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Frictionless atom cooling in harmonic traps: A time-optimal approach
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In this article we formulate frictionless atom cooling in harmonic traps as a time-optimal control problem,
permitting imaginary values of the trap frequency for transient time intervals during which the trap becomes
an expulsive parabolic potential. We show that the minimum time solution has a “bang-bang” form, where the
frequency jumps suddenly at certain instants and then remains constant, and calculate estimates of the minimum
cooling time for various numbers of such jumps. A numerical optimization method based on pseudospectral
approximations is used to obtain suboptimal realistic solutions without discontinuities, which may be implemented
experimentally.
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I. INTRODUCTION

Frictionless atom cooling in a harmonic trap is defined as
the problem of changing the harmonic frequency of the trap
to some lower final value, while keeping the populations of
the initial and final levels invariant, thus without generating
friction and heating. Achieving this goal in minimum time
has many important potential applications. For example, it
can be used to reach extremely low temperatures inaccessible
by standard cooling techniques [1], to reduce the velocity
dispersion and collisional shifts for spectroscopy and atomic
clocks [2], and in adiabatic quantum computation [3]. It is
also closely related to the problem of moving in minimum
time a system between two thermal states, as for example in
the transition from graphite to diamond [4]. By using optimal
control theory, it has been proved that minimum transfer time
can be achieved with “bang-bang” real frequency processes,
where the frequencies change suddenly at certain instants
and then stay constant [4]. In another recent paper [5], it
was shown that when the restriction for real frequencies is
relaxed, allowing the trap to become an expulsive parabolic
potential at some time intervals, shorter transfer times can
be obtained. Based on the theory presented in [5], in this
article we reformulate the frictionless cooling problem as
a minimum-time optimal control problem, permitting the
frequency to take real and imaginary values in specified ranges.
We then show that the optimal solution has a “bang-bang” form
and use this fact to calculate estimates of the minimum transfer
time for various numbers of frequency jumps. We finally use
a numerical optimization method based on pseudospectral
approximations to find suboptimal realistic solutions which
do not suffer from discontinuities and are thus appropriate for
experimental implementation. The efficiency of the method is
demonstrated by several numerical examples.

II. FORMULATION OF THE COOLING PROBLEM IN
TERMS OF OPTIMAL CONTROL

Consider the one-dimensional time-dependent harmonic
oscillator with Hamiltonian

H (t) = 1

2m
p̂2 + mω2(t)

2
q̂2, (1)
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with initial frequency ω(0) = ω0 at t = 0 and final frequency
ω(tf ) = ωf < ω0 at the final time tf . This corresponds to a
temperature reduction by a factor ωf /ω0. The goal is to find
a path ω(t) between these two values so that the populations
of all the oscillator levels n = 0,1,2, . . . at t = tf are equal
to the ones at t = 0. We would also like to achieve this in
minimum time tf . It was shown in [5] that appropriate ω(t)
can be efficiently engineered by using an invariant of the
motion (1). Additionally, by relaxing the restriction ω2(t) � 0,
allowing ω2(t) < 0 for some time intervals where the potential
becomes expulsive, shorter cooling times can be obtained. In
the following we present an overview of the corresponding
theory, which will lead naturally to the formulation of the
problem in terms of optimal control.

The basis of the analysis is the invariant of the motion

I (t) = mω2
0

2

(
q̂

b

)2

+ 1

2m
π̂2, (2)

where π̂ = bp̂ − mḃq̂ plays the role of a momentum conjugate
to q̂/b and the dots represent derivatives with respect to time
[6]. The scaling dimensionless function b = b(t) satisfies the
subsidiary condition

b̈ + ω2(t)b = ω2
0

b3
, (3)

an Ermakov equation where real solutions must be chosen to
make I Hermitian. I (t) has the structure of a harmonic os-
cillator Hamiltonian, with time-dependent eigenvectors |n(t)〉
and time-independent eigenvalues (n + 1/2) h̄ω0. The general
solution of the Schrödinger equation is a superposition of
orthonormal “expanding modes”

