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We explore, from a theoretical perspective, photoelectron angular distributions (PADs) of the Na clusters
Na8, Na10, Na12, Na18, Na3

+, Na11
+, Na13

+, and Na19
+. The basis of the description is the time-dependent

local-density approximation (TDLDA), augmented by a self-interaction correction (SIC) to describe ionization
properties correctly. The scheme is solved on a numerical grid in coordinate space with absorbing bounds. We
assume for each cluster system an isotropic ensemble of free clusters and develop for the case of one-photon
emission analytical formulas for computing the orientation-averaged PAD on the basis of a few TDLDA-SIC
calculations for properly chosen reference orientations. It turns out that all the information in the averaged PAD
is contained in one anisotropy parameter. We find that this parameter varies very little with system size, but as a
whole is crucially influenced by the detailed ionic structure. We also make comparisons with direct orientation
averaging and consider one example reaching outside the perturbative regime.
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Photo-induced reactions have been used for decades as key
tools to explore the properties of clusters. Optical absorption
measurements give access both to structure and to dynamics
of clusters; for an overview see [1–4]. Still, optical response
can be valuably complemented by additional observables. A
most important reaction channel is electron emission directly
following an excitation by electromagnetic fields. There have
thus been numerous investigations analyzing electrons emitted
after irradiation by a short laser pulse. Beyond the mere net
ionization yield, photoelectron spectroscopy (PES) measuring
the distribution of the kinetic energy of emitted electrons
is a tool of choice as it provides an energy-resolved cross
section of electron emission; for early applications see [5,6].
The next (more involved) step is to analyze the photoelectron
angular distribution (PAD). It supplies an angular-resolved
description of the emission process. Such measurements have
come up more recently and have usually combined PAD with
PES, providing double differential cross sections (energy- and
angular-resolved). First measurements dealt with the cluster
anions: WN

−, N = 4–11 [7,8]; HgN
−, N = 3–20 [9]; and

CN
−, N = 10–22 [10–12]. More recent results have been

published for the C60 cluster [13] and medium-sized NaN
−

clusters [14,15]. The latter results nicely show a dependence
of the photoemission on the electronic ground-state wave
functions.

The theoretical description of photoelectron distributions
has a long history in atomic physics [16]. It is usually
treated in (multiphoton) perturbation theory [17]. See, for
example, details for PAD from atoms in [18–20] and more
recently an application of compact atomic expressions to
spherical jellium metal clusters [21]. PADs have also been
investigated theoretically in some molecular systems [22–24].
These methods require a good knowledge of the continuum
states for the outgoing electrons and become more involved
for clusters without any symmetry. On the other hand, many
investigations, among the most robust and flexible ones, rely
on time-dependent density-functional theory at the level of
the local-density approximation (TDLDA) propagated directly

in the time domain; see, e.g., [25–27]. This approach gives
a convenient framework for analyzing electronic emission
properties when augmented by a self-interaction correction
(SIC) [28]. By introducing absorbing boundary conditions
[29,30] and installing a careful bookkeeping of the directions
of the absorbed (=emitted) electrons, one can develop a direct
TDLDA-SIC description of photoangular distributions. It can
be done quantum mechanically [31,32] for low excitations
as well as in semiclassical approximation for more violent
processes [33]. Angular distributions from free Na clusters
with fixed orientation have been studied extensively in [31,32]
and from Na clusters deposited on MgO(001) or Ar(001)
substrates in [34]. A fixed cluster orientation is indeed naturally
established when depositing the cluster on a substrate. But free
clusters usually come along as an ensemble of clusters with
a priori any orientation. The aim of this paper is to study
PAD for rotationally invariant ensembles of free Na clusters
within including a proper orientation averaging. The basis of
the description remains the TDLDA-SIC of [31,32,34], but
now augmented by averaging over an isotropic ensemble of
orientations. We develop an exact averaging procedure for
one-photon processes which only requires a limited number of
actual TDLDA-SIC computations (actually six). The scheme is
used to investigate PAD in some small NaN and NaN

+ clusters.
We also explore more naive direct averaging schemes. The
direct attack requires, of course, more reference orientations
for proper sampling, but allows immediate application to any
nonperturbative processes, for which we discuss one example.

The paper is outlined as follows: The formal framework
is presented in Sec. I, developing in particular the analytical
expressions for orientation averaging. The various results are
presented and discussed in Sec. II.

