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Validity of the Wannier threshold law for angular correlation width in double
photoionization of atoms
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We calculated using the ab initio method the three-fold differential cross section of a single-photon double
photoionization of helium at equal energy sharing and derived the Gaussian width parameter γ , describing
the angular interelectron correlations, for the total electron energy E ranging from 0.1 to 100 eV. The results
are in perfect agreement with experimental data. Contrary to common expectations, the results demonstrate
that the Wannier threshold law for the Gaussian width parameter γ ∝ E1/4 is not correct at energies attainable
in modern experiments. It is shown that the γ dependence on the energy is much better described by the
modified threshold law, obtained by Kazansky and Ostrovsky [J. Phys. B 26, 2231 (1993)]. Also, we explored
the Gaussian width parameter for double photoionization of targets with strongly asymmetrical initial-state
configuration: the atomic hydrogen negative ion H− and the helium atom in the 2s 1S and 3s 1S excited states.
We found that the Gaussian width dependence on the total ejected electron energy for these targets has a
maximum at low energies. We also show that the correlation parameter dependence on the interelectron angle
for these targets is essentially non-Gaussian and has a number of peaks equal to the number of the initial-
state radial nodes, which provide new facilities for the qualitative analysis of the electron structure of the
target atom.
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I. INTRODUCTION

Interelectron correlations are principal components in many
processes in atomic physics, chemistry, and plasma and solid
state physics. The problem of two free electrons moving in the
Coulomb field of a third body can be treated as a fundamental
problem for investigation of interelectron correlations because
they are not negligible in such a process. More than 50 years
ago, Wannier [1] showed that, if two slow electrons escape
from the residual positively charged core, then, independent
of how the electrons are released, the cross section of the
two-electron ejection would be σ ∝ Eα , where α > 1 depends
only on the residual ion charge and E is the total energy
of the electrons. He obtained this expression having divided
the space surrounding the ion into three regions: the reaction
zone (where the electrons start), the Coulomb zone (where the
potential energy of the interaction between the electrons and
the ion is much larger than E), and the free zone (where E is
much larger than the Coulomb potential). The behavior of the
electrons in the Coulomb zone was considered as classical.
It also follows from his theory that the electrons should
predominantly go in opposite directions. For a long time, only
total cross sections have been explored both in experiment
and theory until the appearance of the experimental facilities
based on the coincidence technique, allowing the measurement
of momenta of all outgoing particles. This enables one to
study the multifold differential cross sections that depend
on the electron energy sharing and electron ejection angles
and yield significant information about the interelectron
correlations.

One of the simplest processes caused by the interelectron
correlations is the helium double ionization by a single photon
[2]. It is known that, if the incident radiation is linearly
polarized in the Oz direction, the three-fold differential cross
section (3DCS) of the double photoionization of an atom by

a single photon can be represented via gerade and ungerade
amplitudes [3]

d3σ

dE1d�1d�2
= |ag(E1,E2,θ12)(cos θ1 + cos θ2)

+ au(E1,E2,θ12)(cos θ1 − cos θ2)|2, (1)

where E1 and E2 are energies of the ejected electrons, θ12

is an angle between directions of ejection, and the ungerade
amplitude au = 0 for E1 = E2. The gerade amplitude ag is
usually referred to as the correlation parameter. Following
Wannier’s theory [1], the interelectron potential can be approx-
imated by the quadratic term in its Taylor series with respect to
(θ12 − π ) in the vicinity of the saddle point (θ12 = π, r1 = r2),
i.e., by the harmonic-oscillator potential with the frequency,
depending on the hyperradius R =

