Fermi theory needs corrections. More importantly,
it makes it possible to extend the concept of universality
at unitarity [10]. In particular, we derive in this paper a
universal prefactor for the von Weizsicker—type correction to
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the generalized Thomas-Fermi theory (for a review of the von
Weizsicker correction in normal systems, see [11]).

In the present paper gradient corrections are calculated up
to second order at zero temperature. Baranov [12] studied the
gradient corrections even at finite temperatures in cases when
Eilenberger’s equations [13] are applicable. That approach
is different from ours, which is free from this restriction.
The applied technique here is based upon the equation of
motion as expressed in terms of the Green’s functions. The
method has been developed first to the electron gas of the
atoms, which is, of course, a normal system [14]. It has been
generalized to a superfluid state somewhat later independently
for superconductors in a slowly varying magnetic field [15] and
for nuclei [8]. The latter work is most closely related to the
present one. The resulting expressions are rather cumbersome,
but considerably simplified at unitarity. To evaluate them
we choose the mean-field BCS (MF-BCS) model introduced
by Leggett, Eagles, Nozieres, and Schmitt-Rink [16-18],
which neglects the self-consistent Hartree-type terms. We start,
however, from the generalized Hartree-Fock (GHF) model [9]
to present the results in a more complete form for future use.
The Hamiltonian is

h2
H = Z f d3r 1//:(1‘) <_%V2 + Uexl(r) - /“L) I/fg(l')

*3 2 / rd’r Y YO W (00 (1),

(1)

where Ueg(r) is the trapping potential, p is the chemical
potential, v(r — r’) describes the interaction, and o stands
for the internal degrees of freedoms. We assume two equally
populated hyperfine states and o =1, | will be termed as spin.
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In the GHF approximation the Hamiltonian simplifies to
hZ
Hyng = Z / d*ryf () (—%vz + Uexd(X) — u) Vo (r)
3 [ dr o o o @ )

-y / d*r d*r' v, Yo o (0, X)W ()P0 (X))

1
+ 3 ; /dSr &3 v(r,r)

X (Xoor (0, )Y S (0 1.(r) + Hee). 2

Here,
(o = Y no(r) = 2n(r),

Ng(r) = hoo(r,r), 3)
ho o (X', 1) = (¥, (D)6 (1)),

The first line in (2) contains the one-particle term of (1), the
second line is the Hartree term, the third is the Fock term, and,
furthermore, the Cooper pairing is represented by the last line,
where

Xo,o (1) = (Yo (1) Yo (1)). “4)

The correlation functions x and % have to be determined self-
consistently.

We shall consider the special case when the interaction can
be approximated by a contact potential,

h2a

v(r,r) = S(r—r')=gsér—r). (5)

In case of contact interaction the first three lines of the
Hamiltonian (2) can be safely joined together as follows:

h2
Hy =Y / Pyt (—%W + U@ - ,u) e

1
+5 Z /d3r & v(r,r)

X (Yoo (X )Y (01 (r) + Hee), (6)

where
U(r) = Uex(r) + gn(r), (7N

but we keep the fourth line of (2) as it is, because x, o/ (T,r) is
not a well-defined object.

The paper is organized as follows. In Sec. II we present
the equations for the Green’s functions, while in Sec. III their
perturbation series are presented. The self-consistent scheme
for the density and the gap function is worked out in Sec. IV
up to second order in 7 to the local density approximation,
which can be regarded as a generalized Thomas-Fermi theory.
In the second part of the paper the MF-BCS model is
applied. In Sec. V the second-order corrections are evaluated
perturbatively in the case of a general external potential.
Section VI is devoted to the problems of the unitary gas, in
particular, the prefactor of the von Weizsicker—type correction
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is calculated. In Sec. VII the trap potential is assumed to be an
isotropic harmonic one to make some features more visible.
Section VIII contains the discussion of the results.

II. FORMULATION

The gradient expansion can be best derived using the one-
particle normal,

Goo(T1,11312,10) = —i (T Yo (01, 1) (12, 1)), 3

and the anomalous,

Foo(r1,t1310,10) = —i (T, (v, 0)¥)(12,1)), 9

Green’s functions [8,15].

If the Hamiltonian is time independent, which is the
case we want to discuss, the Green’s functions depend on
the combination #; —#;, not separately on #; and #, [i.e.,
Go.o(r1,t1512,1) = Gy o(Y,T2,1] — 1p), and similarly for F].
Correlation functions (4) and (3) can be calculated from G and
F by the limiting procedures,

ho' o (¥, r) = —i lin(l) Gy o(r 1 8), (10)
Xo'o (X', 1) = —i lirr(l) FY  (r'r, —¢). (11)
&— ’

We consider the problem of singlet Cooper paring. In that case
the nonvanishing elements of the Green’s functions can be
chosento be G4y = G| and Fy| = —F4, respectively [19].
For practical purposes let us introduce the functions,

h2
v(ry,r) = (—%V% +U(r) — N«) 3(ry —ry), (12)

Asor(r,12) = V(X1 — I2)Xoo(X,I2). (13)

Then, the time evolutions of the two Green’s functions can be
written as

0

ih— Gy (1,12t — ¢

i on m(r,ra,t —0)
=hd(t — 1)d(r; —ra)

+ /d3r v(r,r)Gy4(r,r2, 1 — 1)

