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Controlled dipole-dipole interactions between K Rydberg atoms in a laser-chopped effusive beam
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We explore pulsed-field control of resonant dipole-dipole interactions between K Rydberg atoms. A laser-based
atomic beam chopper is used to reduce the relative velocities of Rydberg atoms excited from an effusive thermal
source. Resonant energy transfer (RET) between pairs of atoms is controlled via Stark tuning of the relevant
Rydberg energy levels. Resonance line shapes in the electric field dependence of the RET probability are used
to determine the effective temperature of the sample. We demonstrate that the relative atom velocities can be
reduced to the point where the duration of the electric-field tuning pulses, and not the motion of neighboring
atoms, defines the interaction time for each pair within the ensemble. Coherent, transform-limited broadening
of the resonance line shape is observed as the tuning pulse duration is reduced below the natural time scale for
collisions.
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I. INTRODUCTION

Dipole-dipole (DD) interactions between neutral atoms
or molecules underlie a variety of fundamental few- and
many-body physics problems. Those involving Rydberg atoms
can be substantial, even at long range, and are interesting
for exploring diverse phenomena, from quantum information
processing [1–3] to the spontaneous evolution of Rydberg
gases, to cold neutral plasmas [4–6]. Controlled resonant
energy transfer (RET) between Rydberg atoms has proven
to be a convenient method to explore DD interactions [7–23].
The simplest form of RET occurs between atom pairs when an
electron on one atom, A, donates energy to an electron on atom
B. In a perfectly resonant process, no energy is transferred to
additional degrees of freedom and the electronic energy of the
pair is conserved [24]. Such Förster resonances [25] are rare for
pairs of atoms in low-lying levels, but they are more common
in Rydberg systems because of the high density of available
electronic states. Moreover, owing to the large polarizabilities
of Rydberg atoms, resonant interactions can be induced via
Stark tuning of Rydberg energy levels through the application
of small electric fields.

Measurements of RET between Rydberg atoms have been
made in room-temperature vapor cells, atomic beams, and
in magneto-optical traps (MOTs) [7–15,24,26]. In a MOT,
Rydberg atoms are nearly frozen over the microsecond time
scales required for RET, and the resonant atom-atom coupling
is conveniently described in terms of (nearly) static DD
interactions of the form VDD ∼ µAµB

R3 (a.u.), where µA and
µB are the dipole moments of two atoms, A and B, separated
by a distance R. The values of µA and µB depend on the
specific Rydberg levels of interest, but can have magnitudes
on the order of n2 for transitions between states with the same
principal quantum number, n [24]. Thus, typical RET rates
within an ensemble can approach � = µAµB

〈R〉3 ∼ 2πρn4 (a.u.),

or >1 MHz for n > 20 and ρ > 109 cm−3. For temperatures
T ∼ 100 µK and densities ρ ∼ 109 cm−3, typical atoms in
a MOT move only a few percent of the average interatomic
separation 〈R〉 ≈ (2πρ)−1/3 ≈ 5 µm during the ∼1 µs time
interval required to transfer substantial population via RET.
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In this case, pulsed electric fields can be used as controls to
tune atom pairs into and out of resonance, turning on and
off the DD coupling, at well-defined times [14]. Even if the
separation between atoms is not precisely known or uniform
throughout the sample, the ability to affect RET at specific
times enables a variety of time-domain spectroscopies that
can be used to characterize interactions between Rydberg
atoms in an ensemble. For example, time-domain Ramsey
interferometry for probing dephasing [14] and echo methods
for quantifying coherence both rely on pulsed interactions
during well-defined intervals [27].

It is not currently possible to laser cool and/or trap all
atomic and molecular species that might exhibit interesting
dynamics in this context. Even so, in principle, time-domain
studies of RET can be performed in any Rydberg sample,
provided the DD coupling can be pulsed on and off in
a sufficiently short time interval, τ , during which typical
atoms experience little variation in VDD. Therefore, it is
prudent to estimate the values of τ required to make such
measurements. Consider a three-dimensional gas of Rydberg
atoms of mass M . The rms relative velocity between atoms
is vrms = √

6kT /M , where k is Boltzmann’s constant. The
DD coupling between atoms will be approximately constant
during a time interval τ if the distance traveled during that
interval is much less than the nearest-neighbor separation
between typical atoms in the ensemble vrmsτ � (2πρ)−1/3.
Assuming a near maximum dipole moment for a given n state,
µ1 ∼ µ2 ∼ n2, the RET amplitude during the interval τ is η =
�τ ∼ 2πρn4τ (a.u.). By using this expression to eliminate ρ

from the preceding inequality, we obtain τ � n2√
ηv3

rms

(a.u.)

as a requirement to ensure roughly constant VDD during the
interval τ .

