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Effect of scattering lengths on the dynamics of a two-component Bose-Einstein condensate

Gábor Csire,1,2,* Dániel Schumayer,3,† and Barnabás Apagyi1,‡
1Institute of Physics, Budapest University of Technology and Economics, Budafoki út 8, Budapest H-1111, Hungary
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We examine the effect of the intra- and interspecies scattering lengths on the dynamics of a two-component
Bose-Einstein condensate, particularly focusing on the existence and stability of solitonic excitations. For each
type of possible soliton pairs, stability ranges are presented in tabulated form. We also compare the numerically
established stability of bright-bright, bright-dark, and dark-dark solitons with our analytical prediction and with
that of Painlevé analysis of the dynamical equation. We demonstrate that tuning the interspecies scattering length
away from the predicted value (keeping the intraspecies coupling fixed) breaks the stability of the soliton pairs.
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I. INTRODUCTION

Since Bose-Einstein condensates (BECs) can be routinely
prepared in laboratories, ultracold gases became a very impor-
tant test bed for many predictions of condensed-matter physics
[1]. The experimental examination of binary condensates
started nearly the same time as for single condensates by using
two different quantum states of the same species, such as 87Rb
[2] or 23Na [3]. With the development of sympathetic cooling,
ultracold mixtures have been assembled from two different
alkalies (41K–87Rb [4,5], 7Li–133Cs [6], and 87Rb–133Cs [7]) or
for different isotopes of the same alkali atom (85Rb–87Rb [8]).
The tunability of the inter- and intraspecies scattering lengths
via driving the mixture through a Feshbach resonance has also
been experimentally demonstrated [5,7].

The ability to create Bose-Einstein condensate(s), a highly
coherent form of matter, also facilitated the convergence of
two fields of physics—condensed matter physics and quantum
optics—and therefore BECs became favorable candidates for
examining the effects of nonlinearity in matter waves, where
this nonlinearity originates from the mean-field representa-
tion of the interatomic interaction. The similarity between
electromagnetic waves in a nonlinear medium and coherent
matter waves is also expressed in the equations of motion—
the nonlinear Schrödinger equation (NLS) for the former
and the Gross-Pitaevskii (GP) equation for the latter. Although
the physical interpretations of these equations are different,
their structures are the same, apart from the external potential
term. Furthermore, in some cases this extra term can even be
removed [9] and the GP equation is transformed into a form
coinciding with the NLS equation. Consequently, all results
for the NLS equation known in nonlinear optics can be readily
adapted to Bose-Einstein condensates.

One of the surprising phenomena of nonlinear optics
is the existence of particle-like waveforms, the so-called
solitons [10]. Such excitations have already been experimen-
tally observed in single- or two-component Bose-Einstein
condensates: dark solitons [11,12], bright solitons [13,14],
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their two-component coupled analogs, the dark-dark [15],
bright-bright [16], or even dark-bright [17,18] multicomponent
solitary waves [18,19].

However, the question of the existence of solitons needs
more attention than simply recognizing the similarity between
the two governing equations. The existence of solitons is
strongly related to the integrability of the given physical
model. A usual test to determine whether or not an equa-
tion is integrable is the Painlevé test (P test) [20]. It was
shown that without any potential term or inhomogeneity the
one-dimensional NLS equation, iut + uxx ± 2 |u|2 u = 0, is
completely integrable both in its one-component [20,21] or
multicomponent [22,23] form. However, the inclusion of a
potential term, v(x,t)u, in the one-component NLS equation
or different coupling strengths in the multicomponent NLS
or GP equations fundamentally changes their integrability
[24,25]. It has been shown that integrability is preserved
provided the external potential, v(x,t), has a specific form [25].
Schumayer and Apagyi [26] examined the integrability of
the two-component coupled Gross-Pitaevskii (CGP) equations
and reached a similar conclusion: The scattering lengths and
the external potentials cannot be arbitrary if the integrability of
CGP is to be preserved. The inter- and intraspecies scattering
lengths must satisfy the following equation:

2ξ1ξ2 − κ1ξ1 − κ2ξ2

ξ1ξ2 − κ1κ2
= (2n + 1)2 + 7

16
, (1)

where ξ1 = a11/a21, ξ2 = a22/a12, κ1 = µ11/µ21, κ2 = µ22/

µ12, and µij denotes the reduced mass of a pair of particles
composed of an atom from the ith and j th species. On the
right-hand side of Eq. (1), n is a non-negative integer. One
may call n a classification number, because it determines
the form of the external potentials for which CGP equations
remain integrable. For example, for n = 2, the external
potential, apart from the quadratic trapping potential, may
even contain an imaginary time-dependent term [26]. This
term can mimic the loss or gain in the number of particles
of the given species. We note here that usually dissipation
works against long-living coherent matter waves; however,
the importance of this imaginary potential term has been
analyzed in Refs. [27,28] and shown to permit exact soliton
solution [29]. In the context of BECs at finite temperature,

1050-2947/2010/82(6)/063608(9) 063608-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.063608


CSIRE, SCHUMAYER, AND APAGYI PHYSICAL REVIEW A 82, 063608 (2010)

the interaction of the condensate with the thermal cloud
could also be taken into account as an imaginary term in the
governing GP equation. This interaction, due to its stochastic
nature, can influence the dynamics of the solitons, via density
fluctuation.

In this paper we carry out an analysis on how the intra-
and interspecies interactions influence the dynamics of a
binary mixture of Bose-Einstein condensates. We select out
of the many possible systems of two-component BECs the
pairs 87Rb–87Rb (prepared in two distinct hyperfine states),
23Na–87Rb, and 7Li–39K. In the former two systems it is
possible to study the stability of bright-dark and dark-dark
soliton pairs, while the last pair is capable of sustaining
bright-bright and bright-dark excitations.

The organization of the paper is as follows: Section II
defines a quasi-one-dimensional model derived from the gen-
eral three-dimensional, coupled Gross-Pitaevskii equations,
assuming a cigar-like harmonic oscillator trap potential. In
the first part of Sec. III we perform a stability analysis
based on coupled soliton excitations and on Eq. (1) of
the P test. In the second part of Sec. III, possible new
interesting modes exhibited by the bright-bright solitons will
be shown. Section IV is devoted to a conclusion and the
summary.

II. THE MODEL

In ultracold gases the interaction between two particles can
usually be well described by a scalar parameter, the scattering
length. For a two-component Bose-Einstein condensate one
has to introduce three, possibly different, scattering lengths,
characterizing the intraspecies interactions (a11, a22) and the
interspecies coupling (a12 = a21).

In the mean-field approximation a two-component BEC is
described by the coupled Gross-Pitaevskii equations [30,31]
in the form

ih̄
∂

∂t
�i =

[
− h̄2

2mi

� +
2∑

j=1

�ij |�j |2 + Vi

]
�i, (2)

where mi denotes the individual mass of the ith atomic species,
�ij = 2πh̄2aij /µij with aij being the three-dimensional scat-
tering length, µij = mimj/(mi + mj ) is the reduced mass, and
Vi denotes the external trapping potential. In the following,
indices i and j label the components, and therefore they take
only two values, 1 and 2. In the case of real trap potentials the
normalization of the wave functions reads as Ni = ∫ |�i |2dV ,
with Ni denoting the number of atoms in the ith component.
We exclude those cases from our analysis where the species
can transform into each other; therefore, the number of atoms
in each component hereafter is conserved.

A. Transformed equations

If the three-dimensional quadratic trapping potential is
weak in one direction, i.e.,

Vi = 1
2mi

[
ω2

i,xx
2 + ω2

i,⊥(y2 + z2)
]
, (3)

where ωi,x � ωi,⊥, one may replace the three-dimensional
equations Eq. (2) with a coupled system of quasi-one-
dimensional GP equations. Although Eq. (2) is a nonlinear

equation, physically we may assume that the weak x direction
decouples from the strong yz plane; therefore, the macroscopic
wave functions can be written as

�i(r,t) =
√

N1 ψi(x,t) χi,⊥(y,z,t), (4)

where χi,⊥ represents the ground-state solution of the cor-
responding two-dimensional Schrödinger equation in the yz

plane. The external potential introduces suitable units of length
and time as a⊥ = √

h̄/m1ω1,⊥ and τ = 1/ω1,⊥, respectively.
By rescaling the spatial and temporal variable with a⊥ and τ

one obtains two quasi-one-dimensional GP equations:

iψ1,t =
[

− 1

2
∂xx + λ2

1

2
x2 + b11|ψ1|2 + b12|ψ2|2

]
ψ1, (5a)

iψ2,t =
[

− κ

2
∂xx + λ2

2

2κ
x2 + b21|ψ1|2 + b22|ψ2|2

]
ψ2, (5b)