+ /d3r Ay (o) Pyt — ), (14)
and

0
ih— F 4 (r Il — 1
i o 11 (et — 1)
= —/d3r AIT(rl,r)GM(r,rg,tl —b)

—/d3r v(ry, 1) F 4 (1.t — b). (15)

The symbol “x” denotes complex conjugation. Let us take the
Fourier transform with respect to time of the Green’s functions
as

[e¢]

Gyy(ry,r2,0) =/ dt e G4(ry,12,1) (16)

—00

(and similarly for
ties like A(ry,rp)

F). Next we transform quanti-
in Egs. (14) and (15) to mixed
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position-momentum representation by introducing R =
(r; +r2)/2 and r = r; — r; and taking the Fourier transform
with respect to r:

AR,p) = / ke "TAR+1r/2R—1/2). (17)

We use the term phase space for the (R,p) space in the
following. If a quantity C(r;,r) is given by

C(ri,rn) = fd3rA(r1,r)B(r,r2), (18)

then Baraff and Borowitz [14,20] showed that the correspond-
ing relation in position-momentum space can be expressed
as

CR,p) = ©[AR,p),BR,p)], 19)

where © is a bilinear operator acting on two phase space
functions as [21]

O[AR,p).B(R,p)]

. 3
if 5 8 9 9
— 1 5 (22— 2 %) AR p)BR,p).
ﬁ%ew[z;(a&ap; 8R§8pi>} (R.p)B(R’,p)

(20)

Equations (14) and (15) in the R,p,® representation can be
written in the compact forms,

h =hwG — O[v,G] — O[A,F], 21
0 =hoF + BO[v,F] — B[A*,G], (22)

where G = GM(R,p,w), F = FiT(R’p’w)’ A= A¢¢(R,p),
v = v(R,p), respectively. In deriving Eqgs. (21) and (22) we
used the properties,

Aaa’(rlyrZ) = _Aa’a(rZyrl)’
AR, —p) = A4 (R,p),

which can be proven from the definition of A [Eq. (13)]. The
w-independent functions v and A in the mixed representation
are

2

V(R,p) = 571 +UR) — 1, 23)

and
AR,p) = / Ere” ™My x (R +1/2,R —1/2). (24)

Green’s function are useful for calculating physical quan-
tities such as the density n(R) = n4(R), or the equal-time ex-
pectation values A(R,p) = h14(R,p) and x(R,p) = x4, (R,p)
[defined in Egs. (3) and (4)]. From Egs. (10) and (11) it follows

that

d*p

n®) = | S hR.D) (25)
[ do .

h(R7p) = —1 / _G(R’p’w)elwé" (26)

27
XRp) = —i / ;@F(R,p,w)el‘wf, @7

JT

where ¢ is an infinitesimally small positive regularization
parameter.
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The widely used interaction potential (5) leads to diver-
gence in the gap equation, which requires some special care.
Due to the § interaction A(R,p) is momentum independent.
In that case, the self-consistent equation for the local gap
A(R) has to be regularized. It means that we should take
the regularized part Fr., of F' by which the self-consistent gap
equation,

AR)* 4nh2a/ d*p /dwF R Joioe
= ~_ Lre p.w)e ",
Quhy | 27 et P®

provides a finite value for A(R) [22,23].

(28)

III. PERTURBATION SERIES FOR G AND F

In this section we shall construct a formal solution of
Egs. (21) and (22) supposing that the functions v and A are
known. The bilinear operator ® as defined in Eq. (20) can be
expanded as a formal series of i:

oo
O[K1,Kx] =) 1O [Ki.K>].

(29)
j=0
The first two operators ®, and ®; are simply
O [K1,K>] = K K>,
(30)

i
O [K1,K;] = E{Kl,Kz},

where {. ..} is a usual Poisson bracket. For higher order terms
in the series (29) it is useful to treat derivatives according to
the phase space variables on equal footing by the definition,

{ai}?_15< 9 iiiii)

We also need an antisymmetric metric g*#, where g'* = g% =
g% =—g* = —g2 = —¢% =1 and all the other elements
are zero. The metrics reflect the simplectic structure of the
phase space. For example,

€29

O, [K1. Kyl = —58°P87(300, K1)(3p05 K2).  (32)

Expressions for higher order ®;’s can be derived similarly in
a straightforward manner. Let us write now the normal and
the anomalous Green’s functions G and F as a formal power
series in fi:

o0
GR.p.w)=h)Y hG;Rpw),

(33)
j=0
o0
F(R,p,w) =h Zthj(R,p,a)). (34)
j=0
If we write
Q = ho, (35)

and treat this quantity as an o(2°) term then we get from (21)
and (22) in different orders of & the following equations,

(Q—U)GJ—AFJ'I Qj’
—A*Gl ~|—(Q+U)F] = P.f’

(36)
(37
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with
Qo =1, (38)
Py=0, (39
and for j > 1,
J
Q= Z(@k[v,cj,k] + Ok[A,Fj_]), (40)
k=1
J
P; = (OA*.G ] — O, Fii)). (41)

k=1

It is clear from this structure that Q; and P; for fixed j are
given in terms of lower order corrections of G and P. Solutions
to (36) and (37) are

1
1
where
E = ER.,p) = VV2R,p) + |AR,p)2. (44)

Using Equations (38)—(44) one can calculate corrections to G
and F up to arbitrary large orders.