At T = 300 K, vrms > 400 m/s for typical atoms and small
molecules, such that τ � 30n2 ps even for a transition proba-
bility as small as η2 = 1%. Accordingly, effective switching of
RET for Rydberg atoms with n = 20 requires the application
of constant-amplitude electric-field pulses with durations τ �
10 ns and Rydberg densities ρ � 109 cm−3. Generating
the constant amplitude, τ ∼ 1 ns field pulses needed to
define single Rydberg interaction times would be a significant
technical challenge for experiments. Performing time-domain
spectroscopies with multiple, precisely delayed interactions
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within the requisite ∼1 ns time window would be extremely
difficult, if not impossible [27]. Moreover, at such high
Rydberg densities, nonresonant van der Waals interactions
play a non-negligible role, complicating the dynamics [28–30].
Working at significantly higher n affords the use of longer
pulses and lower densities, but also makes the experiments
much more sensitive to the deleterious effects of stray
fields, field inhomogeneities, and increased van der Waals
interactions.

At lower temperatures, not necessarily as low as those
reached in a MOT, the experimental constraints relax con-
siderably. For T = 10 K, the relative atom or molecule speeds
are reduced to vrms ∼ 70 m/s and DD interactions between
atom pairs remain constant for times τ � n2 ns for η ∼ 1%.
Accordingly, it should be possible to perform time-domain
experiments by using electric-field pulses and pulse sequences
with durations of ∼100 ns to toggle DD interactions between
n ∼ 20 atoms. With longer interaction times the RET rate
can be reduced while maintaining comparable yields. Thus, at
lower temperatures experiments can be conducted at reduced
densities, ρ < 108 cm−3, where the effects of nonresonant
interactions are small.

Several previous experiments on coherent DD interactions
between atoms have utilized mechanical methods to reduce
the relative velocities of atoms in atomic beams. For example,
Stoneman, Adams, and Gallagher used thermal expansion
of a mechanically chopped atomic beam to effectively cool
K atoms [26]. In their method, a spinning disk produces
spatially localized atom pulses of length d. Each atom
pulse expands longitudinally while traveling for a time �t

prior to laser excitation to Rydberg states. The longitudinal
spreading reduces the relative atom velocities, �v, by a factor√

κ ∝ d/�t [26]. Application of electric-field pulses with
durations of τ ∼ 500 ns then allowed Thomson, Renn, and
Gallagher to gate the DD interaction to control RET between
the atoms [8]. The same technique enabled Renn et al. to
explore radiatively assisted RET [9,31]. By phase locking
the DD interactions with a microwave driving field, they
confirmed atom pair coherence over multiple interaction times.
More recently, Saquet et al. used a supersonic expansion to
produce a fast sodium beam with an effective temperature of
∼1 K [23]. The small relative atom velocities allowed them to
control RET between atom pairs by using pulsed electric-field
ramps to sweep atoms through resonance, driving adiabatic
Landau-Zener transitions between pair states coupled by the
DD interaction.

Here we present measurements demonstrating temporally
controlled RET between K Rydberg atoms in a thermal beam.
The results are similar to those of Thomson, Renn, and
Gallagher [8], but are obtained without the use of a mechanical
chopper. Specifically, we examine the 29s1/2 + 27d3/2 →
29p1/2 + 28p1/2 RET process in potassium, which occurs in an
externally applied electric field F0 ≈ 6.43 V/cm [26]. Velocity
reduction is achieved by focusing Rydberg excitation lasers
of diameter d across the thermal beam and waiting a time
�t before applying an electric-field pulse that Stark tunes
the Rydberg atoms in and out of DD resonance. In analogy
with the mechanical chopper, the laser creates a pulse of
Rydberg atoms within the atomic beam. The pulse spreads
longitudinally owing to the thermal velocity distribution of

the atoms, decreasing the relative velocity, �v, of neighboring
Rydberg atoms by a factor

√
κ .

