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Fluctuations and correlations in rotating Bose-Einstein condensates
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We investigate the effects of correlations on the properties of the ground state of the rotating harmonically
trapped Bose gas by adding Bogoliubov fluctuations to the mean-field ground state of an N -particle single-vortex
system. We demonstrate that the fluctuation-induced correlations lower the energy compared to that of the
mean-field ground state, that the vortex core is pushed slightly away from the center of the trap, and that
an unstable mode with negative energy (for rotations slower than a critical frequency) emerges in the energy
spectrum, thus pointing to a better state for slow rotation. We construct mean-field ground states of zero-, one-,
and two-vortex states as a function of rotation rate and determine the critical frequencies for transitions between
these states, as well as the critical frequency for appearance of a metastable state with an off-center vortex and
its image vortex in the evanescent tail of the cloud.
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I. INTRODUCTION

A rotating ultracold harmonically trapped Bose gas is
predicted to pass through many exotic phases with increasing
rotation rate (for a recent review, see Ref. [1]). The mean-
field description, which omits all correlations, predicts the
zero-temperature ground state for a large number of particles
to be a vortex lattice [2,3], and is in good agreement with
current experiments [4]. However, exact diagonalization of
the many-body Hamiltonian [5] suggests the breakdown at
very high rotation rates of the mean-field picture and a melting
transition to strongly correlated ground states, bosonic analogs
of quantum Hall states [6,7]. The onset of correlations and
quantum fluctuations can be expected to play a significant
role in this transition to a strongly correlated quantum liquid.
However, a consistent theory of the zero-temperature melting
of the vortex lattice does not exist so far [8–11] (for a theory
of thermal melting of the lattice, see Ref. [12]). A crucial first
step in constructing such a theory is to understand better how
correlations affect the system.

With increasing rotation rate, the cloud expands in the
transverse direction, and the particle density decreases. In each
unit cell of the lattice, the vortex core occupies a larger fraction
of the area of the cell [13], and the average displacement of the
vortex from its equilibrium position increases [9] due to the
zero-point motion of the Tkachenko mode [14,15]. Hence,
the uncertainty in the position of vortices, which plays a
leading role in the melting, increases at faster rotation rates [1].
This uncertainty is completely absent in the mean-field picture,
in which the vortex positions are fixed and do not fluctuate.

The nature of the correlations between particles changes as
the rotation rate increases. For angular momentum per particle
less than or equal to unity (in units of h̄ throughout), correla-
tions in the exact ground state wave function [16] are described
by polynomials in the relative distance of the particles from the
center of mass, ψ ∼ ∑

i1<i2<···<iL
(zi1 − zc)(zi2 − zc) · · · (ziL −

zc), where z ∼ (x + iy) are the positions of the particles and
zc the center of mass in the complex plane. On the other
hand, when the angular momentum per particle is of order
the number of particles, correlations appear in the distances
of particles from each other, as in the bosonic Laughlin wave
function [17] ψ ∼ ∏

i<j (zi − zj )2.

The aim of the first part of this paper is to build relevant
correlations on top of the mean-field many-body ground
state and to investigate their effects on the energetics and
physical properties of the ground state. Based on the inferred
modifications of the ground state, the second part of this paper
investigates, at the mean-field level, different ground states of
the (zero-, one-, and two-vortex) Bose gas and their respective
transitions as the external rotation rate increases.

Small-amplitude Bogoliubov fluctuations around the mean-
field ground state induce correlations by allowing small num-
bers of excitations to appear in nearby single-particle states. In
a condensate with a large number of vortices, the number of
excited modes (single-particle harmonic oscillator eigenstates)
involved is of order the number of vortices. Therefore,
carrying out the general diagonalization is a mathematically
challenging task for a many-vortex condensate. However, one
can gain insight by working with a few-vortex system; for
example, including the first three harmonic oscillator states
is sufficient to describe systems with up to two vortices, as
we show below. The simplest such system is a condensate
with one singly quantized vortex at the center of the trap,
rotating at the critical frequency �c, at which the vortex
becomes thermodynamically stable [2,18], and, hence, having
unit angular momentum per particle.

We find, indeed, that the correlations induced by Bo-
goliubov fluctuations lead to a better ground state in the
thermodynamic limit, lower in energy than the mean-field
one. We also see that the fluctuations drive the vortex core
away from the center of the trap by a fluctuating distance of
O(1/

√
N ) (in units of the characteristic length of the trap).