where b11 = 2a11N1, b22 = 2a22N1κ/γ , b12 = b21 = 2a12N1

(1 + κ)/(1 + γ ), γ = ω2,⊥/ω1,⊥, κ = m1/m2, λ1 = ω1,x/

ω1,⊥, and λ2 = ω2,x/ω1,⊥. The normalization is such that∫ |ψ1|2 dx = 1 and
∫ |ψ2|2 dx = N2/N1. Moreover, the re-

lation γ 2 = κ must hold if both species experience the same
harmonic potential. (Note the slight departure from Ref. [32]
in the definition of b22, which, however, may result in a large
difference of the values of b22 if a two-component condensate
contains species with different masses m1 �= m2.)

B. Thomas-Fermi background

If the kinetic-energy term is negligible compared to the
potential-energy terms in Eqs. (5a) and (5b), then one may
apply the Thomas-Fermi approximation to determine the
density distribution of the ground state. Following Ref. [33]
we write the corresponding wave-functions as

ψi(x,t) ≈ �TF
i (x) exp

( − iETF
i t/h̄

)
, (6)

resulting in TF densities∣∣�TF
i

∣∣2 = Ai

�

(
x2

i − x2
)

(|x| < xi) (7)

and TF energies

ETF
1 = (

b11A1x
2
1 + b12A2x

2
2

)
/�, (8a)

ETF
2 = (

b12A1x
2
1 + b22A2x

2
2

)
/�, (8b)

where � = b11b22 − b2
12. The parameters Ai and xi represent

the amplitude of the density and the extension of the conden-
sates, respectively. All these quantities are determined by the
system parameters bij , Ni , and λi according to the following
relations:

A1 = b22

2
λ2

1 − b12

2κ
λ2

2, and A2 = b11

2κ
λ2

2 − b12

2
λ2

1, (9)

while the extensions are

x1 =
(

3

4

�

A1

)1/3

and x2 =
(

3

4

�

A2

N2

N1

)1/3

. (10)

Although the Thomas-Fermi density distribution is not physi-
cal at x = xi , it still provides a good starting point for analytical
calculations. In our numerical treatment we will not use this
approximation; instead we start our simulations from the
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appropriate ground-state solution of the one-dimensional GP
equation.

C. Coupled soliton excitations

Now we are seeking solutions of Eqs. (5a) and (5b) that
support soliton excitations. A static soliton excitation can be
written as [33]

ψ̃i(x,t) = �TF
i (0)ϕi(x) exp (−iẼi t). (11)

By inserting this ansatz into the GP equations (5a) and (5b)
and neglecting the small potential contributions one obtains
the coupled soliton equations as follows:

Ẽ1ϕ1 = [ − 1
2 ∂xx + b̃11|ϕ1|2 + b̃12|ϕ2|2

]
ϕ1, (12a)

Ẽ2ϕ2 =
[

− κ

2
∂xx + b̃21|ϕ1|2 + b̃22|ϕ2|2

]
ϕ2, (12b)

with b̃ij = bijAjx
2
j /�. The normalization of the soliton

solutions reads as follows:∫ L1

−L1

|ϕ1|2dx = �

A1x
2
1

, (13a)∫ L2

−L2

|ϕ2|2dx = �

A2x
2
2

N2

N1
, (13b)

where the integrations, in both cases, are over the spatial
extension, Li , of the solitons.

These coupled equations admit generic moving soliton
solutions of the types bright-bright (BB), bright-dark (BD),
dark-bright (DB), and dark-dark (DD). We shall investigate
here a simple static bright-dark soliton pair solution by taking
the first component to be a static bright soliton,

ϕBD
1 (x) = q1sech(k1x), ϕBD

1 (x → ±∞) = 0, (14a)

and the second component to be the static dark soliton

ϕBD
2 (x) = q2 tanh (k2x), ϕBD

2 (x → ±∞) = ±q2, (14b)

with yet unknown complex amplitudes qi and wave vector ki .
The latter one is related to the width of the soliton, ki ∼ 1/Li .
By inserting Eqs. (14a) and (14b) into Eqs. (12a) and (12b)
and equating the coefficients of the constant and x-dependent
terms, respectively, one may conclude that the wave vectors of
the dark and bright solitons must be equal, k1 = k2 ≡ k. The
amplitudes are expressed by the system parameters as

|q1|2 = k2

A1x
2
1

(κb12 − b22), (15a)

|q2|2 = k2

A2x
2
2

(κb11 − b12). (15b)