An obvious advantage of the laser-chopper technique pre-
sented here is that it eliminates the spinning chopper wheel and
its high-speed motor, along with the mechanical alignment,
timing, and vacuum problems they present. Also, because d

is determined by the diameter of a focused laser, atom pulses
with lengths that are orders of magnitude smaller than those
attainable from mechanically chopped beams can be produced.
Accordingly, expansion times, �t , that are orders of magnitude
smaller give the same relative velocity reduction. Therefore,
because the final atom density is inversely proportional to
�t , a substantially lower atomic beam flux can be used
to obtain the same atom density in the velocity-reduced
sample.

In the following sections first we describe the experimental
apparatus and approach. Next, the results of the experiments,
demonstrating both effective cooling of the atomic beam and
coherent broadening of RET resonances owing to temporal
gating of RET, are presented. We then derive expressions for
the atom density and relative velocity distribution as a function
of expansion time in the laser-chopped beam. We present a
two-atom model for RET that allows us to calculate the width
and maximum transition probability of the electric-field-tuned
RET resonance. Estimates for the reduced beam temperature
and density are then extracted from the measured RET line
shapes and compared to model predictions. We conclude by
summarizing our results and discussing potential applications
of the laser-chopper technique.

II. EXPERIMENTAL APPARATUS AND APPROACH

The experiments are performed at a 15-Hz repetition
rate in a vacuum chamber with a background pressure of
∼10−6 Torr. Three 5-ns pulsed dye lasers excite atoms from
a thermal K beam into 29s1/2 and 27d3/2 Rydberg states,
as shown in Fig. 1. The first laser drives the 4s → 4p1/2

transition at 770.1 nm. The other two lasers are tuned to ∼457
nm and transfer population from the 4p1/2 state to the two
Rydberg states. The parallel laser beams are focused with a
single 350-mm lens and cross the K beam at right angles. The
overlapping beams have full width at half maximum (FWHM)
diameters of d ∼ 130 µm, exciting a cylinder of atoms
between two parallel aluminum field plates. The field plates
are square, 7.5 cm on a side, and are separated by 0.64 cm.
Static and/or pulsed voltages applied to the electric-field plates
create a uniform electric field, enabling Stark tuning of the DD
interactions. The three lasers pulses are polarized parallel to
the applied electric field, are temporally overlapped when they
cross the K beam, and have sufficient flux to saturate their
respective transitions. Therefore, one-quarter of the atoms that
are exposed to the laser beams are excited to each of the two
Rydberg states.

The laser excitation proceeds in a static electric field, Fs ,
created by applying a constant voltage to the lower field plate.
Typically, the static excitation field is set to a value that is too
large for RET 29s1/2 + 27d3/2 → 28p1/2 + 29p1/2 to occur
between pairs of atoms (see Fig. 1). Instead, the volume of
noninteracting Rydberg atoms is allowed to expand for a time
�t beneath a 0.2 cm × 2.5 cm slit in the upper field plate.
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FIG. 1. (Left) Schematic of the laser excitation scheme used to
create the 29s1/2 and 27d3/2 Rydberg atoms. (Upper right) Schematic
of the interacting pair states as a function of electric field in a two-
state approximation. At large R, or fields F 
= F0, the eigenstates are
|1〉 = |29s1/2〉|27d3/2〉 and |2〉 = |28p1/2〉|29p1/2〉. RET occurs in the
avoided level crossing region at electric fields F ∼ F0 = 6.43 V/cm,
where the eigenstates are linear combinations of |1〉 and |2〉. The
energy gap at the avoided crossing is 2VDD, which varies with the
relative separation between atoms in a pair. (Lower right) Schematic
of the laser excitation and atom expansion region beneath the slit in
the upper electric-field plates. The small dark gray region near the left
edge of the slit shows the initial atom excitation region. The larger,
light gray region near the center of the slit depicts the excited atoms
after they have expanded for a time �t .

The DD interaction is then toggled on and off by applying a
2-V pulse to the upper field plate, reducing the electric field to
F ∼ F0. The tuning pulse is produced by an arbitrary wave-
form generator and has a duration τ with a <2 ns rise time.
The pulse projects the Rydberg atoms from the high-field,
noninteracting states to a coupled basis of interacting levels
near F0 (see Fig. 1). Thus, τ defines the maximum time during
which RET can occur.

Immediately after the tuning pulse, the total Rydberg signal
and the fraction of atoms undergoing resonant energy transfer
are measured via state-selective field ionization (SSFI). A
high-voltage ramp is applied to the lower field plate, ionizing
any Rydberg atoms in the interaction region, and pushing the
resulting ions through the slit in the upper field plate toward a
microchannel plate detector. It is worth noting that following
excitation, the Rydberg ensemble expands longitudinally along
the slit, but experiences negligible transverse spreading prior
to the field ionization ramp. Thus, any Rydberg atoms that
are excited beneath the slit remain beneath the slit and can
be detected via SSFI. Half of the atoms undergoing RET are
excited to the 29p1/2 level, so the ratio of the 29p1/2 to total
Rydberg atoms detected gives the RET probability per atom
pair, P .