Up to now, we have not addressed the question of the correct
pole structure of G and F. This requires one to introduce
infinitesimal imaginary parts in the denominators of G and F.
This step can be easily performed if we write the corrections
as partial fractions in Q2 with © independent numerators and
choose i§ accordingly to

o Aj(R,p) B; «(R,p)

= Xk: [(hw “E+iof  GwtE— iﬁ)k} -
o C;x(R,p) D;(R,p)

b ; [(sz— Etiof o+ E— i«»k] - 1o

The zeroth order coefficients are
A =2(142), Bo=2(1-2), @
0,1 - 2 E ’ 0,1 - 2 E ’

A*
Co1=—Dy1 = —. 48
0,1 Y (48)
All the other coefficients are zero. Nonvanishing first-order
corrections involve Poisson brackets in the combinations of

and

i * * *
Al,l = _@(A {V,A} - A{V,A }+U{A7A })

=—By1, (49)

i i
A, =EB —{(A,A*}, Bi,=EB;| — —{A,A*).
1,2 1,1+ 8E{ }, Bip 11 8E{ }
(50)

See also Ref. [8]. It is important to note that for real A the
first-order correction G; to the normal Green’s function is
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identically zero. Coefficients of F; are nonzero even for real
A as can be seen from

i
Cio= _DI’ZZ_E{U’A*}' (51)
There are no first-order poles of (46) for j = 1, consequently,

Cii=Dy; =0 (52)

Higher than first-order coefficients require tedious calcu-
lations. Here we do not give explicitly the second-order
coefficient functions in the numerators of Egs. (45) and (46).
Instead, we sketch the structure of these corrections. G, and
F> involve k = 1, ... ,4 and the coefficient functions for real
A are linear combinations of ten (usual and) generalized
Poisson brackets {A;v,v}, {A,A}y, {A;AA}, {A;v,A},
{vi A A}, {U,A}2, {v,vie, {vsv, v}, {v; A, v}, {v,A},. The first
generalized Poisson bracket is defined as

{A,B}y = g* g7°(3,0, A)(359; B), (53)

and is symmetric if one makes the changement A <> B. The
second generalized Poisson bracket acts on three phase space
quantities as

{A:B.C) = g g7 (8,3, )5 B):C).  (54)

IV. GRADIENT EXPANSION OF PHYSICAL QUANTITIES

In the previous section we have seen that the one particle
Green’s function G can be written as a formal power series
in 1, where the correction terms G; in (33) are given by the
partial fraction series (45). Performing the w integal in Eq. (26)
it is easy to see that only the first-order poles located on the
upper half of the complex omega plane give contributions to
h(R,p). Correspondingly, by Eq. (25) the density n(R) has the
expansion,

> . [ d > .
nR) =3 R /(ZJT—F’:)SB,,I(R,p) =Y wig®). (55
=0

j=0

Similarly, Egs. (34), (46), (27), and (24) lead to

ARp) =) 1 fiRp) = h / d*re” M y(r)
j=0

j=0

d36] —iq-r/h
o ik D;1(R,q). (56)

Calculating the first few g;(R)’s and f;(R,p)’s, it can be seen
that the R dependence entersin g; and f;; through the quantities
U(R) and A(R,p) and through the spatial derivatives of order
< j of UR) and A(R,p). For j =0 there are no spatial
derivatives [see Eqs. (47) and (48)]. For j = 1 the Poisson
brackets in (49) bring the dependence also on gradients of
U(R) and A(R,p) into By, and correspondingly into g;(R)
for complex A. By vanishes if A real, and we consider in
the following only this case. Here we write the j = 2 results
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expressed in terms of the generalized Poisson brackets,

B, 1(R,p)

203A — 3vA3 3AZy
=————{A;v,v} - W{U,U}Jr

16E7
20A3 — 3pA? 302A% —pt — AY
8E7

16E7
A% — 422 v(2v? —3AH)A
8E7

~ 16E7
— AHA
{Vv A}+

{ASA A} — {A;v,A}

{viv,v} — {v; Av}

5v2A2{ A+ (2v?
16E7 16E5S
v+ vA? V3 —2vA2

g 8k 57)

D, ((R,p)

_ BA? —212)A VA

er VT s A Ak
(A? = 20H)A v(2A? —3vH)A
— e o -
32E 8E7
VQ2A% —3HA v(v? —2A?)
16E7 16E>
S5V2A2 . 3V2A2
- W{A, v,v} +
vt — 4p2A2
16E7 16E>
For the § interaction Eq. (56) simplifies; f;(p,R) has no
momentum dependence:

{A; A0}

{v;ALA} = v, A}y

Vi AY —
8E7

{v; A, v}

(A;ALA) + {(v,A)%. (58)

ARR) = thf,(R)

Z /(2 h)3

where D" i g denotes the regularized part of D; , which can
be obtained from Eq. (56) if the pseudopotential is used
for the interaction. Equations (55) and (59) can be solved
perturbatively whose formal solutions become of the form,

4nh2 D
1IRp, ©S9

n(R) = > h'n;R), (60)
AR) = thAj(R). (61)
j=0

It is important to stress that on the right-hand sides of
Egs. (55) and (59) all the quantities g; and f; depend on
the total A(R) and U(R), thusn; # g; and A; # f;.