The energy of these excitations read as

ẼBD
1 = k2

(
κb11 − b12

�
b12 − 1

2

)
, (16a)

ẼBD
2 = k2 κb11 − b12

�
b22. (16b)

Suppose now that the width parameter k is a real number.
The modulus of the amplitudes of the bright-dark soliton pair
superimposed on the Thomas-Fermi background must be real

numbers; thus one obtains the following set of conditions for
the existence of these bright-dark soliton excitations:

C1 ≡ κb12 − b22

�
� 0 and C2 ≡ κb11 − b12

�
� 0. (17)

One may apply the same method to generate static bright-
bright or dark-dark soliton excitations. In the bright-bright case
one obtains the following solutions:

ϕBB
1 (x) = k√

A1x1

√
κb12 − b22 sech(kx), (18a)

ϕBB
2 (x) = k√

A2x2

√
b12 − κb11 sech(kx), (18b)

with the conditions

C1 � 0 and C2 � 0, (19)

while the energies are ẼBB
1 = ẼBB

2 /κ = −k2/2. The dark-dark
coupled soliton solutions read as follows:

ϕDD
1 (x) = k√

A1 x1

√
b22 − κb12 tanh (kx), (20a)

ϕDD
2 (x) = k√

A2 x2

√
κb11 − b12 tanh (kx), (20b)

with the conditions

C1 � 0 and C2 � 0, (21)

and energies ẼDD
1 = ẼDD

2 /κ = k2. Our interesting result
shows that in the bright-bright and dark-dark cases the energies
are uniquely determined by the wave vector and the mass ratio.
Note that the existence conditions of Eqs. (17), (19), and (21)
are just the same as obtained in Ref. [32] for the existence of
moving soliton pairs, while the constraints for static excitations
were published in Ref. [33].

III. STABILITY TESTS BY SIMULATION

In this section we numerically investigate the stability of
soliton pairs. To solve the time-dependent coupled Gross-
Pitaevskii equations (5a) and (5b), a third-order-accurate
split-step Fourier transform method is used, as described in
Ref. [34] for a single-component condensate. Here we solve
the time-independent coupled Gross-Pitaevskii equations for
their numerically exact ground states using the imaginary time
method [35] combined with the split-step operator technique.
Choosing initial distributions is necessary to this method,
and the Thomas-Fermi approximate solution proved to be an
effective initial guess for this purpose.

The procedure explained in the previous section can be
generalized for solitons moving with velocity v. Such a
solution is given by

ψ̃BD
1 = �TF

1 (0)ϕBD
1 (x − vt) exp

( − iẼBD
1 t

)
× exp

{
−i

[
v2t

(
b12C2

κ2
− 1

2

)
− v(x − vt)

]}
, (22a)

ψ̃BD
2 =

[
i

√
C2

κ
v + �TF

2 (0)ϕBD
2 (x − vt)

]
× exp

( − iẼBD
2 t

)
exp

(
−i

b22C2

κ2
v2t

)
. (22b)
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TABLE I. Various domains of inter- and intraatomic interaction
strengths bij permitting the existence of a bright-dark soliton pair.

Case b11 b22 Constraint on b12

1 + − no bright-dark soliton pair
2 − + b11κ < b12 < b22/κ

3a − − −√
b11b22 < b12 < b11κ if κ2b11 > b22

3b b11κ < b12 < −√
b11b22 if κ2b11 < b22

4a + + √
b11b22 < b12 < b22/κ if κ2b11 < b22

4b b22/κ < b12 <
√

b11b22 if κ2b11 > b22

At v = 0 we obtain the static soliton excitation solution
given by Eq. (11) in the preceding section.

The existence conditions Eq. (17) prescribe various rela-
tions between domains of the inter- and intracoupling strengths
bij , where it is possible to create bright-dark soliton pairs.
These domains are listed in Table I. Although the creation of a
bright soliton is generally associated with attractive interaction
(bii < 0) among the particles, Table I clearly shows that, due
to the appropriate other couplings, it may also be possible to
create a bright soliton in case of repulsive interaction (bii > 0).
Such a situation occurs in case 4a of Table I, which we analyze
in the following.