We measure P as a function of the net electric field, F , by
varying Fs on successive laser shots. The independent axis for
these resonance line shapes is then converted from F to energy
detuning, E, by using the known field dependence of the
energy splitting between noninteracting |29s1/2〉|27d3/2〉 and
|28p1/2〉|29p1/2〉 atom pairs. The detuning varies quadratically
with electric field, with a slope of 2.46 MHz/(V/cm)2 [26].
The variations in the resonance line shapes as functions of �t

and τ are used to characterize the relative velocity reduction
in the thermal expansion, as well as confirm the coherence of
the DD interaction over short time scales.

III. EXPERIMENTAL RESULTS

Figure 2 shows the measured resonance line shapes for
several different expansion times, �t , at a fixed tuning pulse
duration, τ = 1 µs. These data are collected in the “long-
pulse” regime in which the duration of DD interactions is
limited by the relative motion of atoms rather than the tuning
pulse. In other words, as described in detail in Sec. IV, τ >

τ0, where τ0 = 2b0/v0 is a typical collision time, v0 is the
average relative speed between Rydberg atoms, and b0 is the
distance of closest approach between the Rydberg atoms that
contribute most to the RET signal. Inspection of the line-
shape data shows that under long-pulse conditions, both the
maximum RET probability, P0, and the resonance width, �E,
decrease as �t is increased. Qualitatively, this is expected from
the thermal expansion. First, because the RET probability is
proportional to ρ, P0 decreases as �t increases. Second, as
described in detail in Sec. IV, v0 shrinks as the ensemble
expands. The growth in b0 and decrease in v0 result in an
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FIG. 2. (Color online) RET probability, P , vs energy detuning,
E, for several different expansion times, �t . Ordered from top to
bottom, the blue, green, red, and violet curves correspond to �t = 0,
0.5, 1.0, and 1.5 µs, respectively. For clarity, the curves have been
vertically offset from each other and the amplitudes of the green, red,
and violet line shapes have been multiplied by factors of 3, 4, and
6, respectively. All data were collected in the “long-pulse” regime,
τ > τ0, where the motion of atoms, not the detuning pulse, determines
the duration of the interaction between atoms. The green, red, and
violet curves were collected with a tuning pulse duration, τ = 1 µs.
The blue (upper) curve was measured without a tuning pulse because,
for this broad resonance, the 3.1 V/cm tuning pulse amplitude was
insufficient to tune the atoms from far off resonance to on resonance.
In this case the atoms are allowed to interact for the full 2-µs interval
between the laser excitation and field ionization, but the width and
peak amplitude of the resonance are independent of the interaction
time for τ > 1 µs.
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FIG. 3. (Color online) RET probability, P , vs energy detuning, E,
for several different tuning pulse durations for a fixed expansion time,
�t = 1.5 µs. The line shapes exhibit coherent Fourier-transform
broadening as the tuning pulse duration is reduced below the
typical interaction time between moving atoms, τ0 ∼ 500 ns. In (c),
τ = 1 µs and the resonance width �E = 5.5 ± 0.2 MHz. In (b),
τ = 200 ns and �E = 6.7 ± 0.6 MHz. In (a), τ = 100 ns and �E =
11.8 ± 1.2 MHz. For all three graphs the dots are measurements
with associated uncertainties and the solid lines are Lorentzian fits
to those data.

increase in the interaction time τ0 and, in accordance with the
uncertainty principle, a concomitant reduction in �E.

Figure 3 shows the measured line shapes as τ is reduced be-
low τ0 � 500 ns for a fixed expansion time, �t = 1.5 µs. For
τ > τ0, the resonance widths are determined by the Rydberg
density and relative velocity distribution, and are independent
of τ . However, for τ < τ0, the interaction time between typical
atoms is restricted by the tuning pulse. In this “short-pulse”
regime, the resonance linewidth is determined solely by the
tuning pulse duration that is under our control. Figure 3 shows
that, in agreement with our expectations from the uncertainty
principle, in the short-pulse regime the resonance widths
increase as τ decreases. This “transform-limited” broadening
reflects the coherence of the Rydberg-Rydberg dynamics
within the ensemble. The substantial increase in �E observed
for τ = 100 ns indicates that essentially all interactions within
the ensemble begin and end at the same times. This coherent
control over the Rydberg-Rydberg coupling is made possible
by the effective cooling of the relative atom motion in the
thermal expansion.

