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Projection of diffraction patterns for use in cold-neutral-atom trapping
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Scalar diffraction theory is combined with beam-propagation techniques to investigate the projection of
near-field diffraction patterns to spatial locations away from the aperture for use in optically trapping cold neutral
alkali-metal atoms. Calculations show that intensity distributions with localized bright and dark spots usually
found within a millimeter of the diffracting aperture can be projected to a region free from optical components
such as a cloud of cold atoms within a vacuum chamber. Calculations also predict that the critical properties of the
optical dipole atom traps are not only maintained for the projected intensity patterns but also can be manipulated
and improved by adjustment of the optical components outside the vacuum chamber.

DOI: 10.1103/PhysRevA.82.063420 PACS number(s): 37.10.De, 42.25.Fx, 42.25.Bs

I. INTRODUCTION

When an atom is exposed to the oscillating electric field
of laser light, the light field can exert an optical dipole force
on the atom. The first experimental observation of the optical
dipole force was achieved in 1978 by Bjorkholm et al. [1].
Since that time, several fields of study have developed which
exploit the optical dipole force on cold atoms and molecules.
One application of the optical dipole force is to confine and
trap cold neutral atoms within spatially varying light field
distributions [2]. If the frequency of the laser light is less
than the resonant frequency of the atom, the dipole potential
energy is a minimum for localized high-intensity fields, and
a red-detuned atomic trap (RDT) is created. Conversely, if
the frequency of the laser light is greater than the resonant
frequency of the atom, the dipole potential energy is a
minimum for localized low-intensity fields, and a blue-detuned
atomic trap (BDT) is created [3]. The difference between the
various pursuits within the field of trapping cold neutral atoms
is determined by the optical methods employed to create laser
light fields with localized maxima or minima. Various methods
to create localized high- or low-intensity fields have included
the focusing of a single laser beam [4] to create a single
trap at the focal spot; using the periodic interference pattern
of counterpropagating beams to create one-dimensional [5],
two-dimensional [6], and three-dimensional [7] arrays of
optical traps; using axicons [8] or Laguerre-Gaussian beams
[9] to create localized dark regions; using evanescent-wave
traps [10]; using the interference of different evanescent waves
outside of a waveguide from different propagation modes
within the waveguide to create one- and two-dimensional
arrays of optical traps [11].

Another method of recent interest for creating light fields
with localized maxima and minima for trapping atoms is
to use the diffracted light in and around spatially limiting
apertures [12–15]. Klimov and Letokhov first theoretically
investigated trapping atoms in light distributions, formed by
interference of incident and scattered light, located before and
within diffracting apertures with dimensions smaller than the
wavelength of light [12]. In our earlier work, we investigated
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diffracted light distributions beyond a circular aperture with
dimensions larger than the wavelength of light using Hertz
vector diffraction theory to create either RDTs or BDTs,
and we investigated their associated trapping properties [13].
Similar calculations were performed by Bandi et al. using
Rayleigh-Sommerfeld diffraction theory [14]. Chen and Yin
further theoretically improved the properties of trap sites
created by diffracted laser light by use of a binary phase plate
in addition to the diffracting aperture [15].