A. Moving bright-dark soliton pairs

Let us now investigate the stability of a bright-dark soliton
pair for case 4a of Table I by considering two experimentally
accessible two-component BECs. The first is composed of the
two hyperfine states of 87Rb atoms, and the second is obtained
from 23Na and 87Rb atoms. In both cases the scattering lengths
are well known and can be tuned over a broad limit by using the
Feshbach resonance method. Our aim here is to explore the
sensitivity of the temporal evolution of a soliton pair when
the interatomic coupling strength b12 is varied around the
value prescribed by the ratio Eq. (1) obtained by performing
a Painlevé analysis of the coupled GP equations [26]. In this
respect we fix the intraatomic strengths bii to values easily
accessible to the experiments and vary the interatomic inter-
action values b12 within a small range allowed by case 4a in
Table I. In order to represent a more realistic situation, a small
velocity of v = 0.04 is given to the solitons, a weak harmonic
trapping potential is added along the longitudinal direction,
and the solitons are superimposed on the ground-state density
distribution. This procedure spatially confines the solitons
without affecting their essential stability properties [32].

In Fig. 1, we plot a bright-dark soliton pair composed of two
hyperfine states of 87Rb atoms. The top two panels show the
case when the interspecies interaction is chosen according to
Eq. (1). Both solitons oscillate in the harmonic trap in a stable
manner with an angular frequency slightly less than ωx/

√
2,

which the one-dimensional Thomas-Fermi model predicts for
a single dark soliton [36]. The difference is probably caused by
the presence of the bright soliton, since the bright component
fills the dip of the dark soliton; therefore, the dark soliton has
to drag this extra mass as well. This effect has recently been
observed [18] with a 87Rb–87Rb condensate, prepared in the
|F = 2,mF = 0〉 (bright soliton) and |F = 1,mF = 0〉 (dark
soliton) hyperfine states.

FIG. 1. (Color online) Evolution of the bright-dark solitons of
a two-component BEC composed of two hyperfine states of the
87Rb atom, showing the intraspecies scattering length a12 = 5.5 nm
(b12 = 13.6) satisfying the ratio formula of Eq. (1) (top two panels)
and a12 = 5.4 nm (b12 = 13.35) disobeying the ratio formula
(bottom two panels). Other parameters are a11 = 0.8 × 5.5 nm
(b11 = 10.88), a22 = 1.2 × 5.5 nm (b22 = 16.32), m1 = m2 = 87 a.u.,
ω1,⊥ = 2π × 710 Hz, λ1 = λ2 = 0.2, v = 0.04, N1 = 500, and
N2 = 6600. The snapshots depict the soliton pairs at t = 200 and
t = 20, respectively. The distance x and time t are measured in units
of a⊥ = 404.5 nm and τ = 0.22 ms.

However, if a12 (or equivalently b12) is tuned away from
this particular value, the stability is lost, and the initial forms
of the solitons are destroyed by the destructive interference
of the constantly emitted and recaptured sound waves. It
is worthwhile to mention, although only as a qualitative
statement, that the appearance of sound waves made the
solitons’ oscillation faster (see the different range of time in
the top two and bottom two panels of Fig. 1). The sound waves
travel faster than the solitons, and after being reflected back
from the edge of the condensate they collide with the solitons.
The subsequent collisions possibly speed up the oscillation
and turn it into an irregular sloshing. Despite the irregular
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FIG. 2. (Color online) Evolution of a bright-dark soliton pair in a
two-component BEC composed of 23Na and 87Rb atoms. Intraspecies
scattering length a12 = 6.831 nm (b12 = 7.25) satisfies Eq. (1) (top
two panels), while a12 = 3.769 nm (b12 = 4) deviates from Eq. (1)
(bottom two panels). Other parameters are a11 = 2.7 nm (b11 = 3.4),
a22 = 5.5 nm (b22 = 3.6), m1 = 23 a.u., m2 = 87 a.u., ω1,⊥ = 2π ×
710 Hz, λ1 = λ2 = 0.25, v = 0.15, N1 = 500, and N2 = 58 000. The
snapshots are taken at t = 20, and t = 2, respectively. The distance x

and time t are measured in units of a⊥ = 786.7 nm and τ = 0.22 ms.

movement of the solitons, the dark component still captures
the bright soliton during the motion.