A. Local density approximation
The leading order j = 0 approximation in Egs. (55)
and (59) are equivalent to the LDA. In that approximation
one has to solve the equations,
no(R) = go(Up(R), Ap(R)), (62)
Ao(R) = fo(Up(R), Ap(R)). (63)
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0 0.5 1 1.5 2
t

FIG. 1. The dimensionless function j,(¢) defined in Eq. (A4).

The Hartree-Fock terms in U (R) are density dependent. By the
notation Uy in that case we mean that they are evaluated using
no(R). If the Hartree-Fock terms are neglected Uy = Ugy and
U; = Ofor j > 0. Letusintroduce the local chemical potential
o by

a(R) =pn - UR). (64)

The quantity v(R,p) defined in Eq. (23) is simply v(R,p) =
p?/2m — a(R). The phase space quantity E(R,p) in Eq. (44)
with real A(R) is equal to E(R,p) = +/V2(R,p) + A(R)2. The
go function occurring in (62) can be calculated from (55)
and (47) and it is given by

1 d? R,
wUR.AR) =5 [ =2 (1 - ;R‘:)) (65)

The momentum integrals can be performed analytically,
1 (2ma®\* . (AR
Zma®NT (AR 66
42 n? a(R)

where we have used the dimensionless function j;(x) (see
Appendix A and Fig. 1). The fy function in (63) can be
calculated in a similar way:

(R) 1 2m
fo(UR),A(R)) = /(27171)3 [E(R,p) p? } '
©67)

go(U(R),A(R)) =

The second term in the integrand ensures a finite value for
the momentum integral (i.e., Dy ; is regularized with this term
subtracted). The momentum integral in Eq. (67) can be written
in terms of complete elliptic functions (see Appendix A) and
can be expressed for negative scattering length as

3 [2ma(R) . [ AR)
So(UR),A(R)) = A(R)—I I 2 i (a(R))’ (68)

where the dimensionless function i;(x), depicted in Fig. 2, is
defined by Eq. (A3). The overall constant chemical potential
u is fixed by

— = / no(R)d*R. (69)
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25

05

-0.5 |

0 0.5 1 1.5 2
t

FIG. 2. The dimensionless function i;(¢) defined in Eq. (A3).

Here N is the total particle number (including both hyperfine
states). Solutions to Egs. (62), (63), and (69) with g and fy
given by (66) and (68) are the solutions in leading order. Thus,
the zeroth-order terms in the gradient expansion lead to the
local density approximation. This corresponds to the Thomas-
Fermi approach generalized to taking into account the pairing
field A(r). In the following we shall calculate corrections to
go and fo.

B. O(Rh) order

We have shown that for real A the quantity B; ; is zero.
Thus, g;(R) =0 in Eq. (55). Due to the property (52) the
regularized part of D; is also zero. It means there are no
corrections to the density and to the gap equations in this
Jj = 1 order.

C. O(®?) order

The evaluations of the j =2 second-order corrections
22(R), f>2(R) are rather tedious. In the case of the momentum-
independent gap and v(R,p) given by Eq. (23) nonvanishing
generalized Poisson brackets are

: PiDj
AP =) S22 (V) (VA);, (70)
oymm

2 2
{vav}+ = _(V U)a
m

(vivv) = —(VU) +Z [(aRaR )%%]

i,j=1

1 2
Ak =—(V7A), (D

{viAv} = l(VA)(VU), (72)
m

3

1 82 A
Ao} = — —— ) pipj,
{A;v,v) mzi;::l(aRiaRj)pp,

{(v;A,A} = i(VA)Z.
m

Note that the Laplace operator will be written as V2 to avoid
confusion with the gap. We gave a general expression for B; |
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in Eq. (57) by which g, can be obtained by evaluating the
momentum integrals. For the details, see Appendix A. The
result is rather lengthy and can be presented in the following
way. Let us define

_ @ma(R)*>
Aa) = A(x(R)) = B (73)
and the dimensionless combination ¢ by
A(R)
t=1t(R)= R ®)’ (74)

where «(R) is the local chemical potential (64). The second-
order correction g, to the density Eq. (55) is

(V2U)

vVvANVU
#(R) = A(a)[ H1(>+L§)

VA):? V2A VU)?
( 3 Hi(t) + ( 2)H4(t) + ( 3)
mao- mo mao

H; (1)

+

HS(t)i| .
(75)

Functions H,(t),...,Hs(t) are given in Appendix B by
Eq. (B1). The second-order corrections to the gap equation
can be calculated using Eqgs. (58) and (59). In second order
the momentum integrals exist, consequently D2 . =Dy (e,
there is no need to regularize D, ;). Proceedmg as mentioned
previously, the momentum integrals can be treated as in
Appendix A. Second-order gradient correction f, to the gap
Eq. (59) can be expressed as

ViU VAYVU
H(R) = gAlx )[( )M (1) + #Mz(l)
mao
VA VA VU)?
+(m ) Mt )+( )M4(t)+( ) Ms(t)],
(76)

where the functions M (t), ...,Ms(t) also can be found in
Appendix B in Eq. (B2). From Eqgs. (75) and (76) it is obvious
that the second-order corrections to the density and to the gap
equation involve the spatial derivatives of the external potential
U.x: and the gap profile A. If the generalized Hartree-Fock
approximation is considered, g, and f, will contain terms
with the spatial derivatives of the density, too.