Using diffracted laser light for the trapping of cold atoms
allows for an experimental setup with (1) a fairly simple
optical setup comprising an unfocused, or loosely focused,
laser beam and a diffracting aperture or mask and (2) the
ability to use the same optical setup for both RDTs and BDTs
by changing only the detuning of the laser. However, there are
two issues which make experimental implementation of using
diffracted laser light to create red-detuned and blue-detuned
optical dipole traps challenging. First, the location of the
diffraction patterns is very close to the diffracting aperture.
Experimentally, this would mean that the diffracting aperture
would have to be placed within the vacuum chamber so
that cold atoms could be loaded into the diffraction pattern
locations. The diffracting aperture would need to be included
with the design and construction of the vacuum chamber and
the optical system for the chosen atom cooling technique. For
example, one commonly used technique is a magneto-optical
trap (MOT). Experimentally, adjustment or replacement of
the diffracting aperture or mask would require a significantly
time-consuming process of venting and disassembly of the
vacuum chamber, adjustment and/or replacement, cleaning the
vacuum chamber, baking the vacuum chamber, and waiting for
it to reach the ultra-high vacuum (UHV) level required for
atomic trapping. The second main experimental challenge
for implementation of diffraction-based atom trapping is the
fact that the diffraction pattern just beyond the aperture (and
consequently the trap size, shape, trap frequencies, etc.) is a
fixed function of the chosen aperture. Adjustment of the trap
properties would require the replacement of the diffracting
aperture or mask and all of the complexities involved in
doing so.

In this article, we present an optical method, a mathematical
model, and computational results for projecting the diffraction
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pattern located just beyond a diffracting aperture to another
location away from optical components, that is, inside a MOT
cloud of cold atoms inside a UHV chamber. This method
eliminates the two experimental challenges of using diffracted
light to trap atoms. First, by projecting the pattern away from
the diffracting aperture, the need to place the aperture inside
the vacuum chamber is eliminated, and all optical components
would be located outside the chamber, where they can be easily
aligned, adjusted, and/or replaced. Second, it is demonstrated
here that adjustment of the aperture-to-lens distance allows
for control and adjustment of the size and depth of the optical
traps for a fixed diffracting aperture. If a different aperture is
desired, exchanging it is a quick and straightforward process,
as it is located outside the vacuum chamber. The method
presented here is only for the projection of a single aperture
yielding a single RDT or BDT site within the MOT cloud.
However, the method is extendable for the projection of a
more complex diffracting mask of a one- or two-dimensional
array of apertures yielding a projected array of trap
sites.

II. DIFFRACTION AND LIGHT-PROPAGATION THEORY

A. Choosing a model

In general, the difference between various established
diffraction models is which mathematical approximations
can be assumed in order to decrease both the mathematical
complexity and computational times. The location of the
point of interest with respect to the plane or surface area
of the diffracting aperture to be integrated determines which
mathematical approximations are valid. The closer the point
of interest is to the diffracting aperture, the fewer the
number of valid mathematical approximations, and hence
the more complicated the diffraction model. One model
which employs very few approximations (i.e., an infinitely
thin and perfectly conducting aperture) and whose region
of validity includes all points within the aperture plane
and beyond is Hertz vector diffraction theory (HVDT)
[16,17]. Therefore HVDT is the diffraction model used in
this work to calculate the diffraction pattern in the region
of interest just beyond the circular aperture. The results

-40
-20

0
20
40

R
ad

ia
l (

µm
)

2.52.01.51.0
Axial distance from aperture (mm)

primary
red-detuned trap
primary

blue-detuned trap

4

3

2

1

0

FIG. 1. (Color online) Intensity distribution pattern just beyond
a metallic circular aperture with a radius of 50 µm and a laser
wavelength of 780 nm, normalized to the intensity incident upon the
aperture. The locations of the localized bright region for the primary
red-detuned trap site and the localized dark region for the primary
blue-detuned trap site are noted.

are depicted in Fig. 1. The parameters used to calculate
Fig. 1 are an aperture radius of 50 µm and a laser wavelength
of 780 nm. It should be noted here that for a circular aperture
of radius a and a laser wavelength of λ, there will be a/λ

on-axis bright spots and a/λ − 1 on-axis dark spots [18]. For
the purposes of this investigation, the dark spot farthest from
the aperture is referred to as the primary BDT, and the second
to last bright spot farthest from the aperture is referred to as the
primary RDT, as noted in Fig. 1. Of all of the on-axis maxima
and minima, these two regions are chosen for investigation
because they are the largest of each, which makes them easier
to identify, load with cold atoms, and probe the atoms trapped
within them in initial experiments. Both the primary BDT and
the primary RDT lie within the region of validity of Fresnel
approximations [18], or

z3
1 � π

4λ
[(x1 − x0)2 + (y1 − y0)2]2, (1)

where x1, y1, and z1 are the coordinates of the point of
interest and x0 and y0 are the locations of an integration point
in the aperture plane. Therefore the diffraction model used
to calculate the projected diffraction patterns is the Fresnel
integral diffraction model. For a complete discussion of the
Fresnel integral model, see Refs. [18,19].