IV. ANALYSIS

To obtain a quantitative understanding of the results
presented in Figs. 2 and 3, first we derive expressions for the
Rydberg density and the relative velocity distribution of neigh-
boring Rydberg atoms as a function of the expansion time,
�t . We then present a two-atom model that approximates the
Rydberg-Rydberg interactions within the beam. Comparisons
between simulation results based on this model and the data
shown in Fig. 2 are used to extract the Rydberg atom density
and effective temperature as a function of �t . These density
and temperature determinations are then used to simulate the
transform broadening of the RET line shapes as a function

of tuning pulse duration data. The predicted resonance widths
are found to be in good agreement with measurements such as
those shown in Fig. 3.

A. Delay dependence of the Rydberg density

Consider a collimated atomic beam propagating in the
+z direction that is crossed by a Gaussian laser beam(s)
propagating in the +x direction. At a time t = 0, the laser
excitation defines the spatial probability distribution for
finding a Rydberg atom at a location, z0, along the atomic
beam, relative to the axis of the laser beam,

D(z0) = 1√
πd

exp
(−z2

0

/
d2

)
, (1)

where the pulse width d is related to the FWHM of the laser
beam, d0 = 2

√
ln(2)d. At this time, the velocity distribution

of Rydberg atoms within the excitation volume is equal to that
of the beam [32],

f (v) = 1

2

(
M

kT

)2

v3 exp

(
− M

2kT
v2

)
. (2)

At a time t = �t after the laser excitation, the probability
distribution is

D(z) =
∫ ∞

0
f (v)D(z − v�t) dv, (3)

where z = z0 + v�t is the Rydberg atom’s position along the
beam propagation direction after a delay �t . The integral in
Eq. (3) cannot be expressed in closed form. However, by
first considering the relative position and relative velocity
distributions of Rydberg atoms in the pulse, we can obtain
a simple expression that is an excellent approximation to the
exact probability distribution of Eq. (3).

First, we note that the distribution of relative Rydberg atom
positions along the beam D(�z) can be obtained by integrating
over the probabilities for finding atom 1 with velocity v1

at position z1 = z′
1 + v1�t and atom 2 with velocity v2 at

position z2 = z′
2 + v2�t , such that �z = z2 − z1:

D(�z) =
∫ ∞

0
dv1

∫ ∞

0
dv2

∫ ∞

−∞
dz1f (v1)D(z1 − v1�t)

× f (v2)D(z1 + �z − v2�t). (4)

Because the two spatial distribution functions are Gaussian,
the integral over z1 is done easily, resulting in

D(�z) = 1√
2πd

∫ ∞

0
dv1

∫ ∞

0
dv2f (v1)f (v2)

× exp

[
− (v2�t − v1�t − �z)2

2d2

]
. (5)

By writing v2 = v1 + �v, where �v is the relative velocity of
the two atoms, one obtains

D(�z) = 1√
2πd

∫ ∞

0
dv1

∫ ∞

−∞
f (v1)f (�v + v1)

× exp

[
− (�v�t − �z)2

2d2

]
d�v. (6)
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Now, one of the integrals in Eq. (6),

f (�v) =
∫ ∞

0
f (v1)f (�v + v1) dv1, (7)

is the relative velocity distribution for atom pairs in the beam.
It cannot be written in closed form. However,

f (�v) �
√

M

2πkT ′ exp

(
−M�v2

2kT ′

)
(8)

is an excellent approximation. For T ′ � T/1.076 82, the
difference between the approximate and the exact form for
f (�v) is less than 1% for values of �v for which f (�v)
is greater than 10% of its maximum. In addition, the values
for the average relative speed v0 and rms relative velocity
obtained from the approximate expression are within 0.1% of
their correct values. Substituting this approximation for f (�v)
in Eq. (6), we obtain

D(�z) = 1

2πd

√
M

kT ′

∫ ∞

−∞
exp

(
−M�v2

2kT ′

)

× exp

[
− (�v�t − �z)2

2d2

]
d�v. (9)