Moreover, for rotations slower than the critical frequency
�c, we find excitations with negative eigenenergy in the
spectrum [18] which remove one unit of angular momentum
from the gas, indicating an instability toward a lower-energy
nonrotating state for rotation rate � < �c and emphasizing
the fact that the single-vortex mean-field ground state is not
the best starting state.

Based on these results, we construct a more energetically
favorable mean-field condensate which, as a function of �, is
either nonrotating, a single-vortex state, or a two-vortex state.
The phase diagram in Fig. 1 summarizes our results. At a
certain frequency �m (below �c), there exists a metastable
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FIG. 1. Schematic phase diagram of the condensate.

state (a local minimum of the energy) with two off-center
vortices in the cloud which are asymmetric about the origin;
for a vortex close to the center of the trap, there exists an
image vortex much farther away where the particle density
is negligible, in agreement with Ref. [19]. We calculate the
critical frequencies �c and �∗

2, respectively, at which the first
and second vortices enter the cloud. The former agrees with
the numerical result of Ref. [2], while the latter is somewhat
larger owing to our incorporating only a restricted number of
single-particle eigenstates in the mean-field ground state.

In the next section, we outline the basic description of
the rotating Bose gas in terms of Landau levels in the
Coriolis force. In Sec. III, we determine the small-amplitude
fluctuations about the mean-field condensate and their effect
on the properties of the ground state, and then in Sec. V, we
present the stable mean-field wave function that encapsulates
the various phases of the rotating gas and their respective
critical rotation frequencies. We set h̄ = 1 throughout.

II. BASIC MODEL

We consider a cloud of N bosons of mass m in a harmonic
trap with frequencies ω in the x-y plane and ωz in the z

direction (with ωz � ω to tightly confine the gas in the axial
direction), rotating around the z axis with angular velocity
�. The characteristic oscillator lengths are d = 1/

√
mω

in the transverse direction and dz = 1/
√

mωz in the axial
direction. We assume weak two-body repulsive interactions
of strength g = 4πa/m where a is the s-wave scattering
length. In the limit of fast rotation, � <∼ ω, the gas becomes
quasi-two-dimensional, and at zero temperature, it resides
approximately in the ground state of the harmonic trap in
the z direction. The many-body Hamiltonian in the rotating
frame is H′ = ∑N

i=1(h0
i − �li) + ∑

i<j g2Dδ(ri − rj ), with
the noninteracting single-particle Hamiltonian and angular
momentum

h0
i = p2

i

2m
+ 1

2
mω2r2

i , li = ẑ · (ri × pi), (1)

where r and p are the particle positions and momenta in the
x-y plane, and g2D = g/

√
2πdz is the effective interaction

strength in two dimensions.
The eigenstates of h0 are the Landau levels |nm〉, where

the Landau level index n is the radial quantum number and
m � −n is the angular momentum along the rotation axis, with
eigenvalues ε′

nm = (2n + |m| + 1)ω − m�. The characteristic
energy scale of the two-body interaction is V0 = g2D/2πd2.
The energy difference between two successive higher Landau
levels (n �= 0) is O(2ω) which, for � → ω, is much larger than
that O(ω − �) between two states in a given Landau level. We
assume the interactions to be sufficiently weak that V0 	 2ω;
thus, we ignore the small higher Landau level components in
the wave function and safely assume that the system resides in
the manifold of the n = 0 lowest Landau level (LLL) states.

With this assumption, the only relevant quantum number is
the angular momentum index m; from now on, we drop the
Landau level index n from the eigenfunctions, operators, and
occupation numbers for simplicity, unless otherwise noted.

The LLL eigenfunctions and eigenenergies are

φm(z) = 〈r|0m〉 = 1

d
√

πm!
zme−|z|2/2, (2a)

ε′
m = ε′

0m = ω + (ω − �)m, (2b)

where z = (x + iy)/d is the position in the complex plane;
we use r and z interchangeably. In terms of the corresponding
creation and annihilation operators a

†
m and am, the second-

quantized Hamiltonian in the rotating frame is

H′ =
∑
m

ε′
ma†

mam + 1

2

∑
{mi }

Vm4m3
m2m1

a†
m4

a†
m3

am2am1 , (3)

where the interaction matrix element in the LLL is

Vm4m3
m2m1

=
∫

φ∗
m4

(r)φ∗
m3

(r′)g2Dδ(r − r′)φm2 (r′)φm1 (r)

= V0
(m1 + m2)! δm3+m4,m1+m2

2m1+m2
√

m4!m3!m2!m1!
. (4)