I. FORMAL FRAMEWORK

A. Angular distributions from one-photon emission

The cross section for one-photon emission from the single-
electron state φi is given in first-order perturbation theory

1050-2947/2010/82(6)/063416(10) 063416-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.063416


WOPPERER, FABER, DINH, REINHARD, AND SURAUD PHYSICAL REVIEW A 82, 063416 (2010)

as [17]

dσi

d�
= 4π2e2ωlas

h̄c
|〈ψkϑϕ|epol ·r̂|φi〉|2 ≡ A(i)(ϑϕ), (1)

where epol is the direction of laser polarization, |φi〉 the initial
single-electron state from which the electron is removed, and
ψkϑϕ an outgoing wave which asymptotically becomes a plane
wave traveling in direction (ϑϕ) with wave number k. The
wave number is determined by the scattering conditions. It
becomes k = √

2mεout, where εout = εi + h̄ωlas with εi being
the single-electron energy of the initial state and ωlas the photon
frequency. The symbol A is used here and in the following as
an abbreviation for the cross section with indices indicating
the particular context.

The cross section (1) applies to one fixed configuration in
which the cluster orientation relative to laser polarization is
known. In practice, one encounters an ensemble of clusters
with arbitrary orientations. We have to evaluate the cross
section for an ensemble of cluster orientations. To that end, we
assume a situation without any bias on a certain direction, i.e.,
an isotropic ensemble in which all orientations appear with
the same probability. For the evaluation, we distinguish the
laboratory frame and the cluster frame (in which all quantities
are primed). The laboratory frame is defined by the laser
polarization such that the polarization vector points along the
z axis, i.e., epol = ez. The observed emission angles (ϑϕ) are
defined with respect to this laboratory frame, where ϑ is the
angle against the z axis and ϕ the angle in the x-y plane.
A cluster has three principle axes. The cluster orientation is
defined as that of these three axes with respect to the laboratory
frame. We start from a cluster in the laboratory frame where the
major principle axis (a symmetry axis if available) is aligned
with laser polarization. The rotated state i in the laboratory
frame is obtained by

|φαβγ,i〉 = D̂(αβγ )|φi〉, (2)

D̂(αβγ ) = eiαĴz eiβĴy eiγ Ĵz , (3)

where (αβγ ) are the three Euler angles [35]. The orientation-
averaged one-photon excitation cross section for emission
from the single-electron state φi then becomes

A(i)(ϑϕ) =
∫

dαd(cos β)dγ

8π2
A(i)(ϑϕ,αβγ ), (4)

with

A(i)(ϑϕ,αβγ ) = 4π2e2ωlas

h̄c
|〈ψkϑϕ|epol ·r̂|φαβγ,i〉|2. (5)

A conceptually simple way to compute this averaged cross
section A(i) is to define a finite element approximation to the
integral over Euler angles, to compute the elementary cross
section for the various orientations, and to sum over all results.
This may become cumbersome if a fine mesh of Euler angles
is used.

It is much more efficient, though more involved, to evaluate
the angular integration analytically employing the well-known
properties of the rotation matrices [35]. We introduce the
following notations,

d3ω = dαd(cos β)dγ

8π2
, N = 4π2e2ωlas

h̄c
, (6)

and work out the given expressions in the cluster frame:

A′(i)(ϑ ′ϕ′,αβγ ) = N |〈ψ ′
kϑ ′ϕ′ |epol ·r̂|φ′

αβγ,i〉|2

= N |〈ψkϑ ′ϕ′ |epol ·r̂′|φ′
i〉|2

=
∑
µµ′

D
(1)∗
0µ (αβγ )D(1)

0µ′(αβγ )A′(i)
µµ′(ϑ ′ϕ′),

where

A
′(i)
µµ′(ϑ ′ϕ′) = N 〈ψkϑ ′ϕ′ |r̂ ′

µ|φ′
i〉〈φ′

i |(r̂ ′
µ′)∗|ψkϑ ′ϕ′ 〉

is the basic cross-section matrix in the cluster frame. The D(1)
νµ

are the well-known rotation matrices [35], r̂ν is the position
operator in spherical representation, and r̂ ′

µ is the analog in
the cluster frame. For the next step, we exploit the fact that
any reasonable function of (ϑ ′ϕ′) can be expanded in terms of
spherical harmonics:

A
′(i)
µµ′(ϑ ′ϕ′) =

∑
lm′

a
(i)
µµ′,lm′Ylm′(ϑ ′ϕ′),

(7)
a

(i)
µµ′,lm′ =

∫
d(cos ϑ ′)dϕ′Y ∗

lm′A
′(i)
µµ′(ϑ ′ϕ′).

The expression through Ylm allows one to perform the rotation
in the laboratory frame explicitly, yielding

A
(i)
µµ′(ϑϕ) =

∑
lm′

a
(i)
µµ′,lm′

∑
m

D
(l)
mm′(αβγ )Ylm(ϑϕ)

and

A(i)(ϑϕ,αβγ ) =
∑

µµ′,lmm′
D

(1)∗
0µ (αβγ )D(1)

0µ′(αβγ )D(l)
mm′(αβγ )

× a
(i)
µµ′,lm′Ylm(ϑϕ).