In Fig. 2 the evolution of a bright-dark soliton pair in a
binary BEC composed of 23Na and 87Rb atoms is plotted
with corresponding snapshots of the density distribution. The
upper two panels exhibit the bright (23Na) and dark (87Rb)
excitations, respectively, which are stable for a long period
due to the fine tuning of scattering lengths aij (i,j = 1,2)
which satisfy the P test Eq. (1). On the lower two panels
of Fig. 2 we see, however, that the initial soliton excitations
do not remain stable but are rapidly dissolved due to detuning
the interspecies scattering length a12 from the value obeying
the integrability condition expressed by Eq. (1).

In summary, both examples exhibited in Figs. 1 and 2
show that a long-lived stability of the bright-dark soliton pairs
can be achieved only if the interatomic interaction parameter
a12 (or b12) is chosen according to Eq. (1). This observation
emphasizes that there may be situations in the creation of
two-component BECs when fine tuning of scattering lengths
according to the P-test formula Eq. (1) may prove useful.

At the end of this section we briefly mention an early in-
vestigation of the stability of a heterogeneous two-component
Bose-Einstein condensate by Law et al. [37]. In this work
a linear stability analysis was carried out by calculating
the lowest eigenvalue of an excitation. In this approach the
appearance of a negative eigenvalue signals instability. It was
shown for a sodium-rubidium system, as discussed here, that
stability occurs only in the finite range of the interspecies
scattering length. The direct quantitative comparison with
our work, however, is less straightforward because Law
et al. assumed a spherically symmetric condensate, while we
analyze a quasi-one-dimensional model.

B. Static bright-bright soliton pairs

Let us now investigate the temporal stability of a static
(v = 0) bright-bright soliton pair obtained as the exact
solution of Eqs. (5a) and (5b) in the absence of a trapping
potential (λi = 0). The solutions have the form of Eq. (11),
where ϕi(x) are chosen to have the functional forms given in
Eqs. (18a) and (18b).

The existence conditions Eq. (19) prescribe the relations
between domains of the inter- and intraspecies coupling
strengths bij , which are listed in Table II. Moreover, the
common wave vector is k = 1/(2C1).

Scenario 4, for example, describes two condensates for
which the intraspecies interactions are repulsive. This sit-
uation, using a Hartree-Fock calculation, was theoretically
analyzed [38] soon after the observation of overlapping
condensates prepared from two hyperfine states of 87Rb [2].
For this case, i.e., m1 = m2, it was established that the two
condensates cannot coexist if |a12| <

√
a11a22. Our approach

reproduces and extends this result for the case of different
species. This surprisingly simple relation can be understood
using energetic arguments; if b12 overcomes the geometric
mean of the intraspecies interaction strengths, the repulsion
between the two condensates will separate the two condensates
completely and they will no longer overlap. However, if the
two species attract each other enough, i.e. b12 < −√

b11b22,
the attraction will dominate and can counteract the individual
repulsion present in each component.

Another interesting scenario here is the one listed under
case 3a in Table II, showing that it is possible to create a
bright-bright pair within the range 0 < b12 <

√
b11b22, in

spite of the repulsive interatomic interaction. In order to
investigate the stability of the bright-bright soliton pair in this
domain we simulate the temporal evolution of the BEC system

TABLE II. Various domains of inter- and intraatomic interaction
strengths bij permitting the existence of a bright-bright soliton pair.

Case b11 b22 Constraint on b12

1 + − b12 < b22/κ

2 − + b12 < b11κ

3a − − b22/κ < b12 <
√

b11b22 if κ2b11 < b22

3b b12 < b11κ if κ2b11 < b22

3c b11κ < b12 <
√

b11b22 if κ2b11 > b22

3d b12 < b22/κ if κ2b11 > b22

4 + + b12 < −√
b11b22
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composed of 7Li and 39K atoms accessible for experiments.
As Fig. 3 shows, depending on the value of the interspecies
interaction, two types of instability may occur. At values
of a12 less than a critical value of about 0.275 nm, the two
standing solitons begin to repel each other (first two panels)
and depart from each other as though they were particles,
preserving the total zero momentum. Above the critical a12

value the soliton with constituents of the smaller mass splits
into two equal parts and the heavier component becomes
a breather, keeping its original place (third pair of panels).
At the critical value of a12 both types of instability can be
observed (third and fourth panel) simultaneously.

Similar instability effects of bright-bright and other soliton
pairs have also been observed [39]. The instability is explained
by Kevrekidis et al. [40] as the appearance of a negative
eigenvalue pair obtained by a linear stability analysis. It has
also been shown that higher-order bright-bright soliton pairs
would exhibit instability irrespective of the system parameters.
Interestingly, it is possible for one of the higher-order bright
solitons, i.e., the one that has the stronger self-attraction, to
recover its stability by collapsing into one bright soliton and
expelling the other component from its original position.