III. BOGOLIUBOV HAMILTONIAN IN
THE LOWEST LANDAU LEVEL

We now turn to determining the effects of small-amplitude
Bogoliubov fluctuations about the mean-field condensate on
the properties of the system. We start with a condensate with a
vortex at the center which rotates with angular frequency �c,
to be determined. We derive an effective LLL Hamiltonian
along with its excitation spectrum (which includes an unstable
normal mode) and show that its ground state has lower energy
than the initial mean-field state in which all particles are
condensed into the state |01〉. The initial condensate is

ψ(r) =
√

N1 φ1(r), (5)

with N1 particles in |01〉, describing a vortex at the center
with winding number 1. For N1 <∼ N , we make the usual

replacement of the operators a
†
1 and a1, corresponding to |01〉,

by
√

N1 in the limit of large N . Although the total number of
particles is fixed, interactions cause the number of particles in
the condensate to fluctuate; the number of condensed particles
can, thus, be written in terms of the total and the noncondensed
particle numbers as

N1 = N −
∑
m

′
a†

mam, (6)

where the prime indicates that |01〉 is excluded from the sum.
In the thermodynamic limit (N → ∞ with NV0 constant),

interaction terms that represent scattering of only one con-
densate particle or no condensate particles are, respectively,
O(1/

√
N ) and O(1/N ) smaller than those that involve two

particles from the condensate and, thus, can be ignored.
Following the standard procedure to write the Hamiltonian
up to quadratic order in the excitation operators and using
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Eq. (6) to conserve the total number of particles, we derive the
LLL Hamiltonian in the rotating frame,

H′ = [
N (2ω − �) + 1

4N2V0
] + [

1
2NV0 − (ω − �)

]
a
†
0a0

+ [
1
4NV0 + (ω − �)

]
a
†
2a2 + 1√

8
NV0(a†

0a
†
2 + a0a2).

(7)

The constant first term in square brackets is the energy of
the mean-field state with all N particles condensed into |01〉
and no fluctuations present. The only two states in the LLL
connected by the interactions in the presence of a condensate
in |01〉 are |00〉 and |02〉, i.e., for a LLL system, the maximum
angular momentum transferred in any scattering process is ±1,
whereas allowing higher Landau levels brings in and connects
|10〉 and |12〉, |20〉 and |22〉, etc. Larger transfers of angular
momentum take the system out of the LLL as well, e.g., |03〉
is connected to |1, − 1〉 by a transfer of ±2 units, |2, − 2〉 to
|04〉 by a transfer of ±3 units, etc.

Conservation of angular momentum is reflected in the fact
that any scattering process involves simultaneous transfers
of +m and −m units of angular momentum (relative to the
condensate). The same method presented here was previously
used by Linn and Fetter [18] to include higher Landau levels
perturbatively in the Bogoliubov excitation spectrum of this
system. Also, Dodd et al. [20] have used a similar argument
to describe angular momentum conservation in this system
in the presence of an external perturbation. Later, Rokhsar
reinterpreted their argument to show [21] the existence of a
negative energy excitation (the anomalous mode) with vortex
core properties similar to those we find in Sec. IV.

The canonical transformations to the bosonic quasiparticle
operators

α+1 = u a2 + v a
†
0

(8)
α−1 = u a0 + v a

†
2

(with u and v real and positive) diagonalize the Hamiltonian,
provided that u2 = 2 and v2 = 1. The new operators describe
quasiparticles with ±1 units of angular momentum relative
to the condensate. Thus, the LLL Hamiltonian in the rotating
frame becomes

H′ = [
N (2ω − �) + 1

4N2V0 − 1
4NV0

]
+ (� − �c)α†

−1α−1 + (ω − �)α†
+1α+1, (9)

where

�c = ω − 1
4NV0. (10)

This equation shows that the Bogoliubov ground state (with
no excited quasiparticles) has lower energy compared to
the mean-field one by −NV0/4. Also, the normal mode
denoted by −1 has negative eigenenergy in the region � < �c,
indicating an instability in the system against being condensed
into |01〉; this is the anomalous mode (see Ref. [22] and
references therein). Its existence shows that ψ(r) is not the
correct condensate for � < �c and, therefore, the Hamiltonian
in Eq. (9) is not the correct one for this regime. As the
rotation rate increases beyond �c, further LLL states beyond
{|00〉,|01〉,|02〉} come into play in the ground state, especially
once two or more vortices enter the cloud (see Sec. V). Then,

one must include Bogoliubov fluctuations around this new
ground state in order to find the Bogoliubov Hamiltonian and
its normal modes. For simplicity, we limit the discussion here
to � = �c which corresponds to our starting point, a system
fully condensed in |01〉.