We insert these results into expression (4) for the averaged
cross section, reorder integration and summations, and finally
obtain

dσi

d�
=

∑
µµ′

∑
lm′

a
(i)
µµ′,lm′

∑
m

Ylm(ϑϕ)
∫

d3ω D
(1)∗
0µ (αβγ )

×D
(1)
0µ′(αβγ )D(l)

mm′(αβγ )

=
∑
µµ′

∑
lm′

a
(i)
µµ′,lm′

∑
m

Ylm(ϑϕ)(−1)µ
(

1 1 l

0 0 m

)

×
(

1 1 l

−µ µ′ m′

)
,

where the large round brackets denote the Wigner 3j symbols
[35]. The selection rules embodied in the 3j symbols shrink
the summation to a simple final form for the averaged cross
section:

dσi

d�
= C

(i)
0 Y00(ϑϕ) + C

(i)
2 Y20(ϑϕ), (8)

C
(i)
0 = 1

3

∑
µ

a
(i)
µµ,00, (9)

C
(i)
2 =

∑
µ

a
(i)
µµ′,2 µ−µ′(−1)µ

(
1 1 2
0 0 0

)(
1 1 2

−µ µ′ µ−µ′

)
,

(10)
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where the coefficients a
(i)
µµ′,lm′ are computed from angular

momentum projection (7) of the cross sections A
′(i)
µµ′ in the

cluster frame.
It is important to note that the final coefficients Cl0 only

require the information about a very limited number of
coefficients a

(i)
µµ′,lm′ . We have l = 0 or 2 and m′ = µ − µ′. This

leaves three coefficients a
(i)
µµ,00 for l = 0 and six coefficients

a
(i)
µµ′,2 µ−µ′ for l = 2 (note that the exchange µ ↔ µ′ does not

need new information). Equation (7) shows that the different
l can be produced from one distribution. We thus only need
six different angular distributions in properly chosen (i.e., suf-
ficiently different) polarization directions e(n)

pol, n = 1, . . . ,6:
we compute the corresponding cross sections in the cluster
frame

∑
µµ′ e

(n)
pol,µA

′(i)
µµ′(ϑ ′ϕ′)e(n)

pol,µ′ and project into the mix of

coefficients
∑

µµ′ e
(n)
pol,µa

(i)
µµ′,lµ−µ′e

(n)
pol,µ′ for l = 0 and 2

as well as for n = 1, . . . ,6. Thus we have six linearly
independent pieces of information from which we can compute
the wanted coefficients a

(i)
µµ′,lµ−µ′ by solving a simple linear

equation. The result is inserted into Eqs. (9) and (10) which
finally yields the averaged cross section. This procedure
involves a calculation of the cross sections in the cluster
frame which is done by fully fledged TDLDA (see Sec.
I C). Perturbation theory was only invoked for the purpose
of deriving the averaging scheme.

The expression (8) shows the orientation-averaged cross
section for emission from one particular single-electron state
φi . The total cross section is obtained simply by adding up
incoherently the contributions from each occupied state, thus
yielding

dσ

d�
=

Nel∑
i=1

dσi

d�
= C0Y00(ϑϕ) + C2Y20(ϑϕ), (11)

Cl =
Nel∑
i=1

C
(i)
l . (12)

We remind that Y20 ∝ P2(cos ϑ), where P2 is the Legendre
polynomial of second order. The orientation-averaged cross
sections (8) and (11) thus have the widely used general form of
an isotropic term plus another term ∝ P2 delivering anisotropic
emission, i.e.,

dσ

d�
∝ 1 + βP2(cos ϑ), (13)

where β is called the anisotropy parameter. We can easily
compute it in terms of our aforementioned expansion as

β =
√

5
C2

C0
, β(i) =

√
5

C
(i)
2

C
(i)
0

. (14)

The anisotropy parameter is what remains after all: just
one parameter characterizing the pattern of the orientation-
averaged cross section.

It is interesting to explore the value β for limiting cases
in order to better understand its meaning. The first extreme
corresponds to a state φi with angular momentum l = 0
which is rotationally invariant. The distribution becomes
pure cos2 θ which conforms to a value of β = 2. This is
obviously the largest possible value of β corresponding to

a maximally “unperturbed” (because of isotropy of the wave
function in cluster frame) electronic emission, and accordingly
the one-photon process which is maximally aligned along
the laser polarization. The other extreme corresponds to the
case for which emission is maximally “antialigned,” namely,
maximally transverse with respect to the laser polarization
axis. The angular distribution then becomes ideally pure sin2 θ

which conforms to a value of β = −1. Actual values of β

lie in between these two extreme cases. An interesting case of
course is provided by β = 0 which describes a purely isotropic
orientation-averaged PAD.