B. Diffraction and beam-propagation model

Figure 2 illustrates the theoretical setup for this investiga-
tion, where a single lens of focal length f is placed a distance
L from a circular aperture of radius a to project the diffraction
pattern from just behind the metallic aperture into a MOT
cloud of cold atoms located within an optics-free region inside
the UHV chamber.

For the theoretical setup depicted in Fig. 2, the Fresnel
approximation for the diffracted fields at a point in the near-
field diffraction region [Eqs. (4)–(17) of Ref. [19]] can be
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FIG. 2. (Color online) Theoretical setup for projecting near-field
diffraction patterns to an optics-free location within a MOT cloud
of cold atoms. The key parameters are the aperture radius, a, the
aperture-to-lens distance, L, the focal length of the lens, f , and the
axial distance between the lens and the point of interest, z. Plane 0 is
the axial location of the aperture, and plane 1 is an axial plane within
the diffraction region.
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expressed as

E1 (x1,y1,z1) = keikz1

i2πz1
exp

[
i

k

2z1

(
x2

1 + y2
1

)]

×
∫∫ ∞

−∞
Ez0 exp

[
i
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2z1

(
x2

0 + y2
0

)]

× exp
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−i

k

z1
(x1x0 + y1y0)

]
dx0 dy0, (2)

where k is the wave number, or 2π/λ, (x1,y1,z1) is the location
of the point of interest in the diffraction region, (x0,y0,z0) is an
integration point in the aperture, and Ez0 is the distribution of
the incident electric field within the open area of the aperture.
Here Ez0 is assumed to be a constant to represent an incident
plane wave (i.e., a loosely focused beam with a width �a). For
the diffraction of light by a circular aperture, the net light fields
within the aperture plane do not have cylindrical symmetry
as a result of scattering effects of the aperture rim due to
the vector field polarization direction [16,17]. However, for
points with axial distances greater than the aperture radius, the
diffracted light fields do exhibit cylindrical symmetry [17].
Converting Eq. (2) to cylindrical coordinates and assuming
cylindrical symmetry, the field beyond the aperture in the
Fresnel diffraction region becomes

E1 (r1,z1) = keikz1

iz1
exp

[
i
kr2

1

2z1

]

×
∫ a

0
Ez0 J0

(
kr0r1

z1

)
exp

[
i
kr2

0

2z1

]
r0 dr0, (3)

where J0 is a Bessel function of the first kind of order zero.
The effect of the lens on the electric field can be approxi-

mated using a phase transformation of the light fields incident
upon the lens [19]. For the lenses and optical setups used in
this investigation, the paraxial thin lens phase transformation
can be used. The electric field leaving the lens, EL, in the
cylindrical coordinate system of the lens, (rL,zL), the origin of
which is at the center of the lens, is related to the field incident
upon the lens, E1, in the diffraction plane coordinate system,
(r1,z1), by

EL (rL,zL = 0) = E1 (r1,z1 = L) t (rL) , (4)

where L is the axial distance between the diffracting aperture
and the lens and t (rL) is the thin lens phase transformation
as a function of radial distance from the optical axis. The thin
lens phase transformation for a lens of focal length f is given
by Eqs. (5)–(10) of Ref. [19], or

t (rL) = exp

[
−i

kr2
L

2f

]
, (5)

using cylindrical coordinates with cylindrical symmetry. Sub-
stituting Eqs. (3) and (5) into Eq. (4), the field at a single point
in space immediately after the lens becomes