Finally, it is important to note here that the phases of the
divided solitons are equal; therefore, these particle-like wave
packets remain coherent with each other. Similarly to an optical
beam splitter where light is divided into two coherent beams,
one could divide these matter waves and use one of them
as a probe and the other one as a control packet. The probe
packet could undergo transformations, while the control packet
is left to evolve freely, thereby allowing a phase difference
to build up between the two packets. If the two packets are
brought together again, the phase difference could cause an
interference pattern that allows one to quantify coherence. This
may potentially be helpful for calibration purposes as well.

C. Dark-dark soliton pairs

Finally, we examine the third possible combination of
soliton pairs—a dark soliton being excited in each condensate.
Interestingly this pairing can be stable even if the interaction
inside each condensate is attractive (a11, a22 < 0). The dark-
dark solitons are described by the following formulas:

ψ̃DD
1 = [

i
√

−C1 v + �TF
1 (0)ϕDD

1 (x − vt)
]

exp
( − iẼDD

1 t
)

× exp

[
−i

(
b12C2

κ2
− b11C1

)
v2t

]
, (23a)

ψ̃DD
2 =

[
i

√
C2

κ
v + �TF

2 (0)ϕDD
2 (x − vt)

]
exp

( − iẼDD
2 t

)
× exp

[
−i

(
b22C2

κ2
− b12C1

)
v2t

]
. (23b)

For our numerical investigations a 87Rb–87Rb system has
been chosen, with repulsive intraspecies interactions, a11 =
5.335 nm and a22 = 5.665 nm taken from Ref. [41]. This
choice of coupling corresponds to scenario 4 of Table III.
Tuning a12 into the positive regime results in stable dark-dark
soliton pairs (see top two panels of Fig. 4). In the bright-
bright case we have found that if the intraspecies interactions
are attractive and the interspecies interactions are repulsive,

FIG. 3. (Color online) Evolution of a bright-bright soliton pair in
a binary BEC composed of 7Li and 39K atoms. Intraspecies scattering
lengths and atom numbers are a12 = 0.2 nm (b12 = 0.46), N2 = 2029
(first two panels), a12 = 0.275 nm (b12 = 0.64), N2 = 2270 (second
pair of panels), and a12 = 0.3 nm (b12 = 0.7), N2 = 2347 (third pair
of panels). Other parameters are a11 = −1.4 nm (b11 = −3.93), a22 =
−0.9 nm (b22 = −1.07), m1 = 7 a.u., m2 = 39 a.u., ω1,⊥ = 2π ×
710 Hz, λ1 = λ2 = 0, v = 0, and N1 = 2000. The snapshots are taken
at t = 35, t = 35, and t = 20, respectively. The distance x and time
t are measured in units of a⊥ = 1426 nm and τ = 0.22 ms.
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TABLE III. Various domains of inter- and intraatomic interaction
strengths bij permitting the existence of a dark-dark soliton pair.

Case b11 b22 Constraint on b12

1 + − b12 > b11κ

2 − + b12 > b22/κ

3 − − b12 >
√

b11b22

4a + + −√
b11b22 < b12 < b22/κ if κ2b11 > b22

4b b12 > b11κ if κ2b11 > b22

4c −√
b11b22 < b12 < b11κ if κ2b11 < b22

4d b12 > b22/κ if κ2b11 < b22

the solutions are unstable. We have tested numerically that
this observation is valid in the dark-dark case as well,
if the sign of the interactions is inverted. Furthermore, our

FIG. 4. (Color online) Evolution of a dark-dark soliton pair in
a binary BEC composed of 87Rb and 87Rb atoms. Intraspecies
scattering lengths are a12 = 1.5 nm (b12 = 3.62) (top panel) and
a12 = −1.5 nm (b12 = −3.62) (bottom panel). Other parameters
are a11 = 0.97 × 5.5 nm (b11 = 13.04), a22 = 1.03 × 5.5 nm (b22 =
13.52), m1 = 87 a.u., m2 = 87 a.u., ω1,⊥ = 2π × 710 Hz, λ1 = λ2 =
0.2, v = 0.2, N1 = 500, and N2 = 1600. The snapshots are taken
at t = 50. The distance x and time t are measured in units of
a⊥ = 404.5 nm and τ = 0.22 ms.

numerical calculation provided an interesting phenomenon in
the dynamics of these solitons. Preparing the dark solitons in
the same way as before (i.e., by superimposing onto the ground
state) but reversing the sign of a12 resulted not only in losing
the long-term stability but also in the decay of a dark soliton in
one of the components and the emergence of a secondary dark
soliton in the other component (bottom two panels of Fig. 4).