In second-order approximation n & ny + h’ny, A ~ Ay +
WAy, U~ (Uext + gno) +h2gn2. Expanding both sides of
Egs. (55) and (59) up to second order in 7, the zeroth-order
terms cancel. The second-order gradient corrections to density
and the gap are the solution of the

(1 — 9180(Uo,Ao)  —0280(Up,Ao) ) <n2> <g2>
= (77)
=01 fo(Uo, Ao) 1 — ds fo(Up, Ag)) \ A2 f2

inhomogeneous linear equations (here d; and 9, denote partial
derivatives with respect to ny and Ay, respectively).

The spatial derivatives of the density in Egs. (75) and (76)
are, however, missing if the MF-BCS model is considered,
which neglects the Hartree-Fock terms in v. The density and
the gap still get gradient corrections in the case of this model,
which will be studied next.
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V. SECOND-ORDER CORRECTIONS CALCULATED
PERTURBATIVELY IN THE MF-BCS MODEL

In the MF-BCS model the quantity,

a(R) = p — Uexi(R), (78)

is density independent and it is advantageous to use ¢ defined
in (74) instead of A. We keep the density Eq. (55), but
rewrite (59) as

{(R) = Zf, :

fi vanishes as in the previously discussed general case.
Similarly to (61) we are seeking the solution for #(R) as a
formal series in 7,

f]/a (79)

t(R) = > h/t;(R), (80)

j=0

where ¢, is zero due f; = 0. The first f; is given by

2 R
fo =—| |( mar )) (D), @81)

and f> can be obtained from Eq. (76) by dividing both sides
by «. g is still given by (66)
In the MF-BCS model the leading order LDA equations are

2ma(R)\>?
no(R) = m( m;;( )> Ji1(to), (82)
2 2ma(R)\ /*
1 =—lal <—2) i1(). (83)
T h

For fixed chemical potential u the 79(R) profile can be
calculated from (83).

To obtain the second-order gradient corrections n, and
t, we can approximate in the expressions (75) and (76)
for g» and f5 the quantity ¢ by its zeroth-order value f,, because
g» and f> are already of second order. Taking the gradient of
the leading order gap Eq. (83) VA(R) can be approximated as

(VA)R)) = =(VUex (R)T1(10), (84)
where the dimensionless function 77(¢) is given by
J3()
T(t) = . 85
1(1) P (85)

[See Appendix A for the definitions of i, () and j,(¢).] Taking
the divergence of the two sides of Eq. (84) V2Ao(R) can be
reduced to

VZAO(R) = _(VZUexl)Tl (IO) +

VUex)?
%Tz(m, (86)

where we have introduced another dimensionless #-dependent
function 75(¢). Explicitly:

L) = [t —Ti()]

l3(¢)]%(f) + 312(js(1)is(t) — j3(2)is(t))
12-i3(1) '

(87)
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Using Eqgs. (84) and (86) in the expressions of the second-order
corrections (75) and (76) and the results of Appendixes A and B
the perturbatively calculated corrections are

Aa) i v Uext)2

£R) = ——= | ——==Pi(to) + (V:Ue) Q1(t0) | . (883)
and
A VUey)? 7
AR =E O(la) A Py(19) 4+ (VUex) Q2(t0) |, (89)

where A(x) is defined by (73). Explicit expressions for Py,
0y, P,, and Q; are given in Appendix B in Eqgs. (B3)-
(B6). Corrections (88) and (89) involve terms proportional
to (VUe)? and V?U.. We remind the reader that g is
proportional to the scattering length a [see Eq. (5)].
Expanding both sides of Eq. (79) up to second order
using fo(1) = folto +1°0) = folto) + 1202 fo(to) the zeroth-
order terms cancel, and #, can be expressed as
Hh=— fz ! = (90)
toi (to) M(Zmaz(R)) /
™ )

Note that 7, depends on the scattering length only through 7.
The second-order gradient correction of the gap is Ay(R) =
(R)a(R) in the MF-BCS model. Using the same approxima-
tion for the density the second-order gradient correction of the
density is

ny =

1 (2ma®)\*

el 1 j{(t0) + g2. 1)
These are the first nontrivial gradient expansion terms. The
simplification in the MF-BCS model has arisen from the fact
that in Eq. (77) the 9; derivatives (i.e., the derivatives with
respect to the density) are zero.

VI. UNIVERSAL PREFACTOR OF THE VON
WEIZSACKER-TYPE CORRECTION

The present paper supplies the derivation of some of the
relations used already in our earlier paper [10]. To compare
with the results of [10] one has to apply the limit a — oo to
Eqgs. (88)-(91) (see also Appendix B in applying this limit).
The leading order #,(R) profile is constant, which can be seen

from Eq. (83). Let us denote by T the root of i;(T") = 0, then
H(R) =T =~ 1.1622, j(T)~ 1.4688, (92)
where T is defined by the requirement i{;(7) = 0 in order

that Eq. (83) remains meaningful in the limit a — oco. See
also (B7)—(B9). It leads to

1 2m\ >
20(R) = (1 = Uew) 5 1 (T )( m)

( K2 ()21 V23U,
" V8 Uy
n? 21 (VUe)
—2—11( )@—( m)3>. (93)
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Note that n =n4 =n in our notation. Similarly from
Egs. (74), (79), (89), and (90) one gets

A+ TT? B? VU
AR) = T(iw — Uey) — —
(R) (1 — Uexo) 36T 2m (i — U
TT2 — 8 h?  (VUey)?