√
r2

1 + r2
2 . Rau [4] assumed

that the wave-function angular behavior near the saddle point
coincides with the oscillator ground mode for each R value
inside the Coulomb zone, and in the free zone it “freezes”
and coincides with the oscillator ground mode at the boundary
between the Coulomb and the free zones. This leads to the
Gaussian shape for the correlation parameter [5]:

ag(E1,E2,θ12) � A exp

[
−2 ln 2

(θ12 − π )2

γ 2

]
, (2)

with the Gaussian width parameter equal to

γ = γ0E
1/4, (3)

where E = E1 + E2 is the energy excess above the double-
ionization threshold, and the scaled Gaussian width γ0 depends
on the choice of the hyperradius of the boundary between
the Coulomb and free zones. By analogy with the Wannier
threshold law for the cross section, Eq. (3) is also commonly
referred to as the Wannier threshold law, although Wannier
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himself has no direct relation to it. The Gaussian width
parameter γ is a single-angle parameter describing the angular
distribution. When γ is large, the interelectron correlation
is weak, and vice versa; therefore, it is often used for the
analysis of the strength of angular interelectron correlation.
In spite of the fact that the energy range, where Eq. (3) is
valid, is not established, experimenters and theorists often
use Eq. (3) for the data interpretation, trying to find the
scaled width parameter γ0. Many formulas for γ0 have been
proposed by various authors [6]. However, Kazansky and
Ostrovsky [7] reduced the problem by a change of variable
to the wave-packet evolution in a harmonic oscillator with
time-dependent frequency and showed that the packet width
has no time to follow adiabatically the oscillator frequency as a
result of the deceleration of electrons by the nucleus field. This
contradicts the assumption used in [5] to obtain (3), and when
the nonadiabaticity is taken into account, the near-threshold
behavior of Gaussian width is strongly modified. They also
showed that the assumption about the presence of the only
oscillator ground mode at the boundary of the reaction zone is
not true and, therefore, ag(θ12) depends on the details of the
process inside the reaction zone and can have non-Gaussian
shape even at E → 0.

The initial reason that motivated us to start this work was
that we have found [8] that γ for the hydrogen negative ion
H− starts to grow with energy decreasing at low energies,
in obvious contradiction with the Wannier threshold law. In
trying to explain this phenomenon, we explored the well-
known and seemingly understood problem of the Gaussian
width parameter energy dependence for a helium atom at
low energies. The work structure is as follows. In Sec. II,
we describe the calculation method, the problems appearing
during the calculations, the parameters used in the calculations,
and the methods of the extraction of the Gaussian width
parameter γ from the calculated 3DCS. In Sec. III, the results
of the calculations of the Gaussian width parameter γ for
single-photon double photoionization of a helium atom are
given. The obtained results are compared with the Wannier
threshold law and the near-threshold results of Kazansky
and Ostrovsky. In Sec. IV, we compare the differential cross
sections and γ for single-photon double photoionization of H−
and He in 2s 1S and 3s 1S excited states, and discuss the origin
of difference in shapes of γ dependences on energy for these
targets from those for He and positive He-like ions.

II. DETAILS OF THE CALCULATION PROCEDURE

In our calculations, we used the time-dependent scaling
(TDS) method [8,9]. The main advantage of this method is the
possibility of obtaining the 3DCS for all values of the ingoing
photon energy in a single run of the program. As a result, we
obtain a continuous dependence of 3DCS upon the energy,
whereas other widespread ab initio methods imply a separate
calculation for each value of energy. Unfortunately, along with
the component corresponding to the double ionization and
described correctly in the expanding coordinate system, the
wave function also comprises the components that describe
the bound states and the single-ionization states, which are
poorly described at large values of the expansion coefficient
a(t) (see [9]). At evolution times t � 1000, this gives rise

to noise-looking short-period oscillations, the wavelength
of which becomes comparable to the radial grid step h.
Note that oscillations in γ (E) have been observed in some
other calculations [10]. However, there is enough evidence
to support that the oscillations mentioned in this paper are
numerical artifacts caused by the bound-state destruction: (1)
when the grid step is changed, the oscillation wavelength
follows it; (2) the oscillations always appear when a(t)h
approaches the typical bound-state radius and spreads toward
the increasing radius. For this reason, we filtered the wave
function after the evolution by eliminating all components
with wavelengths less than 4h. We should note that, even
without filtration, there are no oscillations in our calculations
in the energy range where the oscillations in convergent
close-coupling (CCC) calculations [10] appear.