B. Direct averaging as an alternative

A conceptually simpler, although computationally more
expensive, method is a direct numerical orientation averaging
according to Eq. (4). Rotation about the laser polarization axis
(that is by the Euler angle α) does not require any additional
TDLDA runs. This thus leaves averaging over the surface of a
unit sphere represented by the Euler angles β and γ . The β-γ
integration is approximated by a finite summation. To that end,
the surface of the sphere is divided in segments around selected
sampling directions. We consider several levels of precision.
The lowest tow are a very coarse grid with the 6 orientations
(0,0, ±1), (0, ±1,0), (±1,0,0) and a finer grid with the 18
orientations (0,0, ±1), (0,1, ±1), (1,0, ±1), (0, −1, ±1),
(−1,0, ±1), (0, ±1,0), (±1,0,0), (±1,1,0), (±1,− 1,0). These
orientations are displayed in Fig. 1. The corresponding area of
the segment on the surface is used as a weight for the averaging.
Clusters with highly symmetric configurations allow one to
reduce the number of actual TDLDA calculations by using
symmetry operations.

C. Numerical realization

The numerical solution of the (time-dependent) Kohn-
Sham equations for the cluster electrons proceeds with
standard techniques as described in [30,36]. The electronic
wave functions and the spatial fields are represented on a
Cartesian grid in three-dimensional coordinate space with grid
spacing 0.8 a0 for Na. The numerical box employed here has a
size of (96 × 0.8 a0)3. The spatial derivatives are evaluated via
fast Fourier transformation. The ground-state configurations
were found by accelerated gradient iterations for the electronic

x y

z

(001)
(-101)

(011)

(-100)

(-110)

(010)
(-10-1)

(01-1)
(00-1)

(10-1)

(0-1-1)
(100)

(1-10)

(0-10)

(101)

(0-11)

(-1-10)

(110)

FIG. 1. Various orientations of the cluster used in the direct
averaging scheme.
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wave functions [37] and simulated annealing for the ions in the
cluster. Dynamical propagation is done by the time-splitting
method for the electronic wave functions [38], while the cluster
ions are frozen during the analysis of angular distributions,
which is fairly legitimate for the short time span of 120 fs used
in our analysis. The mean field of TDLDA is augmented by a
SIC. In practice, we use here average-density SIC, which was
found to provide an efficient and reliable level of SIC [39].

The laser excitation is described by an external laser field

Ulas = −e r·epol E0 sin2

(
t

Tpulse
π

)
sin(ωlast), (15)

which is only activated in the time interval 0 � t � Tpulse. The
field strength E0 is related to the intensity I as I/(W cm−2) =
27.8[E0/(V cm−1)]2. We use moderate intensities to keep one-
photon processes in the perturbative regime in accordance with
the presumptions of Sec. I A. The total pulse length Tpulse

corresponds to a full width at half (intensity) maximum as
FWHM ≈ Tpulse/3. We use here Tpulse = 60 fs and continue
the time propagation until t = 120 fs before we collect the
information on emitted electrons.

Electrons emitted from the cluster will eventually reach the
boundaries of the box. In order to suppress re-feed of these
electrons back into the box, we employ absorbing boundary
conditions [29,30]. This is achieved by the mask function
M(
r):

M(
r) =
[

sin

(
Rbox−|
r|
Rbox−Rcut

π

2

)]1/8

×� (Rbox − |r|)�(|r| − Rcut), (16)

where �(x) is the Heaviside function, Rcut is the cutoff radius
outside which absorption starts, and Rbox is the minimal radial
distance from the origin to the closest point on the boundaries.
The Kohn-Sham time step actually performed with the time-
splitting method [38] is thus augmented by an absorbing step
as

φ̃i = Û T V φi(t) → φi(t + δt) = M(
r)φ̃i , (17)

where Û T V is the unitary propagation operator. Applying
the mask function M to the orbitals gently removes density
approaching the box boundary and prevents it from being
reflected. The absorption typically takes place over several
grid points in order to avoid possible spurious reflection of
outgoing wave functions and to provide sufficiently smooth
overall behaviors [40]. Actually we use eight grid points
corresponding to an absorbing zone of 6.4 a0.