ψ(t,x) =
∑

n

cne
iαn(t)〈x|n(t)〉, (4)

where αn(t) = −(n + 1/2)ω0
∫ t

0 dt ′/b2, and cn are time-
independent amplitudes. For a single mode,

�n(t,x) =
(

mω0

πh̄

)1/4
eiαn(t)

(2nn!b)1/2
exp

[
i
m

2h̄

(
ḃ

b
+ iω0

b2

)
x2

]

×Hn

[(
mω0

h̄

)1/2
x

b

]
, (5)
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where Hn is the Hermite polynomial of degree n. The time-
dependent average energy of the mode is

〈H (t)〉n = (2n + 1) h̄

4ω0

[
ḃ2 + ω2(t)b2 + ω2

0

b2

]
. (6)

The average position is zero and the standard devia-
tion σ = (

∫
x2|�n|2dx)1/2 is proportional to b, σ = b(n +

1/2)1/2/(mω0/h̄)1/2, which underlines the physical meaning
of the scaling factor.

The approach taken in [5] is to leave ω(t) undetermined
at first and impose properties on b and its derivatives at the
boundaries t = 0 and t = tf to assure that

(1) Any eigenstate of H (0) evolves as a single expanding
mode.

(2) This expanding mode becomes, up to a position-
independent phase factor, equal to the corresponding eigen-
state of the Hamiltonian H (tf ) of the final trap.

When the above are satisfied, the populations in the
instantaneous basis are kept equal at the initial and final
times. It is not hard to find the corresponding boundary
conditions. By choosing b(0) = 1,ḃ(0) = 0 at t = 0, H (0)
and I (0) commute and have common eigenfunctions at that
instant. Since ω(0) = ω0, it holds that b̈(0) = 0 from (3).
These conditions imply that any initial eigenstate of H (0)
will evolve according to the expanding mode (5). In general
H (t) and I (t) will not commute for t > 0. At t = tf it is
desirable for �n(tf ,x) to be proportional, up to the global phase
factor eiαn(tf ), to the corresponding eigenstate of the final trap.
If we impose b(tf ) = γ = (ω0/ωf )1/2,ḃ(tf ) = 0,b̈(tf ) = 0,
then from (3) we get ω(tf ) = ωf and from (5) we see that
�n(tf ,x) has the desired form. After fixing b(t) and its
derivatives at the boundaries, b(t) can be chosen as a real
function satisfying these conditions. For example, substituting
the simple polynomial ansatz

b(t) =
5∑

j=0

aj t
j (7)

into the six boundary conditions gives six equations that can
be solved to provide the coefficients

b(t) = 6(γ − 1)s5 − 15(γ − 1)s4 + 10(γ − 1)s3 + 1, (8)

where s = t/tf . Once b(t) has been determined, the physical
frequency ω(t) is obtained from the subsidiary condition (3).

Note that in the above method, the duration tf is considered
to be fixed and there are no bounds on the frequency
ω(t). An alternative approach is to express the frictionless
cooling problem as a minimum-time optimal control problem,
incorporating possible restrictions on ω(t) due for example to
experimental limitations. If we set

x1 = b, x2 = ḃ

ω0
, u(t) = ω2(t)

ω2
0

, (9)

and rescale time according to tnew = ω0told, we obtain the fol-
lowing system of first-order differential equations, equivalent
to the Ermakov equation (3):

ẋ1 = x2, (10)

ẋ2 = −ux1 + 1

x3
1

. (11)

The optimal control problem is this: Find −v1 � u(t) �
v2 with u(0) = 1,u(tf ) = 1/γ 4 such that starting from
(x1(0),x2(0)) = (1,0), the above system reaches the final
point (x1(tf ),x2(tf )) = (γ,0) in minimum time tf [note that
γ = (ω0/ωf )1/2 > 1]. The boundary conditions on the state
variables (x1,x2) are equivalent to those for b and ḃ, while
the boundary conditions on the control variable u lead to
the corresponding conditions for b̈. Parameters v1,v2 > 0
define the allowable values of u(t) with v2 � u(0) = 1. Note
that the possibility ω2(t) < 0 (expulsive parabolic potential)
for some time intervals is permitted. Finally observe that
the above system describes the one-dimensional newtonian
motion of a unit-mass particle, with position coordinate x1

and velocity x2. The acceleration (force) acting on the particle
is −ux1 + 1/x3

1 . This point of view can provide useful physical
insight, as we will see later.