IV. SUMMARY

We have considered the existence and stability of soliton
excitations in a two-component Bose-Einstein condensate
both analytically and numerically. Our model allows the
components to represent different elements (m1 �= m2), but
we also include those cases when two hyperfine states of
the same element constitute the condensates. We exclude the
possibility that these components can transmute into each
other; i.e., the hyperfine states cannot be driven into each other.
The dynamics of these condensates, within the mean-field
zero-temperature approximation, are governed by the coupled
Gross-Pitaevskii equations. We have chosen to make our
presentation suitable for combining analytical results with
earlier numerical investigations, e.g., Refs. [26,32], and [42].

The occurrence of particle-like excitations together with
conserved quantities is associated with the integrability of
a nonlinear evolution field equation, such as the coupled
Gross-Pitaevskii equations. Using the results of a recent
Painlevé analysis of the coupled Gross-Pitaevskii equation
[26], we have shown how the system parameters determine the
integrability of this system. However, for the CGP equations
the studies so far have been restricted to either equal coupling
coefficients (b11 = b12 = b22) and/or equal masses. We note
here that excitations with long lifetimes may exist for a
nonlinear evolution equation even when the integrability
conditions are violated [43], but these cases are possibly
exceptional and do not represent the generic behavior.

We have examined those ranges of system parameters
that permit coupled soliton solutions of the governing
equations (5a) and (5b). Here, we have utilized the two well-
known one-soliton solutions of the one-component nonlinear
Schrödinger equation: the bright and dark solitons. These
excitations then spatially modify the Thomas-Fermi ground
state in our theoretical description or the appropriate ground
state in our numerical simulation. We have found analytically
that each possible pair of these solitons has a range of system
parameters where they are stable, and we have presented these
ranges in Tables I, II, and III. One can present these findings
differently if the intraspecies coupling coefficients are held
relatively fixed and only the interspecies one is tuned. For
example, if we assume b11 and b22 to be positive (effective
repulsive interaction) then Tables I, II, and III can be combined
into one graph (see Fig. 5).

Moreover, we have also examined how the stability of these
soliton pairs changes if the interspecies coupling coefficient is
detuned from the value predicted by the Painlevé analysis via
Eq. (1). It has been shown, irrespective of the pairing, that the
stability is lost, although the pairs were not equally sensitive to
the detuning, e.g., the motion of the bright-dark pair became
erratic and preserved its periodicity only qualitatively after
changing a12 from 5.5 to 5.4 nm.
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(b11κ + b22/κ)/2

0
b12

b11κ−
√
b11b22

√
b11b22 b22/κ

BB

DD
DB BD

DD

0
b12

−
√
b11b22

√
b11b22b22/κ b11κ

BB

DD
BD DB

DD

FIG. 5. Ranges of the interspecies coupling coefficient b12 in
which different types of soliton pairs can exist and are stable. The
top graph is valid if κ2b11 < b22, while the lower graph is for
the complementary case, i.e., κ2b11 > b22. The dotted line shows
the result of the Painlevé test Eq. (1) in the case of harmonic trapping
potentials.

Two types of instability of static bright-bright soliton pairs
composed of species with unequal masses have been observed.
When the interspecies interaction lies below a critical value

(0 < b12 < bcr
12), the static bright-bright pair evolves into a

repulsive, momentum-conserving, moving soliton pair. When
b12 > bcr

12, then one bright soliton (the constituent with smaller
mass) splits into two equal portions of the same phase while
the other bright soliton becomes a breather.

Well below the critical temperature of the Bose-Einstein
condensate, we expect our description to be adequate, and the
results could help experimentalists to modify the scattering
lengths via the Feshbach resonance into a range where stable
soliton pairs exist. As the temperature increases, however, the
interaction with the thermal cloud becomes more and more
important and can no longer be neglected. We have not yet
examined how the interplay between the condensates and
the thermal clouds (for each component) would modify the
dynamics. This needs further research beyond the mean-field
description.
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