In the calculations of helium photoionization presented
in this paper, we used the following numerical scheme
parameters (see [8] for details): the angular basis parameter
l2max = 13, the uniform radial grid with Nr = 500 and the
size ξmax = 25, the complex scaling radius ξsc = 22.5, the
complex scaling angle θsc = 30◦, and the grid expansion
rate ȧ∞ = 0.1. The evolution was simulated up to the time
tmax = 12 800. For other targets, other radial grid parameters
are used: Nr = 500, ξmax = 50, ξsc = 45, ȧ∞ = 0.05 for
H−, Nr = 1000, ξmax = 50, ξsc = 40, and ȧ∞ = 0.05 for the
He in the excited 1s2s 1S state; and Nr = 1400, ξmax = 70,
ξsc = 60, and ȧ∞ = 1/30 for He in the 1s3s 1S state.

The calculated 3DCS is then used to derive the Gaussian
width parameter γ . The squared module of the correlation
parameter |ag(E1,E1,θ12)|2 may be extracted from the 3DCS
using Eq. (1) and then approximated by Eq. (2) using the
least-squares (LS) method [11]. An alternative approach [12]
is based on approximating the calculated two-fold differen-
tial cross section (2DCS) σ (2)(E1,E2,θ12) = d2σ

dE1dθ12
by the

expansion

σ (2)(E1,E1,θ12) � 32π2

3
|A|2exp

[
−4 ln 2(π−θ12)2

γ 2

]
cos2 θ12

2
,

(4)

which is derived from Eq. (1) by integrating over all angles
except θ12. The values of 3DCS near θ12 = π contribute to
the sum of squares in the LS method with smaller weight
when fitting σ (2)(θ12) than when fitting |ag(θ12)|2. Since the
correlation parameter ag(θ12) can noticeably deviate from the
Gaussian shape, the γ values calculated using the two methods
are different. The Gaussian width parameter, obtained by
fitting |ag(θ12)|2, will be referred to as γ (|ag|2), while γ ,
obtained by fitting σ (2)(θ12), will be referred to as γ (σ (2)).

III. THE PHOTOIONIZATION OF THE HELIUM
IN THE GROUND STATE

In Fig. 1, we plot the Gaussian width parameter γ as a func-
tion of the full energy of ejected electrons E for the double pho-
toionization at equal energy sharing of helium in the ground
state. Our results show perfect agreement with the experiment
in the entire range from 0.1 to 100 eV, except for the point at
4 eV from [17]. The exact coincidence of our curve γ (σ (2))
with the experimental points at 0.116 and 0.209 eV from [12] is
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(2)
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FIG. 1. (Color online) The Gaussian width parameter γ as a func-
tion of the full energy of ejected electrons E for the photoionization
of He: our results were obtained by the fitting of σ (2)(θ12) (thick
solid line) and |ag(θ12)|2 (thin solid line), along with CCC results
[10,11] (dashed line), TDCC results [13] (dotted line), HRM-SOW
results [14] (dash-dotted line), and experimental data [12,15–19]
(filled circles).

the most remarkable. The curve γ (|ag|2) shows less agreement
with these points, which is not surprising since just γ (σ (2))
has been obtained in the experiment [12]. At high energies,
the experimental point at 80 eV was obtained in [19] by the
fitting of |ag(θ12)|2 and, hence, it is not surprising that this
point is much closer to our γ (|ag|2) curve than to the γ (σ (2))
curve. Generally, the differences between γ (|ag|2) and γ (σ (2))
may be a manifestation of the degree of the ag(θ12) deviation
from the Gaussian shape, although the coincidence of γ (|ag|2)
with γ (σ (2)) does not mean that ag(θ12) is exactly Gaussian.
In Fig. 1, the results of other authors’ ab initio calculations
are also shown. The agreement of the CCC results [10,11]
with our results is good for E > 10 eV and satisfactory for
lower energies. The time-dependent close-coupling (TDCC)
results [13], where available, are close to our results, and
the hyperspherical R-matrix with semiclassical outgoing wave
(HRM-SOW) results [14] strongly differ from all other curves.