(94)

V44T 2m (i — U

Equation (93) can be rewritten as
h2
i = Ve = i) Q2 —(2m)*
m

7W{WW—%MV_WW—MM}
T2m 4 — Uext)? (= Uext) '

95)

where we have taken into account that the second term in the
right-hand side of the equation is a correction. The first step of
the iteration on the right-hand side leads after a rearrangement
to the Thomas-Fermi-Weizsédcker—type equation:

B2 V2,12 23
—KWs——75 =+ SICF(Z}’I) T4 Uext = - (96)
2m nl/?
Here,
7 o) 2/3 h2
=, — , = —@3BrH¥3. 97
w=o7 & <3j«T)> =TT O

Note that & is the usual universal constant introduced for
the homogeneous system by the definition u = &ep (ep
being the Fermi energy hzk%/(Zm), where kp = (6%n)'/3).
The previous value is valid in the MF-BCS model [2,10].
Numerically, £ = 0.59 in this model, while the Monte Carlo
simulations have provided £ = 0.37 — 0.44 [2,24]. Note that
for a normal system at unitarity & = 0.55 [25-27], the corre-
sponding MF-BCS value is £ = 1 (i.e., free gas value), since
&y = a + B, where « is the ratio of the mass and the effective
mass (being unity in the MF-BCS model) and B is zero (see
Ref. [27] and references therein). The first term on the left-hand
side of Eq. (96) is of the form of the von Weizsicker correction
to the Thomas-Fermi theory (see for the early history of the
problem Ref. [28]). By now it is well established that «y=1
(originally derived by von Weizsécker) is the correct value in
case of a rapidly varying density with a small amplitude, while
in the case of a smooth external potential ky = 1/9. This value
of kw was first derived by Kirzhnits [29] and by Kompaneets
and Pavlovskii [30] (see for reviews of the density gradient
expansions [11,31,32]).

It is worth mentioning that xw = 1/9 was found [33]
the optimal value when the energy of a free gas in a
harmonic oscillator potential was compared with the quan-
tum mechanical result via second-order perturbation theory.
This suggests that such an external potential occurring in
trapped gases is well suited for a gradient expansion of the
density.

There has been a renewed interest in recent years con-
cerning the von Weizsidcker correction in the case of the
trapped unitary Fermi gas [34—43]. The value of xy = 1 has
been chosen in [34,35], while xy = 1/4 has been obtained
in [36,37,39,40] by assuming the validity of a kind of
Ginzburg-Landau theory at zero temperature. Furthermore,
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Alp)/(hv)

FIG. 3. Solutions of the gap equation without (solid line) and
with (dashed line) the second-order gradient corrections as a function
of the dimensionless radius p = R/Rtr, and measured in units of
hwy = hv (see text). Parameters are a/d = 1/(37), Rtg/d = 8.

an expansion in powers of d = 4 — € spatial dimensions has
led to ky = 0.176 [42] by extrapolating the result to three
dimensions. A comparison between the choices k = 1/9 and
k = 1/4 has been carried out in [43] by studying fermion
systems at unitarity with particle numbers up to 50. It has been
found that the choice xy = 1/4 provides better results for the
energy except at few particle numbers. This finding backs our
result for ky = 7/27, which is quite close to this value.

VII. ISOTROPIC HARMONIC TRAPPING

As an application of Egs. (88)—(91) let us apply our results
to the special case of isotropic harmonic trapping potential,

UR) = ymwjR>. (98)

In local density approximation the Thomas-Fermi radius Ryp
is introduced by the relation,

n = %ma)gR%F, 99)

which ensures ng(Rtg) = 0. It is advantageous to use the
dimensionless combination,

0 = R/Rtr,

for the radial distance. A natural characteristic length of
the harmonic oscillator problem is the oscillator length
d = /h/(mwy). The LDA gap equation (83) for harmonic
confinement,

(100)

_ 2 |a|Rqr
7 d?
provides us a profile #y(0), which depends on the single dimen-

sionless parameter |a|Rrr/d?>. Up to second-order gradient
corrections the gap can be expressed as

AW 1 (Rw\* at
Mm_zﬂj)a g%mm+ﬁ?wﬂ,UM>

1 (1 — 0H)'"i1(ty),

(101)
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RN
0 1 1 1 1 1 1 1 1 L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

FIG. 4. Density profiles without (solid line) and with (dashed
line) the second-order gradient corrections as a function of the
dimensionless radius p = R/Rtr, and measured in units of 1/d>
Parameters are a/d = 1/(3m), Rrg/d = 8.

-0.05 | 1

-0.1 | 1

Py(t)

FIG. 5. The P,(z) function [see Eq. (B3)].

-0.018 T T T

-0.0185 4
-0.019

< -0.0195
-0.02

-0.0205

-0.021 - L L

FIG. 6. The Q,(¢) function [see Eq. (B4)].
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Po(t)
o
o
]

-
L

-0.05 1

-0.06 1

20.07 L L L
0 0.5 1 1.5 2

t

FIG. 7. The P(t) function [see Eq. (BS)].

where 87 can be read off from (90) as

240 (to)
(1—0%7?