To compute the angular distribution of emitted electrons,
the absorbed density is accumulated for each state and each
(absorbing) grid point as

�i(
r) =
∫ ∞

0
dt γi(
r,t) , (18)

γi(
r,t) = |[1 − M(
r)]Û T V φi(t)|2. (19)

By definition of M, the field �i(
r) is nonvanishing only in the
spherical absorbing zone. The angular distribution of emitted
electrons is finally gathered by dividing the absorbing zone into

radial segments Sν and integrating �i(
r) over those segments.
The photoelectron cross section thus becomes

dσi

d�
∼ 1

||Sν(ϑϕ)||
∫

Sν

dr′ �i(r′) , (20)

where ||Sν(ϑϕ)|| denotes the area of the segment Sν on
the surface of a unit sphere. We finally define the total net
ionization, or the number of escaped electrons, as the integral
of Eq. (20) over � and summed over all states i:

Nesc =
∑

i

σi . (21)

II. RESULTS AND DISCUSSION

A. Na3
+ as a simple test case

As a first and simplest test case, we consider Na3
+ in the

spherical jellium model. The two electrons occupy the 1s state
with the wave functions

φi = R10(r)Y00χσi
,

where χσi
are Pauli spinors. This state is rotationally in-

variant. Rotational averaging is thus not necessary here. The
one-photon excitation augments this with Y10. The outgoing
wave is then

ψout ∝ Y10 ∝ cos ϑ ⇒ dσ

d�
∝ cos2 ϑ ⇒ β = 2.

This is a case of maximum possible anisotropy.
The spherical Na3

+ is a strongly hypothetical system. A re-
alistic Na3

+ cluster with ionic background shows a pronounced
planar structure as indicated in Fig. 2.This has dramatic effects
on the angular distributions. Figure 2 shows distributions (see
middle column) for three different orientations (displayed
in the left column). There are pronounced and nontrivial
structures in both angles ϑ and ϕ. Orientation averaging is
clearly necessary in this case.

The upper right panel of Fig. 2 shows the result of a
direct average over six orientations according to the scheme
as outlined in Sec. I B, namely, the three orientations shown in
the left column plus their three reflection pendants. We expect
from Eq. (13) that an averaging over many orientations should
yield a ϕ-independent distribution. We observe here that the
average over only six orientations already wipes out the ϕ

dependence to a large extend.
We now go for the explicit averaging over 18 orientations

(see Sec. I B and Fig. 1). The result is plotted in the middle
right panel of Fig. 2. We obviously noticed that the faint ϕ

dependence has been wiped out even better than in the case
of only 6 orientations. The lower right panel finally shows
the fully orientation-averaged result produced according to
the “exact” averaging procedure of Sec. I A. It smoothes the
distributions dramatically, yielding at the end an anisotropy of
β = 1.83. Note that the direct 18-orientation averaging here
already gives a pattern which is very close to the “exact”
scheme.

We have just seen from Fig. 2 that any averaging wipes
out efficiently any structure in the angle ϕ. Figure 3 compares
the ϑ dependence for various approaches. Benchmark is the
result obtained from applying the “exact” averaging procedure
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ϕ
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(100)
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0

π/4

π/2

3π/4

π

ϑ

0

3.25x10-5

6.5x10-5
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0

π/4

π/2

3π/4

π
ϑ

0

8x10-5

1.6x10-4

(100) orientation

0 π/2 π 3π/2 2π
ϕ

0

π/4

π/2

3π/4

π

ϑ

0

9x10-5

1.8x10-4

direct average (6)

0

6x10-5

1.1x10-4

direct average (18)

0

6x10-5

1.2x10-4

exact average

0 π/2 π 3π/2 2π
ϕ

0

7x10-5

1.4x10-4

FIG. 2. (Color online) Photoelectron angular distributions of Na3
+ irradiated by a laser of FWHM = 20 fs, intensity I = 3.2 × 1011 W/cm2,

and frequency ωlas = 11.6 eV. Left column: Orientations (001), (010), (100) with respect to the laboratory frame. Middle column: PAD for
each orientation. Right column: Top, direct average over 6 orientations (the three shown plus their reflection pendants); middle, direct average
over 18 orientations; bottom, exact scheme.

of Sec. I A which requires as an input the cross sections
from six independent laser polarizations. The alternative direct
averaging over orientations is also plotted in Fig. 3. It shows
nicely the typical pattern of Eq. (13) and the anisotropy comes
already fairly close to the exact result. The sparser direct
averaging over six reference orientations shows deviations
from the exact result, although they remain small, as was
already observed in Fig. 2.

0 π /2 π

cr
o

ss
 s

ec
ti

o
n

 [
ar

b
.u

n
it

s]

ϑ

Na3
+ exact averaging (jellium)

exact averaging (ionic)
ϕ-averaged 

-
R18

ϕ-averaged 
-
R6

FIG. 3. Angular distributions along ϑ for Na3
+ (same laser

parameters as in Fig. 2) for various averaging schemes: exact
averaging (with ionic or jellium background) and the direct averaging
over 6 or 18 orientations (with ionic background).