In the manifold of the first three lowest Landau levels, the
field operator for removing a particle at position r is

	(r) = φ0(r) a0 + φ1(r) a1 + φ2(r) a2. (11)

Inverting Eq. (8) gives

a0 = uα−1 − v α
†
+1,

(12)
a2 = uα+1 − v α

†
−1,

and, thus, the expansion of 	(r) in terms of the quasiparticles
is

	(r) = ψ(r) + [uφ2(r)α+1 − v φ0(r)α†
+1]

+ [uφ0(r)α−1 − v φ2(r)α†
−1]. (13)

This is the mode expansion 	(r) = ψ(r) + ∑
j [uj (r)αj −

v∗
j (r)α†

j ] in terms of the quasiparticles (see, e.g., Ref. [23]).
Hence, the amplitudes for the −1 eigenmode are

u−1(r) = uφ0(r),
(14)

v−1(r) = v φ∗
2 (r).

This mode, although having a negative eigenenergy for � <

�c, has a positive norm, since∫
[|u−1(r)|2 − |v−1(r)|2]d2r = u2 − v2 = 1, (15)

and is thus physical. Since 〈r|02〉∗ = 〈r|2, − 2〉, we arrive at
the same amplitudes as derived up to zeroth order in V0 in
Sec. III of Ref. [18]. We note, however, that the only two
states that are mixed, in fact, are |00〉 and |02〉 which are in the
LLL, and not |2, − 2〉 which is a higher Landau level; up to the
level of the approximation used in this article, the fluctuations
reside solely in the LLL.

IV. PROPERTIES OF THE BOGOLIUBOV GROUND STATE

We now investigate the stable ground state of the Hamilto-
nian, Eq. (9), for � = �c and show that fluctuations drive the
vortex away from the center of the trap and modify its velocity
profile. The order parameter is ψ(r) = 〈	(r)〉 or, in terms
of annihilation operators, 〈a1〉 = √

N1 for the macroscopic
condensate with N1 particles in |01〉. The condensed state
|N1〉 is a coherent state that satisfies the eigenvalue equation
a1|N1〉 = √

N1|N1〉 with the normalized solution

|N1〉 = e−N1/2 e
√

N1a
†
1 |vac〉, (16)

where |vac〉 is the vacuum. This state does not conserve particle
number.

The Bogoliubov ground state is determined by the condition
that no quasiparticles be present, i.e.,

α±1|G〉 = 0. (17)
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Following the standard procedure (see, e.g., Ref. [24]), we find
the normalized Bogoliubov ground state

|G〉 = 1√
2

e−a
†
2a

†
0/

√
2|N1〉, (18)

which has an expectation value of the angular momentum
operator L = ∑

m m a
†
mam given by 〈G|L|G〉 = N .

We now compare the laboratory-frame energy of |G〉 with
that of the mean-field and exact ground states. The exact non-
normalized many-body ground state for 2 � L � N is [16]

ψL
x (z1 · · · zN )=

∑
i1<i2<...<iL

(
zi1 − zc

)(
zi2 − zc

) · · · (ziL − zc

)
,

(19)

where zc = ∑N
i=1 zi/N is the center of mass coordinate;

we suppress the factor exp[−∑N
k=1 |zk|2/2] common to all

N -particle LLL states from now on for brevity. This state
has energy EL

x = (N + L)ω + V0N (N − 1 − L/2)/2 in the
laboratory frame. The mean-field ground state for L = N with
a vortex at origin,

ψmf(z1 · · · zN ) =
N∏

i=1

φ1(zi), (20)

has energy Emf = 2Nω + V0N
2/4 in the laboratory frame.

Therefore, at L = N (and, hence, at � = �c), the Bogoliubov
ground state lies exactly halfway in energy between the mean-
field ground state and the exact one.