Figure 1 is presented in logarithmic scales at both axes,
in which the power dependences such as the Wannier law (3)
should look like sloping straight lines. Indeed, we see that
our plots are close to straight lines when E is less than a few
electron volts. However, the exponent is not equal to 1/4 at all.
The approximation of the γ (σ (2)) curve in the E range from
0.1 to 2 eV, using the power law of the general form

γ = γ̃0E
s (5)

through the least-squares approach, yields the exponent s =
0.097 and the proportionality constant γ̃0 = 70◦ eV−s . Such a
significant deviation from the Wannier threshold law, which is
often used for the interpretation of experimental and theoretical
data, seems to be discouraging. In Fig. 2, we show the scaled
width parameter γ0(E) = γ (E)/E1/4 in comparison with the
curve obtained in [7] using the quadratic approximation of
the interelectron potential in (θ12 − π ) and the semiclassical
approximation for radial motion. We also take into account the
nonadiabaticity of the wave-function angular dependence on
the hyperradius and the suggestion that only the lowest mode
in θ12 is populated at the boundary of the reaction zone with

0
1/

4
)

(2))
2)

FIG. 2. (Color online) The scaled width parameter γ0 as a function
of E for He: our results were obtained with the fitting of σ (2)(θ12)
(thick solid line) and |ag(θ12)|2 (thin solid line), along with the
Kasansky-Ostrovsky threshold law [7] (dashed line).

the hyperradius assumed to be R = 4, which we will refer to
as the Kasansky-Ostrovsky (KO) threshold law. It is clear that
our curves are close to the KO threshold law curve, down to the
minimal energy value E = 0.1 eV attained here. In Fig. 2, the
Wannier threshold law (3) would look like a horizontal straight
line. At very low energies of the order of 10−5 eV, the KO
curve seems to become horizontal, but this is just because the
energies below 10−6 eV are not shown in the figure, as follows
from [7]. Following the KO threshold law, γ0(E) oscillates
when energy decreases with the period, which is constant in
the logarithmic scale [7] (in Fig. 2, only a half of the period is
shown) and never turns into the Wannier threshold law.

IV. PHOTOIONIZATION OF THE TARGETS WITH
STRONGLY ASYMMETRICAL INITIAL-STATE

CONFIGURATION

In our previous work [8], we compared the dependences
γ (E) for various heliumlike ions and found that, for the
negative hydrogen ion H−, this function starts to increase at
energies below 2.5 eV, unlike for other considered targets. We
extended the results of [8] down to the energy value of 0.06 eV.

(2))
2)

FIG. 3. (Color online) The Gaussian width γ as a function of E

for the photoionization of H−: our results were obtained by the fitting
of σ (2)(θ12) (thick solid line) and |ag(θ12)|2 (thin solid line), along
with the Kasansky-Ostrovsky threshold law [7] (dashed line).
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FIG. 4. (Color online) The 2DCS as a function of the interelectron
angle θ12 for the photoionization of H− for (a) E = 0.1 eV and
(b) E = 2.5 eV: “exact” TDS results (solid line), Gaussian fitting of
σ (2)(θ12) (dashed line), and the Gaussian fitting of |ag(θ12)|2 (dotted
line).