EL (rL,0) = keikL

iL
exp

[
i
kr2

L

2L

] ∫ a

0
Ez0 J0

(
kr0rL
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)

× exp
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i
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−i
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L

2f

]
r0 dr0, (6)

where rL is the radial location of a point within the plane of
the center of the lens. To obtain the projected electric field
at the point of interest in the optics-free region of the MOT
cloud of cold atoms, it is necessary to integrate the electric
field just after the lens over the open area of the lens and
propagate the fields to the point of interest. Using the Fresnel
diffraction integral, the field at the point of interest, (r,z),
where the coordinate system has the same origin as the lens
coordinate system, becomes a function of the field distribution
just after the lens:

E (r,z) = keikz

iz
exp
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2z

] ∫ R

0
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× J0

(
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z

)
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L
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]
rL drL, (7)

where the integration is over the open area of the lens and R

is the radius of the lens. Substitution of Eq. (6) into Eq. (7)
yields

E (r,z) = −k2eik(z+L)
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(8)

If the lens size is significantly larger than the diffraction
pattern incident upon the lens, then the limit of the drL

integral can be assumed to be infinity. The integral of the
lens plane can then be evaluated explicitly, and Eq. (8) can be
simplified to

E (r,z) = dkeik(z+L)

iLz
exp
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where the parameter d is defined to be

d =
[

1

L
+ 1

z
− 1

f

]−1

. (10)

Equation (9) is the general integral result of this article,
yielding the electric field at the point of interest in the
optics-free region within the MOT cloud. It should be noted
here that the axial distance from the lens which forces the
value of d to approach infinity is the axial location of
the image of the aperture plane according to geometrical
optics.

C. On-axis fields

While the general integral result of Eq. (9) is complete and
yields the scalar light field for any point within the desired
projection region, it can be cumbersome to quickly determine
where the projected light distributions can be found. The
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mathematics of the general integral result of Eq. (9) simplify
for on-axis locations, r = 0, and the integral can be directly
evaluated, yielding the more convenient analytical form

E (0,z) = − Ez0d

z
(
1 − d

L

)eik(z+L)

×
{

exp

[
i
ka2

2L

(
1 − d

L

)]
− 1

}
, (11)

which is dependent upon the wave number of the light, k,
the aperture radius, a, the distance between the aperture and
the lens, L, and the focal length of the lens, f . The on-axis
projected scalar field of Eq. (11) only exhibits localized
maxima and minima around the region of the location of
the imaged near-field pattern, according to geometrical optics.
Equation (11) can be evaluated to obtain the locations of the
on-axis maxima and minima. The exact locations of on-axis
maxima and minima occur when

z = f
1 − nL λ

a2

1 − n (L − f ) λ
a2

, (12)

where n is a nonzero integer. On-axis maxima correspond
to when n is an odd integer, and on-axis minima correspond to
when n is an even integer. On-axis maxima represent locations
of possible projected RDTs, and on-axis minima represent
locations of possible projected BDTs. Equation (12) can also
be written in the more familiar style of a thin lens equation in
geometrical optics, or

1

z
+ 1

L − a2

nλ

= 1

f
. (13)

For the two on-axis locations of interest for this inves-
tigation, a value of n = 2 corresponds to the projection of
the primary BDT, and a value of n = 3 corresponds to the
projection of the primary RDT.