A diagnostic of the structure of the vortex is the circulation
around a closed contour C encircling the center,


 =
∮
C

v(r) · dr, (21)

quantized in units of 2πh̄/m for a quantum vortex. The velocity
is v(r) = 〈j(r)〉/〈ρ(r)〉 where 〈j(r)〉 = (h̄/m)Im〈	†(r)∇	(r)〉
is the expectation value of the current operator and 〈ρ(r)〉 =
〈	†(r)	(r)〉 is that of the density operator. In the mean-field
state, Eq. (20),

vmf(r) = h̄

m

θ̂

r
, (22)

which describes an irrotational superflow (except at the origin
where the vortex is located) with circulation 
mf = 2πh̄/m.
However, the Bogoliubov ground state (18) gives

〈j(z)〉 = h̄

m

[
N

(
1 − 2

N
+ 3

N2

)
+ |z|2

]
|z| e−|z|2

πd2
θ̂ , (23)

〈ρ(z)〉 =
[

1 + N

(
1 − 2

N
+ 3

N2

)
|z|2 + |z|4

2

]
e−|z|2

πd2
. (24)

Thus, in the limit of large N , the velocity field is

vG(r) = h̄

m

r θ̂

r2 + �(r)
, (25)

where �(r) = (1 − 1
2 r4)/(N + r2) is the correction due to

quantum fluctuations. The circulation in |G〉 is then


G(r) = 
mf
r4 + Nr2

1
2 r4 + Nr2 + 1

. (26)

0.5 1.0 1.5 2.0
⏐⏐z

0.5

1.0

1.5

2.0

2.5

3.0

3.5

〈 ρ(z) 〈

FIG. 2. (Color online) Density (in units of 1/πd2) of the
Bogoliubov (solid line) and mean-field (dashed line) ground states
for N = 10, showing a vortex at the center.

For large but finite N , we find 
G/
mf ∼ 1 (increasing
from 1/2 to 4/3) for the large range 1/

√
N <∼ r <∼

√
N ,

while 
G/
mf → 0 as r → 0 and 
G/
mf → 2 as r →
∞. The vortex (at the center of the trap in mean-field)
is now pushed off-center by quantum fluctuations, hence
the vanishing circulation as the contour shrinks toward the
origin. The off-center vortex fluctuates very close about the
origin, as shown by the circulation approaching its mean-field
value as the contour radius expands past O(1/

√
N ). On

the other hand, as the contour expands even farther toward
infinity, the circulation grows to twice its mean-field value,
indicating the presence of an image vortex much farther
from the origin. These results agree with those of Sec. V.
In the thermodynamic limit (N → ∞), however, 
G equals
the quantum of circulation everywhere except at the origin
(where it is zero) and at infinity (where it is twice the quantum
of circulation); therefore, increasing the number of particles
suppresses quantum fluctuations of the vortex and leads to the
vortex being driven less farther from the center of the trap and
the image vortex being driven more outward to infinity.

Quantum fluctuations change the particle density of
the ground state compared to its mean-field value, ρmf =
N |z|2e−|z|2/πd2. The average density is now non-zero at the
center of the trap, 〈ρ(0)〉 = 1/πd2 (see Fig. 2). One can
understand this finite density in terms of the vortex fluctuating
about the origin, as discussed above. Snapshots of the cloud
in the laboratory would reveal a vortex at random positions
(varying from shot to shot due to Bogoliubov fluctuations);
averaging over these density snapshots would lead to Eq. (24)
for the average particle density of |G〉. One can also understand
the finite density at the origin in terms of the single-particle
quantum states, in particular, the nonzero occupation of |00〉
whose wave function does not vanish at the origin.

V. THE STABLE CONDENSATE

The anomalous mode, denoted by −1 in Eq. (9), suggests
that a condensate with a singly quantized vortex at the center of
the trap is not stable against fluctuations for � < �c. However,
Eqs. (13) and (14) indicate that a mean-field condensate wave
function of the form

ψ(z) =
√

N1 φ1(z) + uφ0(z) − v φ2(z) (27)
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can have lower energy and be stable, depending on the values
of u and v (which can be taken to be real). We search for a
better ground state by tuning the two extra degrees of freedom,
u and v, as follows.

Normalizing ψ(z) leads to N = N1 + u2 + v2; hence, u

and v are bounded by u2 + v2 � N . The energy in the rotating
frame, then, becomes

E′ =
[
N (2ω − �) + 1

4
N2V0

]
+

[(
� − ω + NV0

2

)
u2

+
(

ω − � + NV0

4

)
v2 − NV0√

2
uv

]

+V0

(
− 1

4
u4 − 5

16
v4 − 3

4
u2v2 + 1√

2
u3v + 1√

2
uv3

)
.

(28)

The constant term is the energy of a condensate with N parti-
cles in |01〉. Note that E′ is invariant under the simultaneous
transformation u → −u and v → −v. We choose 0 � v � u,
because this sector of the u-v plane is energetically favorable.