B. Systematics in small Na clusters

The case of Na3
+ has provided interesting insight into

our approach. It is now time to apply it to a larger variety
of systems and to explore how orientation-averaged PAD
brings information on cluster properties. We have chosen to
discuss small Na clusters as examples. Among the interesting
properties to explore, cluster deformation is a natural quantity
to investigate. It is in particular interesting to see how
deformation may be related to the anisotropy parameter β. We
also briefly sketch the electronic properties (single-electron
energies) of the clusters under consideration.

The most important ground-state properties for the follow-
ing studies are the global cluster deformation and the spectra of
the occupied single-electron states (from which the electrons
are lifted into the continuum through the laser field). The
deformation itself is characterized by the total quadrupole
momentum of the ionic (or jellium) background. The geometry
is best quantified by the dimensionless moment α:

α =
√√√√ 2∑

m=−2

α2m, α2m = 4πr2Y2m/5Nr2
rms, (22)

where rrms is the rms radius of the background and N the
number of ions. This will be discussed later on in connection
with Fig. 5.
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FIG. 4. Ground-state spectra of the occupied single-electron
states for the systems considered in this paper. Left columns in each
panel: Spectra for the electron cloud with detailed ionic background.
Right columns in each panels: Spectra from the equivalent jellium
model.

In the following, we show results for a few selected Na
clusters using, as it should be, detailed ionic structure which
was optimized by simulated annealing. For comparison, we
also show for the same clusters results from a deformed jellium
model with soft surface [30,41]. The jellium deformation is
adjusted such that the quadrupole moments (of the electronic
density) become the same as the ones computed with full
ionic background. A surface thickness of 1 a0 was chosen
such that the single-electron energies and the optical response
are comparable to the fully ionic description.

1. Single-electron spectra

The ground-state single-electron energies εi for all con-
sidered cases are shown in Fig. 4.The cluster cations (upper
panels) have, of course, an ionization potential (IP) much larger
than that of the neutral species. The spectral span between the
deepest bound state and the highest occupied molecular orbital
(HOMO) is about the same in all systems (except, of course,
for Na3

+ which has only one occupied state). The spectral
density increases with system size and is very similar for ionic
background (left columns) versus jellium (right columns).

2. Trends in relation to deformation

In order to stay safely in the regime of one-photon emission
for all occupied states, we use the laser frequency ωlas = 7.5 eV
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FIG. 5. (Color online) Anisotropy parameter β (bottom) defined
in Eq. (13) and quadrupole deformation α (top) defined in Eq. (22) as
a function of Na cluster size N , for neutral (squares) and positively
charged (circles) species. Open symbols correspond to a jellium
background, while the solid ones result from a full ionic background.

for neutral clusters and ωlas = 10 eV for cationic clusters
and the laser intensity I = 1011 W/cm2 (unless explicitly
said otherwise, e.g., Na3

+ in the previous section). This
corresponds to a net ionization Nesc of 0.0001–0.009.

As shown analytically in Sec. I A and confirmed practically
in Sec. II A, the orientation-averaged cross section from
one-photon processes can be characterized in terms of one
single anisotropy parameter β. Figure 5 summarizes the
anisotropy parameter β for neutral clusters NaN and cationic
clusters NaN

+ (bottom panel) and shows it together with the
corresponding quadrupole deformation α (top panel) defined
in Eq. (22). The latter parameter stands here as an indicator of
the electronic cloud structure.

The selection of clusters in Fig. 5 covers a wide range
of deformation and electronic configurations. Except for
Na3

+, the global deformation α is basically determined by
the electronic structure [41,42]. Na8 has a magic electron
number Nel = 8. The closed spherical electron shells drive the
background to nearly spherical shape and thus the quadrupole
deformation α is zero. The other magic system in the sample
is Na3

+ with Nel = 2. But here the planar ionic configuration
overrules the electronic trend to sphericity as we have already
mentioned in Sec. II A. The clusters with Nel = 10 are strongly
prolate and close to axial symmetry, while those with Nel = 18
are weakly prolate, and the samples with Nel = 12 are triaxial.
It ought to be mentioned that these triaxial systems have a very
small HOMO-LUMO (lowest unoccupied molecular orbital)
gap, indicating that their electronic structure is somewhat
volatile with a great variety of isomers nearby [43].

Figure 5 shows little variation of β within the clusters
described with detailed ionic structure. Even less variation
is observed within the group of jellium results. The charge
state also seems to play no role. The major difference is seen
between the jellium model and the detailed ionic background.
The jellium results all gather around β ∼ 1.9 close to the
maximum possible anisotropy while ionic structure causes
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FIG. 6. (Color online) Energy-resolved angular distribution of
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bination of photoelectron spectrum and angular distribution; the
horizontal axis shows the energy and the vertical axis shows the
angle ϑ .

significantly lower values around β ∼ 1.6. The discrepancies
between both models also seem to increase slowly with cluster
size, especially for cationic clusters. This means that explicit
ions in the background produce more isotropic (but still
prolate) PAD. The ionic perturbations seem to rescatter the
electronic waves and thus cumulate a strong isotropic com-
ponent. However the cases with Nel = 12 fall a bit below the
generally smooth trend. This is probably due to the particularly
soft electronic structure of these triaxial clusters which makes
the electrons extremely responsive to any small perturbation.