The advantage of expressing the cooling problem in terms
of optimal control is that analytical and numerical tools from
this area can be used to engineer ω(t), while taking into account
possible limitations on the frequency. The control-theoretical
framework has been successfully employed to solve various
problems in quantum dynamics [7–25]. We show how this can
be done for the problem at hand in the following sections.

III. THEORETICAL OPTIMAL SOLUTION OF
BANG-BANG TYPE

The form of the theoretical time-optimal solution can be
found using Pontryagin’s maximum principle [26], which we
state here in order to keep the paper self-contained.

(Maximum principle for time-optimal problems) Con-
sider the autonomous dynamical system

ẋ = f(x,u), (12)

where x = (x1,x2, . . . ,xn) ∈ X (state space), u =
(u1,u2, . . . ,um) ∈ U (control region), and f = (f1,f2, . . . ,fn),
with functions fi(x,u) continuous in the variables x,u
and continuously differentiable with respect to x. The
corresponding control Hamiltonian is defined as

Hc(p,x,u) =
n∑

i=1

pnfn(x,u), (13)

where p = (p1,p2, . . . ,pn) is the adjoint vector. Let u(t),0 �
t � tf , be an admissible control which transfers the state vector
from x0 to xf , and let x(t) be the corresponding trajectory, so
that x(0) = x0,x(tf ) = xf . For u(t),x(t) to be time-optimal,
it is necessary that there exists a nonzero, continuous vector
function p(t) = (p1(t),p2(t), . . . ,pn(t)) such that

(1)

ẋ = ∂Hc

∂p
, (14)

ṗ = −∂Hc

∂x
. (15)

The first equation is equivalent to the system equation (12),
while the other is the equation for the adjoint vector.
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(2) For all 0 � t � tf the function Hc(p(t),x(t),u) of the
variable u ∈ U attains its maximum at the point u = u(t).

(3) Hc(p(t),x(t),u(t)) = c � 0, c constant.
For the system described by (10) and (11) the

states (x1,x2) ∈ X = (0, + ∞) × R and the control u ∈ U =
[−v1,v2]. Note that x1(t) > 0 because the starting point
is x1(0) = 1 > 0, the evolution is continuous for x1 �= 0,
and when x1 → 0+ there is a “repulsive force” ∼1/x3

1
that forces x1 to increase. The system equations satisfy the
necessary smoothness conditions in spaces X,U. The control
Hamiltonian is

Hc(p1,p2,x1,x2,u) = p1x2 + p2

x3
1

− p2x1u. (16)

Substituting (16) into (15) gives

ṗ1 =
(

u + 3

x4
1

)
p2, (17)

ṗ2 = −p1. (18)

According to the maximum principle, Point 2 above, the
time-optimal control u(t) maximizes the control Hamiltonian
at each time. Note that Hc is a linear function of the control
variable u. Since u is bounded, −v1 � u � v2, the optimal
control that maximizes Hc is determined by the sign of the
coefficient of u, which is −p2x1. But x1 > 0, thus when p2 �=
0, the optimal control in (0,tf ) is given by

u(t) =
{−v1, p2 > 0

v2, p2 < 0
. (19)

When

p2 = 0 (20)

for some time interval, the maximum principle provides
a priori no information about the optimal control in this
interval, which in that case is called a singular control. In
general, singular extremals can play some role in the control
of quantum systems [22,23]. We show that this is not the
case for our problem, i.e., that condition (20) cannot hold
for any time interval [t1,t2] ⊂ (0,tf ). Suppose that p2(t) = 0
for t ∈ [t1,t2], then from (18) we have p1 = −ṗ2 = 0 for
t ∈ [t1,t2]. Thus p1(t) = p2(t) = 0 for t ∈ [t1,t2], in contra-
diction with the maximum principle that requires the vector
p(t) = [p1(t),p2(t)] to be nonzero. So p2 can be zero only at
specific moments (switching times). The optimal control has
“bang-bang” form (19), where the controller changes from one
boundary value to the other at the switching times.