III. ATOM-TRAPPING POTENTIAL ENERGY

When an atom is exposed to an electromagnetic field, the
interaction of the light and the induced dipole moment of the
atom results in a dipole potential energy and its associated
dipole force. For detunings that are large compared to the
excited state hyperfine splitting but small compared to the fine
structure splitting, and for linearly polarized light, the position-
dependent potential energy of this interaction for an atom in a
hyperfine ground state F can be expressed as [20]

U (r) = β
h̄�

8

�

�

|E (r)|2
|Es |2

, (14)

where r is the location of the point of interest, β is the line-
strength factor of the atomic transition [2,21], � is the spon-
taneous decay rate, Es is the saturation field of the transition,
and � is the laser detuning from the transition from F to the
center of the excited state hyperfine manifold. The detuning,
�, is the difference between the angular frequency of the light
field, ω, and the angular frequency of a photon in resonance
with the atomic transition, ωo, or

� = ω − ωo. (15)

The particular cold neutral atoms used for this study are 85Rb
atoms, and the specific transition of interest is the D2 transition
(2S1/2 → 2P3/2), which has a line-strength factor of β = 2/3.
Including the line-strength factor and the cylindrical symmetry
of the diffracted light fields, the atom-trapping potential energy
becomes

U (r,z) = 2

3

h̄�

8

�

�

|E (r,z)|2
|Es |2

. (16)

For cold 85Rb atoms and 780 nm laser light, the saturation
electric field for this transition is Es = 111.5 V/m [22] (or an
intensity of 16.5 W/m2), and the spontaneous decay rate is
� = 2π × 6 MHz [22].

The magnitude of the optical potential energy of the atom
is directly proportional to the intensity of the laser field.
The sign of the potential energy is determined by the sign
of the detuning. If ω < ωo, the energy of a photon in the
laser field is less than the energy of the atomic transition,
the potential energy is negative and becomes more negative
for higher intensity locations, and the atom is drawn toward
regions of higher intensity light and RDTs are created. If the
detuning is positive, or ω > ωo, the atoms are drawn toward
regions of lower intensity light and, consequently, BDTs are
created.

IV. PROJECTION CALCULATIONS

A. Intensity calculations

The method introduced in this article allows for the remote
control and manipulation of the optical dipole traps within
the vacuum chamber by placing the diffracting aperture and
projection lens outside the vacuum chamber. Without breaking
vacuum, the placement, radial and axial sizes of the trap sites
as well as the trap depths can be adjusted and controlled for
a given laser frequency by changing any one of three optical
parameters: the aperture radius, a, the focal length of the lens,
f , and the aperture-to-lens distance, L.

Figure 3 illustrates some of the control over the projected
diffraction pattern by adjustment of only the parameter L.
All the image plots for Fig. 3 are for a wavelength of
780 nm, an aperture radius of 25 µm, and a focal length of
40 mm. The numerical intensity scale of each part of Fig. 3
is normalized to the intensity of the laser light incident upon
the diffracting aperture. Figure 3(a) is a calculation of the
fields just beyond the aperture using HVDT. Figure 3(b) is an
image plot of a projected diffraction pattern, using Eq. (9), and
approximately equal in size to that of the original. To project
a diffraction pattern equal to that of the original pattern in
physical size and relative intensity, an aperture-to-lens distance
of just over twice the focal length is chosen, or L = 80.4 mm.
This particular choice forces the size of the projected pattern
to approximately equal that of the original and forces the dis-
tance of the projected BDT from the lens to equal exactly the
distance of the original BDT to the lens. The relative intensity
of the projected pattern is equal to that of the original pattern,
where the intensity of the RDT is 4 times that of the incident
laser intensity. Increasing the aperture-to-lens distance beyond
2f has two effects upon the projected pattern: The entire
projected pattern will be smaller than the original and,
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FIG. 3. (Color online) Diffraction patterns for an aperture with
a radius of 25 µm, where (a) is the original pattern just beyond
the diffracting aperture, (b) is a projection with the aperture-to-lens
distance, L, chosen such that the projection is approximately the same
size as the original, (c) is a projection with L chosen such that the
projection is smaller than the original, and (d) is a projection with L

chosen such that the projection is larger than the original. Parts (b)–(d)
are all set to the same distance scaling as (a) for direct comparison
of the size differences, and (e) is an expansion of (c). All numerical
intensity scaling values are normalized to the intensity incident upon
the aperture.