We denote Ẽ′ = E′ − [N (2ω − �) + N2V0/4] as the en-
ergy contribution from the mixing of |00〉 and |02〉 with
the condensate. Then, introducing the parametrization u =
ζ cosh(θ/2) and v = ζ sinh(θ/2), we find

Ẽ′ = ζ 2

[(
� − ω⊥ + NV0

8

)
+ NV0

8
(3 cosh θ −

√
8 sinh θ )

]

+ ζ 4 V0

128

[−15 + 4 cosh θ − 21 cosh(2θ )

+ 16
√

2 sinh(2θ )
]
. (29)

Ignoring the quartic part for now, i.e., assuming u,v 	 √
N1

or N1 <∼ N , we minimize the quadratic part with respect to θ

and find tanh θm = √
8/3, which is depicted by the straight

dashed line in the u-v plane in Fig. 3. With this value of θ , we
have

Ẽ′ = (� − �c)ζ 2 + 3V0

16
ζ 4. (30)

The quadratic term shows that up to second order in the mixing
due to interactions, the system is unstable for � < �c, as in
the quantum treatment.

− 30 − 20 − 10 0 10 20 30

0
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FIG. 3. (Color online) Contour plot of E′ for N = 103, NV0 =
0.1, and � = ω − 3

8 NV0. Darker shades indicate lower energies. The

straight dashed line represents the direction given by tanh θm = √
8/3;

the curved solid line is the solution of Eq. (47), discussed below.

For � > �c, Eq. (30) is a monotonically increasing
function of ζ with a minimum at ζ = 0 or

u>
m = v>

m = 0, (31)

describing a system fully condensed into |01〉 with one vortex
at the center of the trap. (The superscripts “< ” or “> ” denote
rotations slower or faster than �c.) The energy in the rotating
frame becomes

E′>
m = (

Nω + 1
2N2V0

) + N (�c − �), (32)

where the first term is just the energy were all N particles
condensed into |00〉. For � � �c, though, minimizing Eq. (30)
gives

u<
m =

√
16(�c − �)

3V0
, v<

m =
√

8(�c − �)

3V0
, (33)

so that u<
m = √

2 v<
m , and the rotating-frame energy becomes

E′<
m =

(
Nω + 1

2
N2V0

)
+ N (�c − �) − 4(�c − �)2

3V0
.

(34)

The boundedness of u and v implies 0 � ζ 2
m cosh θm � N .

Hence, the region of validity of Eqs. (33) and (34) is �m �
� � �c, where

�m = ω − 3
8NV0. (35)

Then, for � < �m, the point (u<
m,v<

m) lies outside the circle
defined by u2 + v2 = N and does not represent a physical
solution.

In order to check for the existence of lower-energy states
on the edge of the circle, where u2 + v2 = N , we have to

compare E
′�
m with the corresponding energy E

′�
e for points

on the edge. Since N1 = 0 on the edge, we find

E′
e =

(
Nω + 1

2
N2V0

)
+ 2(�c − �)v2 + 3V0

16
v4. (36)

For � � �c, this energy increases monotonically with v, with
the minimum at

u<
e =

√
N, v<

e = 0, (37)

representing a system fully condensed into |00〉 (with no
vortex) and the rotating-frame energy

E′<
e = Nω + 1

2N2V0. (38)

For � > �c, however, the minimum is at

u>
e =

√
N − 16(� − �c)

3V0
, v>

e =
√

16(� − �c)

3V0
, (39)

and the energy in the rotating frame is

E′>
e =

(
Nω + 1

2
N2V0

)
− 16(� − �c)2

3V0
. (40)
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Therefore, for �m � � � �c, the difference between the two
energies is

E′<
m − E′<

e = 4

3V0
(�c − �)(� − �∗

1), (41)

where �∗
1 = ω − NV0. Since �∗

1 < �m, we find that the point
(u = √

N,v = 0) corresponds to the global minimum of the
energy for the entire region 0 � � � �c, indicating that the
system has fully condensed into |00〉 with no vortex, whereas a
local minimum of the energy appears at (u = u<

m,v = v<
m) for

�m � � � �c. This latter point corresponds to a metastable
state which describes two vortices (asymmetric with respect
to the origin) in the condensate; hence, the metastability
frequency �m is the rotation frequency at which a metastable
state appears in the energy spectrum. On the other hand, for
� > �c, the difference between the two energies is

E′>
m − E′>

e = 16

3V0
(� − �c)(� − �∗

2), (42)

where �∗
2 = ω − 1

16NV0. Thus, if �c < � � �∗
2, the point

(u = 0,v = 0), i.e., the center of the circle, corresponds to
the global minimum of the energy, indicating that the system
has fully condensed into |01〉 with one vortex at the center.
For � > �∗

2, however, the global minimum of the energy is at
(u = u>

e ,v = v>
e ) on the edge of the circle, and the ground state

is a coherent superposition of |00〉 and |02〉 with two vortices
in a symmetric configuration with respect to the origin.