Observe that when u is a constant and Eqs. (10) and (11)
are satisfied, then

x2
2 + ux2

1 + 1

x2
1

= c, (21)

where c is a constant. From (6), (9), and (21) we find
that 〈H (t)〉n/h̄ω0 = (2n + 1)c/4, so the paths of constant u

correspond to constant average energy for each mode. In Fig. 1
we plot the integral curves of the system defined in (10) and
(11) for u = −v1 and u = v2.
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−20
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20
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FIG. 1. Integral curves of the system for u = −v1 = −1 (dashed
line) and for u = v2 = 8 (solid line).

For a feasible “bang-bang” strategy with only one
intermediate switching at t = t1, the appropriate control
sequence is

u(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, t = 0

−v1, 0 < t < t1

v2, t1 < t < t1 + t2

1/γ 4, t = t
(1)
f = t1 + t2

, (22)

which is illustrated in Fig. 2(a). Applying the control boundary
values in the opposite order does not transfer the state-space
vector to the target. Note that the discontinuities at the
beginning and at the end of the pulse sequence are not implied
by the maximum principle but from the initial and final
conditions on the control u(t). If we ignore these boundary
conditions and solve the corresponding time-optimal problem,
the minimum time obtained is a lower bound of the minimum
time when these conditions are on. This bound is achieved
with instantaneous jumps of the control at the initial and final
points.

We next calculate the necessary time to reach the final point
following the control strategy (22). Integrating (10) and (11)
yields for t ∈ [0,t1]

x1(t) =
√

1 + v1 + 1

v1
sinh2(

√
v1t), (23)
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(a) Control function (b) Corresponding trajectory

FIG. 2. The control function with one intermediate switching
(a) and the corresponding trajectory (b) for v1 = 1,v2 = 3, and
γ = 10. Dashed line corresponds to u = −v1, solid line to u = v2.
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while for t ∈ [t1,t1 + t2]

x1(t) =
√

γ 2 − γ 4v2 − 1

γ 2v2
sin2[

√
v2(t1 + t2 − t)]. (24)

From (21) we find that the state-space equation of the first
segment AB in Fig. 2(b) is

x2
2 − v1x

2
1 + 1

x2
1

= 1 − v1, (25)

since u = −v1 and the starting point A(1,0) belongs to this
segment. The corresponding equation for the second segment
BF is

x2
2 + v2x

2
1 + 1

x2
1

= γ 2v2 + 1

γ 2
, (26)

since u = v2 and the final point F (γ,0) belongs to this seg-
ment. The two segments meet at point B(xB

1 ,xB
2 ). Subtracting

(25) from (26) we find that

xB
1 =

√
γ 2v1 + 1 + γ 2(γ 2v2 − 1)

γ 2(v1 + v2)
. (27)

Using the above value in (23) and (24) we obtain

t1 = 1√
v1

sinh−1

√
v1(γ 2 − 1)(γ 2v2 − 1)

γ 2(v1 + v2)(v1 + 1)
, (28)

t2 = 1√
v2

sin−1

√
v2(γ 2 − 1)(γ 2v1 + 1)

(v1 + v2)(γ 4v2 − 1)
. (29)

The total necessary time is

t
(1)
f = t1 + t2, (30)

where the superscript denotes the number of intermediate
switchings.

We next show that when v2 is large enough we can
find a control strategy with two intermediate switchings that
accomplishes the desired transfer in less time. Consider the
following control sequence:

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, t = 0

v2, 0 < t < t1

−v1, t1 < t < t1 + t2

v2, t1 + t2 < t < t1 + t2 + t3

1/γ 4, t = t
(2)
f = t1 + t2 + t3

, (31)

where

t1 = 1

2

π√
v2

, (32)

t2 = 1√
v1

sinh−1

√
v1v2(γ 2 − 1)(γ 2v2 − 1)

γ 2(v1 + v2)
(
v1 + v2

2

) , (33)

t3 = 1√
v2

sin−1

√
(γ 2v2 − 1)(v2 + γ 2v1)

(v1 + v2)(γ 4v2 − 1)
. (34)

Time t1 is chosen such that the first intermediate switching
takes place as close as possible to x1 = 0 (we explain later how
this is related to minimizing the transfer time), while t2 and t3
are determined such that the target point F (γ,0) is reached at
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(a) Intuitive control
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(b) Corresponding trajectory
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(c) Optimal control
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(d) Corresponding trajectory