consequently, the relative intensity of the bright spots will
be amplified with respect to the incident laser intensity, as
illustrated in Figs. 3(c) and 3(e), where L is set to be 125 mm.
Conversely, by adjusting the aperture-to-lens distance to values
less than 2f , the projected pattern will be larger than the
original and have a lower overall intensity, as illustrated in
Fig. 3(d), where L is set to be 68 mm. Both Figs. 3(c)
and 3(d) are intentionally set to the same radial scaling and
axial scaling as Fig. 3(a) to better illustrate the effects of
changing L on the overall projected pattern size. Figure 3(e) is
an expanded view of the smaller projection of the diffraction
pattern [Fig. 3(c)]. Note here the differences in radial and
axial sizes of the projected traps, as compared to the original
trap sites of Fig. 3(a). In addition, the peak intensity of the
projected RDT is now 17.9 times the incident laser intensity,
whereas that of Fig. 3(d) is only 1.93 times the incident laser
intensity.

With the diffracting aperture located outside the vacuum
chamber, exchanging the aperture for one with a different
radius is a straightforward process. Changing the size of the
aperture radius affects the radial and axial scalings of the near-
field diffraction pattern differently; the radial dimensions of
the pattern scale linearly with the aperture radius, whereas the
axial scaling of the pattern is dependent upon the square of the
aperture radius [18]. For circular apertures, where the radius
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FIG. 4. (Color online) (a) Original and (b) projected intensity
patterns for the creation of a nanotrap. The aperture radius is 5 µm,
the focal length of the lens is 40 mm, and the aperture-to-lens distance
is set to 125 mm. Both intensity scaling values are normalized to the
intensity incident upon the aperture.

is much larger than the wavelength of the laser light, such as
those of Fig. 3, where a/λ = 32, the trap sites tend to be much
longer in the axial dimension than in the radial dimension.
Because of the different dependencies of the radial and axial
scalings on the aperture radius, the aspect ratio of the radial
size to the axial size increases as the size of the diffracting
aperture decreases. It should be noted here that care must be
taken when choosing smaller apertures to remain within the
region of validity of the Fresnel approximations used in this
model, where it is assumed that a � λ. With the assumptions
used for this model and the locations of the primary RDT and
primary BDT, a lower limit on the aperture size would be an
aperture size of about 5 µm, where a/λ = 6.25. Figure 4(a)
is an image plot of the intensity pattern just beyond a 5 µm
radius circular aperture using HVDT. Sub-micron-sized traps,
or nanotraps, can be created by using our projection technique.
As L becomes larger than 2f , the projected pattern becomes
smaller than the original diffraction pattern. Figure 4(b) is an
illustration of the creation of a nanotrap. First, we start with
Fig. 4(a), or the smallest original diffraction pattern within the
region of validity of the projection model used here, and then
we set L > 2f . For this particular illustration, f is chosen to
be a 40 mm lens, and L is chosen to be 125 mm, which yields
RDT and BDT axial trap dimensions of ≈1 µm and radial trap
dimensions of <1 µm.

B. Trapping potential energy calculations

Conversion of the intensity distributions of Figs. 3 and 4
to potential energy wells for trapping cold neutral atoms
requires a choice of the laser detuning and an incident laser
intensity. Additionally, for detunings not large compared to
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TABLE I. Properties of the primary RDT for various diffraction patterns. For all patterns, the lens
focal length is 40 mm, the detuning parameter is set to � = −104 �, and the trap depth is given per
100 W/m2 of light intensity incident upon the aperture. For reference, a 17 mW laser focused to a
spot diameter of ∼150 µm gives an incident intensity of ∼100 W/m2.