It is clear from Fig. 3 that derivative of γ (σ (2)) with respect to
the energy is negative in the energy range from 2.6 to 0.23 eV.
In Fig. 4, the 2DCS dependence on the interelectron angle θ12

and its Gaussian fittings are shown for the E value below the
maximum of γ (E) [Fig. 4(a)] and near the minimum of γ (E)
[Fig. 4(b)]. At energies below 0.09 eV, γ (σ (2)) appears to be
a power function of the energy with the exponent s = 0.083
and γ̃0 = 74◦ eV−s ; however, the energy range is too small to
treat this conclusion as a rigorous one. Figure 5 demonstrates a
clear-cut distinction between our results and the KO threshold
law for the nuclear charge Z = 1 [7], unlike the helium case
(Fig. 2). We should note that the γ (E) dependence obtained
by Kasansky and Ostrovsky is monotonous (Fig. 3), despite
the γ0(E) dependence oscillating. Here we should note that
the KO curve is obtained from the assumption that, at the
boundary of the reaction zone, only the ground angular mode
is populated; but, in the same work [7], it is shown that it is
not necessary at all, even at E → 0, and at the boundary of
the reaction zone, the wave-function angular dependence may
have an arbitrary width or even be non-Gaussian, depending
on the details of the process inside the reaction zone. Our
hypothesis is that this special feature of H−, compared with
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FIG. 5. (Color online) The scaled width parameter γ0 as a function
of E for H−: our results were obtained by the fitting of σ (2)(θ12) (thick
solid line) and |ag(θ12)|2 (thin solid line), along with the Kasansky–
Ostrovsky threshold law [7] (dashed line).

helium and heliumlike ions [8], comes from the fact that the
H− bound-state configuration is strongly different from that
of the helium ground state. Indeed, when r1,2 → ∞, the H−
bound-state wave function has the asymptotic form

�(r1,r2) ∼ e−r1
e−0.235r2

r2
+ e−r2

e−0.235r1

r1
.

H− is a deuteronlike weakly bound system consisting of
a hydrogen atom and an electron, spending the most time
outside the region where the attracting potential acts. We
performed here the calculations for other targets with strongly
asymmetrical initial-state configuration, namely, helium atoms
in the excited states 2s 1S and 3s 1S.

In Fig. 6, we show γ as a function of E for the
photoionization of helium in the 2s 1S metastable state. Our
results do not deviate much from the CCC results [10] in
magnitude, but deviate strongly in behavior, since there are
no oscillations in our results. When the energy decreases, γ

also decreases at first and then begins to increase [for γ (σ (2))

)
)

FIG. 6. (Color online) The Gaussian width γ as a function of E

for the photoionization of He(2s 1S): our results were obtained by the
fitting of σ (2)(θ12) (thick solid line) and |ag(θ12)|2 (thin solid line),
along with CCC results [10].
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FIG. 7. (Color online) The 2DCS as a function of the interelectron
angle θ12 for the photoionization of He(2s 1S) for (a) E = 1 eV,
(b) E = 11 eV, and (c) E = 20 eV: “exact” TDS results (solid line),
Gaussian fitting of σ (2)(θ12) (dashed line), and the Gaussian fitting of
|ag(θ12)|2 (dotted line).

it happens at E = 2.5 eV], similarly to H−. Surprisingly,
at E > 5 eV, the difference between γ (|ag|2) and γ (σ (2))
became enormous. The origin for this is clear from Fig. 7.
The correlation coefficient has a strongly non-Gaussian shape
with the two peaks, even at low energy E = 1 eV. When the
energy decreases, the secondary peak declines and therefore

)
)

FIG. 8. (Color online) The Gaussian width γ as a function of E

for the photoionization of He(3s 1S): our results were obtained by the
fitting of σ (2)(θ12) (thick solid line) and |ag(θ12)|2 (thin solid line),
along with CCC results [10].

the distribution turns Gaussian, as follows from Wannier’s
theory. When the energy increases, the secondary peak grows
and becomes larger than the primary peak at E = 11.3 eV, as
is seen from Figs. 7(b) and 7(c). Then, naturally, the Gaussian
approximation becomes nonapplicable.