FIG. 3. The control functions with two intermediate switchings
and the corresponding trajectories for v1 = 1,v2 = 8,γ = 10. Dashed
line corresponds to u = −v1, solid line to u = v2. (a, b) show the
intuitive solution with switching times given by (32)–(34), while
(c, d) show the optimal solution with at most two intermediate
switchings where the switching times are calculated numerically.

the final time. The control u(t) and the corresponding trajectory
for v1 = 1,v2 = 8, and γ = 10 are shown in Figs. 3(a) and
3(b), respectively. The total necessary time for this control
policy is

t
(2)
f = t1 + t2 + t3. (35)

Observe that for v1 constant

limv2→∞ t
(1)
f = 1√

v1
sinh−1

√
v1(γ 2 − 1)

v1 + 1
, (36)

limv2→∞ t
(2)
f = 0, (37)

thus there is a value v∗
2 such that t

(2)
f < t

(1)
f for v2 > v∗

2 . In
Fig. 4(a) we plot t

(1)
f and t

(2)
f as a function of v2 for v1 = 1 and

γ = 10. Observe that for v2 > 6.786, the strategy including
two intermediate switchings is faster.

To understand intuitively why such a strategy can transfer
the state vector to the final point in less time, we use the one-
dimensional particle model where the position x1 and velocity
x2 of a unit mass particle satisfy equations (10) and (11), and
refer to Fig. 3(b). If v2 is large enough, then the particle can be
transferred relatively fast from starting point A, with position
x1 = 1 and velocity x2 = 0, to point B, with 0 < x1 � 1. At
this point, the force term 1/x3

1 is very large and substantially
accelerates the particle. When the particle passes through point
C, with position x1 = 1 same as the starting point A, it now has
a nonzero velocity (x2 > 0) that allows it to travel faster at the
final point F , with x1 = γ . The repulsive potential at x1 = 0
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FIG. 4. Total transfer times for the presented strategies as a
function of v2 for v1 = 1 and γ = 10. In (a) we plot the transfer
time t

(1)
f of the strategy with one intermediate switching (solid line),

as well as the transfer time t
(2)
f of the intuitive solution with two

intermediate switchings (dashed line). Observe that for v2 > 6.786
the second strategy is faster. In (b) we plot the transfer time tf for the
optimal strategy with at most two intermediate switchings, retrieving
similar results.

acts as a slingshot, resembling the gravitational slingshots used
in aerospace engineering to alter the speed of a spacecraft.

We emphasize that the values of t1,t2, and t3 given by
(32)–(34) are not optimal but correspond to a suboptimal
intuitive solution. We can determine the optimal switching
times numerically if we vary t1 (for specific t1, t2 and t3 are
automatically fixed from the requirement to reach the target
point at the final time) and pick the value that minimizes
the total transfer time. In Figs. 3(c) and 3(d) we show the
numerically calculated optimal solution with two intermediate
switchings for the same parameter values that are used in
Figs. 3(a) and 3(b) for the intuitive solution. Observe that
the two solutions are very similar but in the optimal one the
first intermediate jump takes place slightly earlier, before the
x1 axis is reached. In Fig. 4(b) we plot the total transfer
time tf , obtained with this numerical method, as a function
of v2 for v1 = 1 and γ = 10. Comparing with Fig. 4(a) it
is not hard to find that for v2 < 6.763 it is tf = t

(1)
f , while

for v2 > 6.763 it is tf ≈ t
(2)
f (actually tf < t

(2)
f as expected

since the intuitive solution is suboptimal). In other words,
for v2 < 6.763 the numerically calculated optimal solution
has only one intermediate switching (the method gives t1 = 0
indeed), while for v2 > 6.763 is very close to the intuitive
solution given by (31)–(34). Note that since tf < t

(2)
f , the

transition value of v2 just found (6.763) is slightly lower than
the one found above (6.786) using the intuitive solution.