1 ( 1602 P5(1o)

= . 103
"= i \ (=02 ) (109

Equation (91) together with the leading LDA for the density
can be expressed as

3 ~ (1 - Q2)3/2 R%‘F . d4 ~
d'n@) = — 5 ——5 |Jilt) + —R%FM(QJO) . (104)
where
~ _ 160° Ji(t)
8n(o,t) = m <P1(t0) + toi(10) P2(l0)>
24 Ji(t) )
+ + . (105
1= (Ql(to) il (o) Qa(10) | . (105)

It is clearly seen that the small parameter of the problem
is d / Rtg. The magnitude of the correction as compared to the
leading term is proportional to (d/Rrr)* both for the density
and the gap.

0.25

0.2 |

0.15

Qy(t)

0.05 | 4

t

FIG. 8. The Q»() function [see Eq. (B6)].
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At the Feshbach point (@ — 00) our results can further
simplify

. 1T -8 o 1> +4 1
5F = — — . (106)
367 (1—027 6T (-0
sii = —77,(T) (2 ¢ 1 1 (107)
n—-— —_— - .
M\ =g Tra -2

3f and &7 are universal at unitarity (at the Feshbach
resonance) for a spherical parabolic trap: They do not contain
any parameter of the two-particle interaction.

VIII. SUMMARY AND CONCLUSIONS

We have calculated the gradient corrections on the BCS side
of the Feshbach resonance to the generalized Thomas-Fermi
model, which represents the LDA in the presence of pairing.
Though the correction terms have a prefactor, which is small
for typical trap potentials already at moderately large particle
numbers, the corrections get large due to the singularities at the
LDA border of the cloud. At unitarity a von Weizsicker—type
correction appears whose universal prefactor has been derived
as kw = 7/27. This value is quite close to 1/4 proposed in
Refs. [36,39-41] and is also not far from the e-expansion
result [42] as extrapolated to three dimensions.

It is remarkable that by inverting the functional n[Ug] to
order 72, as it has been done in Sec. VI, the singularities at
1 = Ugy disappear and the density can be continued to infinity.
This situation is similar to what happens in the case of the free
gas, and perhaps, the most physical justification, which starts
the calculation at finite temperature and the zero temperature
limit is taken at the end [31,44,45]. One has to keep in mind,
however, that it does not mean that even the asymptotic decay
of the density follows the true one in general.

Away from unitarity, however, the situation is much more
complicated and needs further study. Instead, then, one can use
the treatment applied in Sec. VII (i.e., to regard the gradient
terms as corrections and keep away from the surface region,
which becomes, however, larger and larger when tending to
the BCS limit).

In Fig. 3 we have depicted the gap profile A(g)/hwy both
in LDA and with gradient corrections. At a certain radius o,
the gap with gradient corrections becomes zero.

In Fig. 4 we show the dimensionless density profile at the
same parameters as for Fig. 3. The deviation from the LDA
profile is much less pronounced at those particular parameters
in the region where the gradient expansion is applicable. Note
that in the figures both curves are calculated at the same u
values, so they belong to slightly different particle numbers.

The distance o; from the origin, where A(o;)/hwy =1,
decreases when the magnitude of the scattering length becomes
shorter, which means that the most suitable situation exists at
the Feshbach resonance. In the weak coupling (BCS) limit A
is smaller than fiw, already at the point r = 0. For o > ¢, the
A(p)/hwy function steeply goes to zero (see Fig. 3) beyond
which point even its formal continuation becomes meaningless
reflecting the fact that such an expansion is not adequate when
the gap function A(r) gets smaller than the level spacing of the
trap. One has to emphasize that this behavior has been shown
when the first nonzero correction is treated perturbatively.

PHYSICAL REVIEW A 82, 063609 (2010)

More generally, the solution levels off for increasing o and
one can define the radius g, in such a way A(g)/hwy < & for
© > 07 with § as a suitable chosen small parameter. Actually,
in the region o > @, one has to apply another method instead
of the one developed in this paper to get more accurate results,
but the difference might be small. This problem goes beyond
the scope of the present paper and is planned as a forthcoming
work.

Note added: After submission of the paper we have learned
that the density matrix in case of the inhomogeneous superfluid
Fermi systems was derived in Ref. [46] to o(h?) using the
Wigner-Kirkwood 7i-expansion method by regarding the pair
potential as an external one, which is an intermediate step in
our work (see also [8]). We are grateful to Professor Schuck
for informing us of the papers [21,46].
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APPENDIX A: MOMENTUM INTEGRALS

In the zeroth order two types of momentum integrals occur:

_ [ (1 _2m\ _Aw,
Ki = Qrh) (E - ?) = i1(Oi=asa> (Al)
d3P % )
b= (nh) ( B E) = A@)jiOli=ase;  (A2)

where A(a) has been introduced in (73) with « the local
chemical potential (64). The dimensionless integrals i;(¢) and
Jj1(t) are defined as

o0 x2
i(t):/ dx | ———-1]). (A3)
1 0 JaE -t
<, x2—1
j(t):/ xdx |l — ———=1. (A9
] 0 V2 =12+
i1(t) and j(¢) can be expressed in terms of complete elliptic
integrals K (k) and E(k) (see Ref. [47]):
/2