The basic conclusion at that level is that the global
anisotropy β does not show any clear dependence on the total
deformation α. This indicates that the global anisotropy β

is too much an averaged quantity, thus possibly not highly
discriminating. The next (more detailed) step is to consider
β(i) state by state, or, experimentally speaking, energy
resolved.

3. Energy-resolved orientation-averaged PAD

An example of energy-resolved orientation averaged PAD
is shown in Fig. 6 in the case of Na10. Calculations have been
performed with full ionic background. The figure provides a
rather complete picture of electronic emission pattern. Single-
electronic states are very clearly identified, each associated
with a well-defined β value. One observes that the anisotropies
β(i) decrease with increasing complexity of state (i.e., from 1s

over 1p to 1d). It is interesting to consider these trends in
the state-dependent β(i) values in a more systematic way. A
quick glance at Fig. 4 shows that, in all cases, the levels are
grouping into three different energy shells (with more or less
energy span depending on deformation) and we thus associate
“spherical” quantum numbers to the level groups: s for the
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FIG. 7. (Color online) State-dependent anisotropies β (i) for the
neutral clusters Na8, Na10, Na12, and Na18. For better discrimination,
the anisotropies are grouped according to the global quadrupole
deformation α. The single-electron states are associated with s, p,
and d states of a spherical mean field. Lower panel: Result from
calculation with full ionic background. Upper panel: Jellium results.

deepest bound state, p for next group, and d for the highest
levels (if occupied).

Figure 7 shows the anisotropies β(i) for all occupied
electronic states in detail, and for various clusters. It is obvious
that the span of anisotropies grows from s over p to the
d shell and the larger span extends to lower β(i). This is
probably caused by the increasingly complex structure of
these higher electronic states. The trend is the same with
full ionic background and with the jellium model, although
the results with ionic background are shifted as a whole
to lower β(i) in accordance with the lower total β. The
decrease of average anisotropy with increasing level number
corresponds nicely to the weak trend with system size seen
in Fig. 5. It is, furthermore, interesting to note that the
span between the state with the highest β(i) and the lowest
one increases somewhat with deformation. It seems that the
interplay between complexity of a state and deformation
cooperates to enhance the effect on lowering anisotropy.

C. Direct orientation averaging

We have focused the preceding discussions on simple metal
(Na) clusters in a specific dynamical regime, namely, the
perturbative one-photon regime. Laser irradiation of clusters
can, however, cover a much wider range of systems and
dynamical regimes. We want to make here a preliminary
exploration of these aspects. The most important point is the
extension of our approach to nonperturbative and multiphoton
regimes and we shall thus focus on this aspect in the following.
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excited by a strong laser pulse with ωlas = 7.5 eV, Tpulse = 60 fs, and
intensity I = 1013 W/cm2, which is already in the nonlinear regime
yielding an averaged net ionization of Nesc = 0.7 electrons. Results
are drawn as a function of the number of averaged orientations.

1. Convergence of direct orientation-averaged PAD

The “exact” procedure detailed in Sec. I A has been
derived in the perturbative regime and cannot be applied
to nonperturbative cases. We have nevertheless seen that a
direct averaging procedure provides very similar results for an
acceptably limited number of well-chosen orientations. This
direct procedure (see Sec. I B) remains in turn fully applicable
to the nonperturbative regime. The remaining question is how
many orientations are necessary to reach a final answer? In this
case, no benchmark is available and the single way to validate
the method is to explore the convergence of results with the
number of orientations..

An example is shown in Fig. 8 in the case of Na12. As
discussed previously, the key quantity for full PAD-PES is
the state-dependent β(i) rather than the global β. We have
thus chosen to consider this quantity as a function of the
number of computed orientations. The convergence of the
results is obvious. Up to details, we find again that 18
orientations represents a nearly optimum number, yielding
a good compromise between expense and averaging. Using
around 30 orientations yields a fully converged result. We have
also checked that this converged value indeed differs from that
obtained by the exact (thus non-exact here, values not shown)
procedure, as expected.

Having now at hand a reliable scheme for exploring
nonperturbative regimes, we want to present two examples
of application. We first study in the next section the impact
of laser intensity, at fixed photon frequency. And as a second
step (see Sec. II C 2), we consider effects of photon frequency
variation.