For larger values of v2 it is possible to find strategies with
more than two intermediate switchings with shorter transfer
times, depending on the value of the target coordinate γ . For
example, consider the strategy with 2n intermediate switchings
whose corresponding trajectory is shown in Fig 5(a). It is
actually composed by n segments with two switchings, see
Fig. 5(b). The necessary time to travel the segment starting
from (βi−1,0) and ending at (βi,0) is

t
(2)
f (βi−1,βi)

= t1

(
1

βi−1
√

v2
,βi

)
+ t2

(
1

βi−1
√

v2
,βi

)
+ π

2
√

v2
, (38)

x
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0
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FIG. 5. A trajectory with 2n intermediate switchings (a) com-
posed by n segments with two switchings (b). Dashed line corre-
sponds to u = −v1, solid line to u = v2. Note that β0 = 1 and βn = γ .
In the limit v2 → ∞ the minimum transfer time corresponding to the
optimal choice of βi is plotted (panel c) for γ = 10 (solid line) and
γ = 50 (dashed line) as a function of n. Observe that for larger values
of γ the minimum is shifted toward larger values of n. For γ = 10
it is achieved for n = 2, i.e., four intermediate switchings. The exact
transfer times t

(2)
f ,t

(4)
f , and t

(6)
f , as calculated from (38) (valid at all

scales of v2) are plotted as functions of v2 for γ = 10 and v1 = 1.
Observe that for v2 � 43.32 the four-switchings strategy (dashed line)
becomes indeed optimal among the control policies that we consider.

where

t1(α,β) = 1√
v1

sinh−1

√
v1(β2 − α2)(α2β2v2 − 1)

β2(v1 + v2)(α4v1 + 1)
,

t2(α,β) = 1√
v2

sin−1

√
v2(β2 − α2)(α2β2v1 + 1)

α2(v1 + v2)(β4v2 − 1)
.

In the limit v2 → ∞ we obtain

t
(2)
f (βi−1,βi) → 1√

v2

[
π

2
+

√
β2

i

β2
i−1

− 1 + sin−1

(
βi−1

βi

)]
.

(39)

The total transfer time for the strategy with 2n switchings is

t
(2n)
f =

n∑
i=1

t
(2)
f (βi−1,βi), (40)

where β0 = 1 and βn = γ . We can find the optimal βi,i =
1,2, . . . ,n − 1, that minimize t

(2n)
f using dynamic program-

ming. Suppose that we know the optimal βi,i = 1,2, . . . ,

n − 2, and we want to find βn−1. This variable appears only
in the terms t

(2)
f (βn−2,βn−1) and t

(2)
f (βn−1,βn) of the sum (40).

Using Eq. (39) to approximate these terms and equating with
zero the derivative of their sum with respect to this variable,
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we find that the optimal βn−1 satisfies β2
n−1 = βn−2βn in

the limit v2 → ∞. It corresponds to a minimum since the
second derivative can be easily found to be positive. Working
analogously we get

β2
i = βi−1βi+1 (41)

for i = 1,2, . . . ,n − 1. Since β0 = 1,βn = γ , we obtain βi =
γ i/n,i = 1,2, . . . ,n. The minimum value t

(2n)
f,m of the transfer

time t
(2n)
f , as v2 → ∞, is

t
(2n)
f,m = n√

v2

[
π

2
+

√
γ 2/n − 1 + sin−1

(
1

γ 1/n

)]
, (42)

where note that each of the n segments is traveled in equal
time. In Fig. 5(c) we plot t

(2n)
f,m in units of 1/

√
v2 as a function

of n for γ = 10 (solid line) and γ = 50 (dashed line). Observe
that for larger γ the minimum of t

(2n)
f,m is shifted toward larger

values of n, i.e., the particle passes more times close to x1 = 0
to acquire more speed and thus reach faster the more distant
target point. For γ = 10 the minimum is obtained for n =
2, i.e., a four-switchings strategy. In Fig. 5(d) we plot t

(2n)
f ,

n = 1,2,3, for γ = 10 and v1 = 1, using the exact formula (38)
and not the approximation (39). Observe that for v2 � 43.32
the four-switchings strategy is indeed the optimal among the
control policies that we considered.