RDT trap depth
Figure per 100 W/cm2 Radial width Axial length

Diffraction pattern number (µK) (µm) (µm)

Original
a = 25 µm 3(a) 277 6.03 120
Projected
a = 25 µm, L = 80.4 mm 3(b) 280 6.03 120
Projected
a = 25 µm, L = 125 mm 3(c), 3(e) 1250 2.84 26.7
Projected
a = 25 µm, L = 68 mm 3(d) 134 8.88 252
Original
a = 5 µm 4(a) 241 1.31 4.89
Projected nanotrap
a = 5 µm, L = 125 mm 4(b) 1260 0.59 1.08

the hyperfine ground-state splitting, a choice of a hyperfine
ground state of the atom is required. Using the same detuning
as our previous work [13] (� = −104� for RDT sites and
� = 103� from the F = 2 hyperfine ground state for BDT
sites), disturbances of the possible atom traps because of
photon absorption, population of excited states, and the
spontaneous force are negligible. Including the saturation field
for the chosen transition, the trap potential energy [Eq. (16)]
can be expressed as a function of the chosen detuning and
normalized to the intensity incident upon the aperture, or

U (r,z)

Io

= 9.70 × 103 �

�

(
I (r,z)

Io

)
µK

W/cm2
, (17)

where the term I/Io is the normalized intensity displayed in
the numerical intensity scaling of Figs. 3 and 4.

C. Properties of calculated traps

Tables I and II give the trap depths and trap dimensions
for all the diffraction patterns illustrated in Figs. 3 and 4.
The depth of each trap site is taken to be the difference
between the minimum of the trap potential well and the
lowest potential barrier to getting out of a RDT or a BDT
along the escape path. (For a complete discussion on escape
paths from each type of trap, see our previous work [13].)
The radial and axial dimensions reported for each diffraction
pattern are defined as the approximate width and length of
each of the traps within the equipotential energy surface equal
to the trap depth. Tables I and II quantitatively illustrate the
effects of changing either the distance between the lens and the
diffracting aperture or the size of the diffracting aperture on
the depth, dimensions, and axial-radial aspect ratio of the trap
sites.

TABLE II. Properties of the primary BDT for various diffraction patterns. For all patterns, the
lens focal length is 40 mm, the detuning parameter is set to � = 103 �, and the trap depth is given
per 100 W/m2 of light intensity incident upon the aperture.

BDT trap depth
Figure per 100 W/cm2 Radial width Axial length

Diffraction pattern number (µK) (µm) (µm)

Original
a = 25 µm 3(a) 820 9.05 125
Projected
a = 25 µm, L = 80.4 mm 3(b) 823 9.05 125
Projected
a = 25 µm, L = 125 mm 3(c), 3(e) 3680 4.26 27.9
Projected
a = 25 µm, L = 68 mm 3(d) 393 13.1 264
Original
a = 5 µm 4(a) 818 1.86 5.24
Projected nanotrap
a = 5 µm, L = 125 mm 4(b) 3700 0.85 1.11
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V. CONCLUSION

Scalar diffraction theory and beam-propagation methods
have been employed to overcome two experimental challenges
with using diffraction patterns to optically trap atoms: the
requirement for the diffracting plane or mask to be placed
inside the vacuum chamber and the inability to adjust the
trap properties for a given diffracting aperture. The model
presented here uses a single lens to project the diffraction
pattern found just beyond a circular aperture to an optics-free
region beyond the lens. An integral method has been used to
calculate the complex scalar field of the diffracted light for any
point of interest in the region beyond the projecting lens. For
quickly determining the location and spacing of the projected
maxima and minima locations, an analytical model can be

used for on-axis locations. Calculations show that control of
the trap depth and size is possible by adjustment of the aperture
to lens distance and that additional control over the axial-radial
aspect ratio is possible by changing the size of the diffracting
aperture. Although the model presented here is for a single
circular aperture producing a single projected atom trap, the
model can be extended to one-dimensional or two-dimensional
arrays of traps using a diffracting mask of one-dimensional or
two-dimensional arrays of pinholes.
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