2. Na8 toward the multiphoton regime

The comparison in Fig. 3 has shown that the direct
averaging, although more expensive, can produce reliable
results if the mesh of orientations is chosen to be dense
enough. This allows one to consider multiphoton processes
without developing the corresponding averaging schemes
from multiphoton perturbation theory. Figure 9 compares the
orientation-averaged cross sections (direct averaging with 18
reference orientations) from Na8 as a function of intensity
and for two frequencies near the one-photon threshold for
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FIG. 9. Results from direct orientation-averaged PAD in Na8

drawn as a function of laser intensity. Two laser frequencies are
considered as indicated. The pulse length was 60 fs. Lower panel:
Hexadecapole anisotropy β4. Upper panel: Quadrupole anisotropy
β ≡ β2.

which we have a good chance that the two-photon processes
become increasingly important with increasing intensity. The
net ionization was about Nesc = 0.001–0.1. The orientation-
averaged PAD can be expanded in general as

dσ

d�
∝ 1 +

∑
l=2,4,...

βlPl(cos ϑ), (23)

where the lowest order is the (quadrupole) anisotropy β2 ≡ β.
Higher orders come into play with increasing photon number.
The anisotropy shows a gentle trend with intensity, mostly
increasing except for the last point in the case of ωlas = 3.7 eV.
More interesting is the appearance of nonzero β4 for the
higher intensities, which is a clear signal for the onset of two-
photon processes. We also see that the two slightly different
frequencies deliver significantly different values. There thus
is a strong frequency dependence. Both dependencies, on
intensity and on frequency, thus promise to show rich pattern
[15]. This will be studied in detail in forthcoming publications.
The present example has demonstrated that the methods
developed here provide appropriate tools for that.

III. CONCLUSION AND OUTLOOK

We have investigated PADs for Na clusters, neutral and
positively charged. The basis of the description is the TDLDA
for the valence electrons of the cluster augmented by SIC.
The short laser pulses used here allow one to keep the ionic
configuration as frozen during each TDLDA-SIC calculation.
We consider free Na clusters for which the orientation is not
known a priori. We deal thus with an isotropic ensemble of free
clusters. An analytical scheme for computing the orientation-
averaged PAD is developed for one-photon processes. It
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reduces the computational expense to only six TDLDA-SIC
calculations for appropriately chosen reference orientations.
Additionally, we have also studied direct averaging by repre-
senting the averaging integral on a finite mesh of orientations,
considering several levels of refinement.

The formal result in the perturbative regime is that
orientation-averaged PADs from one-photon processes are
fully characterized by one parameter for anisotropy β (the
quadrupole component in the PAD). Anisotropy was analyzed
as a global quantity or state resolved. We investigated the
systematics of the global anisotropy parameter with varying
cluster size for Na clusters in the range N = 3, . . . ,19. There
is only a weak dependence on cluster size and charge state.
However, comparison with results from a soft jellium back-
ground (with exactly comparable deformation in each case)
shows a dramatic effect from the detailed ionic background.
While the jellium model produces always large anisotropies,
near the maximum possible, the detailed ionic background
reduces these anisotropies by about 25%. It seems that the ionic
perturbation induces rescattering processes which produce an
isotropic background. We have also analyzed the anisotropies
on a state-by-state basis and found that the anisotropy is
largest for the most deeply lying states and decreases gently,
but systematically, with moving up toward the energy of the
occupied orbital. The reason for this trend is most probably the
increasing complexity of the state with increasing energy. The
effect turns out to be somewhat more pronounced in strongly
deformed clusters.

The exact scheme is used to benchmark a direct orientation
averaging on a finite mesh in orientation space (surface of
a sphere). It turns out that a very good reproduction of

the PAD can be already achieved with about 30 reference
orientations. A smaller mesh with 18 orientations represents a
good compromise between expense and precision. The number
of TDLDA-SIC calculations can be reduced by exploiting
structural symetries if there are any (as, e.g., in the highly
symmetrical Na8 cluster). This result shows the enormous
savings obtained with the partially analytical treatment for
one-photon processes. And it also proves the validity of
direct averaging on still acceptably sparse grids in orientation
space, where about 30 reference orientations yield converged
results and already 18 orientations suffice for an acceptable
description in practice. We have thus applied in a test for Na8

direct averaging to PAD in the transition from a perturbative
to a nonlinear regime. We find a growth of the hexadecapole
component in the PAD with increasing laser intensity.

The present paper constitutes an exploration of orientation-
averaged PADs. There are several interesting questions left
open to be investigated in subsequent works. The two major
directions are, first, to work out the frequency dependence of
the anisotropy in a systematic manner and, second, to vary
the materials in order to explore the influence of the ionic
background.
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