Although the time-optimal control has “bang-bang” form,
as shown above, such discontinuous changes in u(t) are
unrealistic and difficult to implement experimentally. To
overcome this problem, in the next section we use a powerful
numerical optimization method that allows us to find realistic
time-optimal solutions, following the path introduced in [5].

IV. REALISTIC SOLUTIONS USING A PSEUDOSPECTRAL
NUMERICAL METHOD

Pseudospectral methods were developed to solve partial
differential equations and recently adapted to solve optimal
control problems, see for example [27–31] and our recent
work for optimal pulse design in nuclear magnetic resonance
spectroscopy [20]. They are used to convert a continuous-time
optimal control problem to a discrete nonlinear programming
problem, which can be solved by many well-developed
computational algorithms.

These methods involve the approximation of the control and
state functions, u(t) and x(t), by orthogonal polynomial basis
functions on the domain [−1,1]. Using such a basis leads to
spectral accuracy, namely, the kth coefficient of the expansion
decays faster than any inverse power of k [32], permitting the
use of relatively low-order polynomials in the approximations.

In order to apply such a method, the first step is to
transform the optimal control problem from the time domain
t ∈ [0,tf ] to τ ∈ [−1,1] using the simple affine transformation
τ (t) = (2t − tf )/tf . In a redundant use of notation, we make
this transition and reuse the same time variable t . The system
equations become

ẋ1 = tf

2
x2, (43)

ẋ2 = tf

2

(
−ux1 + 1

x3
1

)
(44)

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

x

f(
x)

(a) Uniform Grid

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

x

f(
x)

(b) LGL Grid

FIG. 6. The N = 16 order interpolation of the function f (x) =
1/(16x2 + 1) based on a uniform grid (a) demonstrates the Runge
phenomenon whereas the interpolation based on the LGL grid (b)
does not.

with boundary conditions [x1(−1),x2(−1),u(−1)] = (1,0,1)
and [x1(1),x2(1),u(1)] = (γ,0,1/γ 4).

According to the Chebyshev Equioscillation theorem [33]
the best N th-order approximating polynomial to a continuous
function on the interval [−1,1], as evaluated by the uniform
norm, is an interpolating polynomial. Since any N th-order
interpolating polynomial can be represented in terms of the
Lagrange polynomials, we use these functions to express the
interpolating approximations of the state and control functions,
x(t) and u(t). Given a grid of N + 1 interpolation nodes within
[−1,1], � = {t0 < t1 < · · · < tN }, the Lagrange polynomials
{�k}, k ∈ {0,1, . . . ,N}, are constructed by

�k(t) =
N∏
i=0
i �=k

(t − ti)

(tk − ti)
.

They form an orthogonal basis with respect to the discrete inner
product 〈p,q〉 = ∑N

k=0 p(tk)q(tk), while �k(ti) = δki holds at
the grid nodes [34].

For an arbitrary selection of nodes, as the order of approx-
imation N gets large, Runge oscillations near the endpoints
of the [−1,1] domain may occur [35], as shown in Fig. 6. In
order to suppress this phenomenon and increase the accuracy
of the approximation, we use the Legendre-Gauss-Lobatto
(LGL) nodes, which are the end points t0 = −1,tN = 1 and
the roots of L̇N (t), the derivative of the N th-order Legendre
polynomial [36]. The corresponding grid is �LGL = {ti : t0 =
−1,L̇N (t)|tj = 0,i = 1, . . . N − 1,tN = 1}. In this case the
Lagrange polynomials �k(t) can be expressed as

�k(t) = 1

N (N + 1)LN (tk)

(t2 − 1)L̇N (t)

t − tk
, (45)

where {tk} ∈ �LGL, k = 0,1, . . . ,N .
The N th-order interpolating approximations of the state

trajectory and control functions with respect to the same grid
are

x(t) ≈ INx(t) =
N∑

k=0

xk�k(t), (46)

u(t) ≈ INu(t) =
N∑

k=0

uk�k(t), (47)

where xk and uk are not only the coefficients of the expansions,
but also the function values at the kth node due to the definition

063422-6



FRICTIONLESS ATOM COOLING IN HARMONIC TRAPS: . . . PHYSICAL REVIEW A 82, 063422 (2010)
u 

(u
ni

ts
 o

f ω
02 )

t (units of ω
0
−1)