1
K(k) = P — (AS)
0 1 —k%sin2 ¢

/2
E(k) = / do/1 — k2 sin? g, (A6)
0

as
i(1) = YT+ 2 [K(k) - 2ER)], (A7)
Y K (k)
= Vit | — 2 42Em) |, (A8
) =zvi+t [1+ 1+ ()} (A8)

where the modulus k is connected to ¢ by

1 1
k= [-|14+ —). A9
\/2< +v1+t2> (A

In the special case t =0: k =1, i;(0) = oo, ji(0) =2/3.
In higher orders one needs the generalizations of the
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integrals (A1) and (A2). For n = 3,5, ... let us consider the
momentum integrals:

d’p 1 _Aw@),

K, = — =AY Dleases 1, (A10
P B Dli=ase, n>1, (Al0)

dp v Ala)
. Yo (Ol o 1. (Al
Qany Er a1 Dli=a/a, n>1. (All)

Here the new dimensionless integrals i,(¢), j,(¢) are defined
for odd n as

Y 1 "
ln(t) —/(; x“dx (W) , n> 1, (Alz)

oo 2_1
.Vlt = 2d al ’
St /0 Ve e T

(For similar integrals written in a different way see Ref. [48].)
They can obtained analytically from i(¢) and j;(¢) using the

rules,
; (1 3) i1(0), (A14)

1. (A13)

D1 (1) = (1) 1-3---2n— 1) \ 1 ot

1 19\
Jons1(t) = (—1)"711.3%(2”_1) <;5) Ji(®), (AlS)

which can be easily seen from definitions (A12) and (A13),
respectively. Useful properties performing the gradient expan-
sions are

Ji@®) =tiz), (A16)
ih(t) = —nti(t), (A17)
Jit) = —nt jua(6), n> 1. (A18)

In calculating explicitly i,(#) and j,(¢) for odd n using the
well-known formuli for the derivatives of complete elliptic
functions [47] it turns out that they are linear combinations of
i1(r) and jy(2):

in(t) = An()i1 (1) + Ba(2) j1(1),
Jn(t) = Co(0)i1 (1) + D (1) j1(1),

where the coefficients A,(z), B,(t), C,(t), and D,(t) are
rational functions of ¢.

(A19)
(A20)

APPENDIX B: SECOND-ORDER COEFFICIENTS

Here we enumerate some dimensionless functions used in
the main text. Functions occurring in Eq. (75) are

48H, (1) = 812 is(t) — 10t*i7(t) — 12 js(t) — 101* j1(2),
8Hy(t) =517 ja(1) — 21 js(0),
A8 H;(t) = 2i5(t) — 1712is(t) + 154 is(t) + 2j5(t),  (B1)

A8Hy(t) = 21 i5(t) + 5% is(t) — 1027 i7(¢)
— 41 js(t) + 1027 j7(),

16Hs(t) = 41%is(t) — 5t* i7(t),
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and those used in (76) are
48M (1) = 102> jo(t) — 4t js(t) + 21 i5(1)
+58305(r) — 1027 i7(1),
8My(t) = is(t) — 5¢%is(t) + 5t*i:(2),
A8M;(t) = 111 js(t) — 1513 j7(t) + 2t is(r),  (B2)
48Mu(t) = =3 j3(t) — 1% js(t) + 101* jz (1)
—10£%i5(r) + 10 *i7(2),
16Ms(t) =513 j;(t) — 21t js(t).

Straightforward, but lengthy, calculation leads to the ana-
lytic forms of the coefficient functions P;(t), Q(¢) occurring
first in Eq. (88):

Py — 8+ 3r2]i12<r) _ a0
3841 +12)  128(1+12)
S O R O )
1923 ji(r) — t2i(1))3  192(3i(r) — t2i1(1))?
-2 2
B 11({)[4+3z.] , B3)
384(3j1(1) — 12i1(1))
01(1) = i@ ) 1 i (1)
MT96(1+12) T 3200 +12) ' 96(3i1(1) — £2i1(1))
(B4)

Similar calculation gives the expressions, for P,(¢), Q»(¢) [used
in Eq. (89)]:
i@ St +351(0)]

48 ¢ 384(1 + 12)
1) 5L () + TjH ()]

384(2 i1 (1) — 3j1(1)
N iy — 8it) + iy (1) j1 (1) + 21j3(1)]

384 (12(1) — 3/1(1)’
n () + 3j1(D)] ti1(2) j1(#) [10i1() + 21 j1(2)]
192(12 iy (t) — 3j1(1))?

Py(t) =

)

(BS)

i) + 351t [i1(1) +3j1()]
72t 96(1 + 12)

(O [104,(1) 4 211(1)]
288(12%iy(t) — 3j1(t))

The functions P;(t), Q1(t), P»(t) and Q,(t) are shown in

Figs. 5, 6, 7, and 8 respectively. At the Feshbach resonance
i1(T) = 0 should be taken. In this case,

Oo(t) =

(B6)

___2n@ ___h@
PO ="ga+m 2D="m01my ®7
__a@ 5T ji(T)

PAT) = =57 128(1 + 72)’ (B8)
(T Tju(T
05(T) = J21( )+ J1(T) (B9)

AT 3201 4+T?)°
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