Hence, �c is the critical frequency for creating a centered
vortex, and �∗

2 is the critical frequency at which two vortices
nucleate in the condensate. Note that �c agrees with the
external rotation frequency derived in Refs. [2,18]; however,
�∗

2 is bigger than the two-vortex nucleation frequency, ω −
0.078NV0, calculated numerically in Ref. [2] due to the very
limited Hilbert space used here with only {|00〉,|01〉,|02〉} as
opposed to a rather large one used in Ref. [2].

The metastable state, for which u<
m = √

2 v<
m , has two

vortices at the zeros of ψ(z), i.e.,

z±
m(�) =

√
N − 3(v<

m)2 ± √
N + (v<

m)2

√
2 v<

m

, (43)

where � enters through v<
m on the right side. Using Eq. (33),

we find v<
m = √

N/3 at � = �m. Hence, z±
m(�m) = ±√

2.
However, as � increases toward �c, we find for small v<

m

that z±
m → ±√

2(v<
m/

√
N )∓1 or, in other words, z+

m → +∞
whereas z−

m → 0. As � increases from �m to �c, the vortex
at +√

2 moves to infinity, while the one at −√
2 reaches the

center and becomes stable there.
It is instructive to compare this result to that of Ref. [19],

where the authors assume a condensate with an off-center
vortex at position b close to the center, i.e., χ (z) ∼ √

N (z − b),
and find perturbative corrections to the wave function using
the Gross-Pitaevskii equation. The new non-normalized wave
function in the LLL up to O(b2) is χ (z) ∼ √

N (z − b)(1 +
bz/2 + · · ·) [see Eq. (15) of Ref. [19]] with the rotation
frequency, to lowest order in b, being � � �c [see Eq. (16) of

Ref. [19]]. This wave function represents two vortices at b and
−2/b. Normalizing this wave function up to O(b2) leads to

χ (z) ∼
√

N

[
b

2
z2 +

(
1 − 3

4
b2

)
z − b

]
. (44)

We can repeat a similar procedure for the metastable state
for which u<

m = √
2 v<

m . Then, the condensate wave function,
Eq. (27), becomes

ψ(z) ∼
√

N1 z + u<
m − u<

m

2
z2. (45)

Expanding for small u<
m and defining b = −u<

m/
√

N , we have

ψ(z) ∼
√

N

[
b

2
z2 +

(
1 − 3

4
b2

)
z − b

]
. (46)

Thus, χ (z) and ψ(z) have the same form with b ↔ b. Since b

is small, ψ(z) also represents two off-center vortices at b (close
to the origin) and −2/b (much farther away in the evanescent
tail of the cloud). Using Eq. (33), we find the rotation rate
of this two-vortex configuration in the laboratory frame to
be � = �c − (3/16)NV0|b|2 which includes the next-order
correction of O(|b|2) to the result of Ref. [19]. Note that while
the calculations of Ref. [19] are limited to the fast rotating
regime and are valid only in the vicinity of �c (due to their
perturbative nature in the small parameter � − ω), the method
presented here covers the entire region 0 � � � ω and is only
limited by the number of states included in the condensate
wave function.

VI. THE VALLEY AND THE METASTABLE POINT

The derivation of the local minimum of the energy in the
metastable regime, �m � � � �c, has so far been restricted
to small values of u and v, i.e., when � → �c according
to Eq. (33). Ignoring the quartic term in Eq. (29) leads to a
constant θm, representing a straight line in the u-v plane which
the local minimum traverses as � varies. Including the quartic
terms causes the valley in the energy landscape to curve, as
seen in Fig. 3. In this section, we rederive the metastable state
and its onset frequency �m for larger values of u and v, keeping
the quartic terms in the energy.