In Fig. 8, we show γ as a function of E for the
photoionization of helium in the 3s 1S state. Our results
are strongly different from the CCC results [10], both in
magnitude and in behavior. The general curve shape is similar
to that for 2s 1S, but γ (σ (2)) reaches the local maximum at
E = 1.5 eV. It is seen from Fig. 9 that the correlation parameter
is strongly non-Gaussian, as for 2s 1S, but it has three peaks at
low energies. When the energy increases, two smaller peaks
grow and merge, and the shape of σ (2)(θ12) becomes rather
complicated at large energies. One can see that the number
of σ (2)(θ12) peaks at low energies is equal to the number
of peaks of the “outer” electron density versus the radius
in the initial state of the target. Particularly, it is equal to
one for H− (Fig. 4), two for He(2s 1S) [Fig. 7(a)], and three
for He(3s 1S) [Fig. 9(a)]. It seems not to be an accidental
coincidence, although we still can not propose a rigorous
explanation for this effect. If this finding will be confirmed
by other examples, it will provide new facilities for qualitative
experimental analysis of the target electronic structure using
the over-threshold double photoionization by analogy with the
(e,2e) spectroscopy [20].

Having established that the local minimum appearance
in the γ (E) is common for all considered targets with
the asymmetrical initial-state configuration, we can proceed
to clarifying the origin of this effect. For all targets, the
local minima of γ (E) are observed at energies not directly
proportional to the target’s first ionization potential I1, but
of the order of I1. We should note that, despite the absence
of a local minimum in the plot for helium in the ground
state (Fig. 1), there is a curve bend at about E = 20 eV
that indicates some change taking place at the energy of the
order of I1. In the nonsequential double ionization considered
here, one of the electrons is ionized at first by the photon
impact, and the second electron might be ejected through a
sudden change of the atomic potential (the so-called shake-off
mechanism), or through the first electron impact (the so-called
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FIG. 9. (Color online) The 2DCS as a function of the interelectron
angle θ12 for the photoionization of He(3s 1S) for (a) E = 1 eV,
(b) E = 5 eV, and (c) E = 20 eV: “exact” TDS results (solid line),
Gaussian fitting of σ (2)(θ12) (dashed line), and the Gaussian fitting of
|ag(θ12)|2 (dotted line).

final-state scattering or knock-out mechanism) [21]. If the
initial-state configuration is strongly asymmetrical, then the
inner-electron momentum density is much broader than that
for the outer electron, and the single-ionization cross-section
dependence on the ejection energy for the inner electron
decreases much slower than for the outer electron. This means

that the process, when the outer electron is ionized first, may
give a significant contribution only when E is of the order of
the outer-electron binding energy, i.e., I1. On the other hand, it
is obvious that the shake-off mechanism may give a significant
contribution only in the case wherein the first ionized electron
velocity is much larger than the velocity distribution width
for the second one. Indeed, when the velocity of the first
ionized electron is comparable to the velocity of the bound
electron, then the potential affecting the second electron
changes slowly, and the second electron adiabatically comes
to the bound state with the same symmetry as its initial state,
as per the well-known theorem; hence, its ionization can
not proceed. Therefore, when the outer electron is ionized
first, the shake-off mechanism is impossible. However, the
possibility of the final-state scattering is also extremely small
if the outer electron is ionized first because it can not have
enough energy to eject the strongly bound inner electron.
Consequently, the double ionization is possible only if the inner
electron is ionized first. In this case, the shake-off mechanism is
significant only at emission energies much larger than the first
ionization potential. From the comparison of γ for the double
photoionization of He with γ for (e,2e) on He+ in [10], it is
clear that the angular interelectron correlations are stronger
for the shake-off process than for the final-state scattering. To
summarize, we can conclude that γ decreases with the energy
decreasing for both processes taken individually, and the γ

increasing at low energies in Figs. 3, 6, and 8 results from
the “switching off” of the shake-off process. The distinction
from He in the ground state is just the sharpness of this
switching off because of the narrow momentum spectrum of
the outer electron. It may be predicted that, in the double
photoionization of targets with I1 much less than I2 (like alkali-
metal atoms), γ (E) should behave similarly to that for H−
in Fig. 3.