(a) Optimal control, M = ∞

x 2
x

1

(b) Corresponding trajectory

u 
(u

ni
ts

 o
f ω

02 )

t (units of ω
0
−1)

(c) Realistic control, M = 10

x 2

x
1

(d) Corresponding trajectory

FIG. 7. Control functions calculated by the pseudospectral
method for the same parameters as in Fig. 2 without [M = ∞, (a)]
and with [M = 10, (c)] slope restriction. The latter case requires a
larger transfer time, as expected. The corresponding trajectories are
also shown (b, d).

of the Lagrange polynomials [27]. From the interpolation as
in (46), we have

d

dt
INx(t) =

N∑
k=0

xk�̇k(t).

Using (45) and special recursive identities for the derivative
of Legendre polynomials [31], we have at the LGL nodes
ti ∈ �LGL, i = 0,1, . . . ,N ,

d

dt
INx(ti) =

N∑
k=0

xk�̇k(ti) =
N∑

k=0

Dikxk, (48)

where Dik are elements of the constant (N + 1) × (N + 1)
differentiation matrix D defined by [37]:

Dik =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

LN (ti )
LN (tk)

1
ti−tk

i �= k

−N(N+1)
4 i = k = 0

N(N+1)
4 i = k = N

0 otherwise.

(49)

The pseudospectral method is a collocation method in
which the state dynamics is enforced at the LGL nodes.
Using (43), (44), (46), (47), and (48), we obtain the following
dynamic constraints:

N∑
k=0

Dikx1k = tf

2
x2i , (50)

N∑
k=0

Dikx2k = tf

2

(
−uix1i + 1

x3
1i

)
(51)
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(d) Corresponding trajectory

FIG. 8. Control functions calculated by the pseudospectral
method for the same parameters as in Fig. 3 without [M = ∞, (a)]
and with [M = 10, (c)] slope restriction. The latter case requires a
larger transfer time, as expected. The corresponding trajectories are
also shown (b, d).

for i = 0,1, . . . ,N , with xi = (x1i ,x2i)T . To prevent unreal-
istic discontinuities in u(t), we impose the following slope
restriction:

ui+1 − ui

ti+1 − ti
� M (52)

for i = 0,1, . . . ,N − 1, where M characterizes the maximum
allowed slope of the control function. The corresponding
finite-dimensional constrained minimization problem is to find
minimum tf and {ui} with −v1 � ui � v2, such that the above
algebraic relations and the boundary conditions (x10,x20,u0) =
(1,0,1), (x1N,x2N,uN ) = (γ,0,1/γ 4) are satisfied. Solvers
for this type of problems are readily available. In Figs. 7
and 8 we plot the optimal controls and the corresponding
trajectories calculated by the pseudospectral method, for the
same parameter values as in Figs. 2 and 3, respectively, with
and without slope restriction.

V. CONCLUSION

In this paper we used optimal control theory to show that
minimum time frictionless atom cooling in harmonic traps is
achieved when the trap frequency changes in a “bang-bang”
manner, even if the trap is allowed to become transiently an
expulsive parabolic potential. Using this fact we calculated
estimates of minimum cooling times for control strategies
with various numbers of frequency jumps. Finally, we
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employed a pseudospectral optimization method to find
realistic solutions without discontinuities, appropriate for ex-
perimental implementation. The above results and techniques
are not restricted to atom cooling but are applicable to areas
as diverse as adiabatic quantum computing [3] and finite time
thermodynamic processes [4].

ACKNOWLEDGMENTS

This work was supported by the NSF under Career Award
No. 0747877 and AFOSR Young Investigator Award No.
FA9550-10-1-0146. The authors would like to thank Prof.
Heinz Schaettler for valuable comments.

[1] A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek,
Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, Science
301, 1513 (2003).

[2] S. Bize et al., J. Phys. B: At. Mol. Opt. Phys. 38, S449
(2005).

[3] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and
O. Regev, SIAM J. Comput. 37, 166 (2007).

[4] P. Salamon, K. H. Hoffmann, Y. Rezek, and R. Kosloff, Phys.
Chem. Chem. Phys. 11, 1027 (2009).

[5] X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-
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