We first determine the equation governing the valley. The
valley is a set of points, denoted here by v(u), at which the
change in the energy is extremum. We define u = R cos η and
v = R sin η and write δE′ = E′(u + δu,v + δv) − E′(u,v) �
(δu ∂uE

′ + δv ∂vE
′). We find the direction that extremizes the

change in the energy by keeping R constant while varying η;
thus, δu = −R sin η δη and δv = R cos η δη. Then, δE′/δη =
R(− sin η ∂uE

′ + cos η ∂vE
′) = 0 which gives ∂vE

′/∂uE
′ =

tan η = δv/δu, where the last equality is just the slope of the
tangent to the curve v(u). Therefore, the differential equation
for the bottom of the valley is

dv

du
= ∂vE

′

∂uE′ with v(u = 0) = 0. (47)

Its solution for � = ω − 3
8NV0 is the solid line in Fig. 3.
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FIG. 4. (Color online) Energy landscapes for � = ω − (2.1824/8)NV0, ω − (2.1094/8)NV0, and ω − (1/4)NV0 from left to right, for
N = 103 and NV0 = 0.1. The dots represent the critical points, with SP and MIN indicating the saddle-points and minima, respectively.

We rewrite Ẽ′ as ζ 2A(θ ) + ζ 4B(θ ), where

A(θ ) = NV0

8

[
�̃ + (3 cosh θ −

√
8 sinh θ )

]
, (48)

B(θ ) = V0

128

[−15 + 4 cosh θ−21 cosh(2θ )+16
√

2 sinh(2θ )
]
,

(49)

with �̃ = (� − ω + 1
8NV0)/ 1

8NV0. At the critical points,
∂ζ Ẽ

′ = ∂θ Ẽ
′ = 0. The trivial solution, ζ = 0, represents the

center of the circle. Then, assuming ζ �= 0, we find

1

A

∂A

∂θ
= 1

2B

∂B

∂θ
, (50)

which gives the critical points for all values of �.
For small �, the only critical point in the valley is at the

origin. However, Fig. 4 shows that as � increases toward �c,
two other critical points (a saddle point and a minimum of the
energy) appear in the valley. It is also evident that the minimum
moves toward the center as � increases. Thus, there should be
a rotation frequency, namely, the metastability frequency �m,
at which the saddle-point and the minimum lie on top of each
other and, hence, the second derivative of the energy vanishes.
Using Eq. (50), we find that at �m,

1

A

∂2A

∂θ2
= 1

2B

∂2B

∂θ2
−

(
1

2B

∂B

∂θ

)2

. (51)

The single critical point (apart from the origin) at �m satisfies
both Eqs. (50) and (51). Dividing Eq. (51) by Eq. (50) leads to
an equation for θ independent of any other variable, namely,

∂2A/∂θ2

∂A/∂θ
= ∂2B/∂θ2

∂B/∂θ
− 1

2

∂B/∂θ

B
, (52)

with the solution cosh θm � 2.0776 at �m or, using Eq. (50),
�̃m � −1.1824. Therefore, the frequency at which the first
metastable state appears is, in fact,

�m = ω − 2.1824

8
NV0, (53)

which is much closer to the critical frequency �c compared
to the frequency given by Eq. (35). Contour plots of energy
for rotation frequencies �m and �c can be seen in the left
and right panels of Fig. 4, showing that the saddle-point at

the origin (for � < �c) turns into a minimum for � > �c.
Since the approximations of the previous section are valid for
� <∼ �c, the minimum approaches the origin following the line

v = u/
√

2, i.e., the slope of the valley at the origin is 1/
√

2
near �c.

The metastable state located at (um,vm) represents two off-
center vortices at the zeros of the condensate wave function
z±
m, where

vm√
2

z±
m

2 −
√

N − (
u2

m + v2
m

)
z±
m − um = 0. (54)

The positions of the two roots of this equation as functions of �
are plotted in Fig. 5 for the metastable regime, �m � � � �c.
Just as before, one vortex approaches the center of the trap
while the other moves to infinity as � increases. However,

zm
_

zm
+

FIG. 5. (Color online) The position of the two off-center vortices
for N = 103, NV0 = 0.1, and �m � � � �c. Note the different
vertical scales for z+

m and z−
m.
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their initial positions are not symmetric with respect to the
origin but are at z−

m(�m) = −0.5917 and z+
m(�m) = +4.2506

for the particular values of N and V0 used in the figure. Since
the vortices are stationary in the rotating frame, they precess
around the origin with frequency � in the laboratory frame.
Therefore, as seen in the laboratory frame, z−

m spirals in toward
the center of the trap, while z+

m spirals out to infinity as �
increases.
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