V. CONCLUSION

We calculated using the ab initio method the Gaussian
width γ dependence on the energy E of electrons in the
double photoionization of the negative hydrogen ion H−,
the helium in the ground 1s2 state, and the 2s 1S and 3s 1S

excited states. For the He(1s2) photoionization, our results
are in perfect agreement with experimental data, but indicate
that the well-known Wannier threshold law γ ∝ E1/4 is not
correct, even for sufficiently small excess energies of about
0.1 eV. It is shown that the γ dependence on the energy is
much better described by the law obtained by Kasansky and
Ostrovsky, where the influence of the electrons’ deceleration
by the nucleus field is properly taken into account. Their
law is strongly different from the Wannier threshold law
at any values of the excess energy, even at extremely low
ones, and, therefore, the Wannier threshold law is meaningless
in the interpretation of experimental and theoretical angular
distribution data. We have also shown that for all considered
targets with strongly asymmetrical initial-state configuration,
there is a region of excess energy where derivative of γ (E) with
respect to E is negative. We suppose that this effect is due to
a rapid change of the dominating ionization mechanism from
shake-off to the less-correlated final-state scattering. Also, it
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was demonstrated that the cross-section dependence on the
interelectron energy for these targets is strongly non-Gaussian
at low energies and has a number of peaks equal to the number
of the initial-state radial nodes, which offer new possibilities
for the qualitative analysis of the electronic structure of targets.

ACKNOWLEDGMENTS

The authors are grateful to Professor V. Derbov for help
and discussions. This work was supported by the President
of Russian Federation Grants No. MK-2344.2010.2 and
No. RFBR 08-01-00604a.

[1] G. H. Wannier, Phys. Rev. 90, 817 (1953).
[2] J. S. Briggs and V. Schmidt, J. Phys. B 33, R1 (2000).
[3] A. Huetz, P. Selles, D. Waymel, and J. Mazeau, J. Phys. B 24,

1917 (1991).
[4] A. R. P. Ray, Phys. Rev. A 4, 207 (1971).
[5] A. R. P. Rau, J. Phys. B 9, L283 (1976).
[6] S. Otranto and C. R. Garibotti, Phys. Rev. A 71, 034703 (2005).
[7] A. K. Kazansky and V. N. Ostrovsky, J. Phys. B 26, 2231 (1993).
[8] V. V. Serov, V. L. Derbov, B. B. Joulakian, and S. I. Vinitsky,

Phys. Rev. A 78, 063403 (2008).
[9] V. V. Serov, V. L. Derbov, B. B. Joulakian, and S. I. Vinitsky,

Phys. Rev. A 75, 012715 (2007).
[10] A. S. Kheifets and I. Bray, Phys. Rev. A 73, 020708(R)

(2006).
[11] A. S. Kheifets and I. Bray, Phys. Rev. A 62, 065402 (2000).
[12] A. Huetz and J. Mazeau, Phys. Rev. Lett. 85, 530 (2000).
[13] M. Foster and J. Colgan, J. Phys. B 39, 5067 (2006).

[14] L. Malegat, P. Selles, and A. K. Kazansky, Phys. Rev. A 60,
3667 (1999).

[15] G. Dawber, L. Avaldi, A. G. McConkey, H. Rojas, M. A.
MacDonald, and G. C. King, J. Phys. B 28, L271 (1995).

[16] R. Dörner et al., Phys. Rev. A 57, 1074 (1998).
[17] L. Malegat, P. Selles, P. Lablanquie, J. Mazeau, and A. Huetz,

J. Phys. B 30, 263 (1997).
[18] C. Dawson, S. Cvejanović, D. Seccombe, T. J. Reddish,
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