The remaining integral is easily performed, yielding

D(�z) � 1√
2πκd2

exp

(
− �z2

2κd2

)
, (10)

where

κ = 1 + �t2kT ′

Md2
(11)

is a delay-dependent expansion factor. In terms of the average

velocity v̄ =
√

9πkT
8M

in the atomic beam, κ � 1 + ( v̄�t
2d

)2.
The relative position distribution D(�z) is the autocorrela-

tion function of the position distribution function that we seek,
D(z). Because D(�z) is Gaussian, and the autocorrelation
function of a Gaussian is another Gaussian with a FWHM
that is

√
2 times greater than the original, an excellent

approximation for D(z) (in a reference frame moving with
the center of the Rydberg pulse) is

D(z) � 1√
πκd2

exp

(
− z2

κd2

)
. (12)

This expression has precisely the same form as that for the
initial Rydberg distribution function [Eq. (1)] except that the
Rydberg pulse width has increased from d to

√
κd after a delay

�t . Therefore, assuming negligible expansion of the beam in
the transverse dimensions, the Rydberg density decreases with
increasing delay as ρ = ρ0/

√
κ , where ρ0 is the Rydberg atom

density immediately following the laser excitation. Note that
κ � 1 when the expansion time �t � d/v̄, where d/v̄ is
the time the average atom requires to traverse the excitation
region. In this large expansion limit,

√
κ � v̄�t

2d
, and the density

decreases in inverse proportion to �t .

B. Delay dependence of the relative velocity
of interacting Rydberg atoms

Next we consider the relative velocity distribution for
neighboring atoms as a function of �t . From the integrand
of Eq. (9) we define the probability density,

P (�z,�v) = 1

2πd

√
M

kT ′ exp

(
−M�v2

2kT ′

)

× exp

[
− (�v�t − �z)2

2d2

]
, (13)

such that f (�v) = ∫ ∞
−∞ P (�z,�v) d�z is the relative ve-

locity distribution of all the Rydberg atoms in the pulse as
a function of delay. However, when considering atom-atom
interactions, our interest is not in the full relative velocity
distribution, but rather the relative velocity distribution,

f0(�v) =
∫ δ

−δ

P (�z,�v) d�z, (14)

of neighboring atoms for which |�z| � δ. Here δ is the
typical distance over which Rydberg-Rydberg interactions are
non-negligible. Because the microscopic distance δ is much
smaller than �v�t for nearly all the atoms in our sample, at
the delays of interest in our experiments, we can approximate
f0(�v) by setting �z = 0 in the integrand of Eq. (14). This
yields

f0(�v) � δ

πd

√
M

2πkT ′ exp

(
−Mκ�v2

2kT ′

)
, (15)

which has the same form as the relative velocity distribution
in the original beam, but with an effective temperature, T ′/κ ,
which decreases as the Rydberg pulse expands. In particular,
in the long expansion limit for which κ � 1, the effective
temperature drops in inverse proportion to the square of
the expansion time, �t . This effective cooling can be quite
significant even for relatively short expansion times. For
example, for potassium Rydberg atoms excited in a 500-K
thermal beam by using a laser with a FWHM diameter
d0 = 100 µm, κ � 125, and T0 = 4 K for �t = 2 µs.

C. Two-atom DD model

Next we develop a model for the predominant DD in-
teractions between pairs of atoms. This model enables us
to compute the RET resonance widths and peak transition
probabilities for a given Rydberg atom density and relative
velocity distribution. Neglecting interactions beyond nearest
neighbors, the Hamiltonian for a pair of Rydberg atoms is

H = HA + HB + V, (16)

where HA and HB are the Hamiltonians for individual atoms
A and B in a static electric field, and V is the interaction
potential between atoms. By assuming the distance between
the atoms, R, is much greater than the radial extent of the
Rydberg electron on either atom, V can be approximated by a
pure dipole-dipole interaction [33]:

VDD = [ �rA · �rB − 3( �rA · R̂)( �rB · R̂)]/R3, (17)
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where �rA and �rB are the Rydberg electron positions on atoms
A and B relative to their respective nuclei, �R is the location of
the nucleus of atom B relative to that of atom A, and (unless
otherwise noted) atomic units are assumed. Defining ẑ = R̂,
Eq. (17) simplifies to

VDD = rArB

(
C

(A)
1,1 C

(B)
1,−1 + C

(A)
1,−1C

(B)
1,1 − 2C

(A)
1,0 C

(B)
1,0

)/
R3, (18)

where C
(j )
k,q is a spherical tensor operator acting on atom

j . The Ck,q are proportional to spherical harmonics Ck,q =√
4π

2k+1Yk,q .
Ignoring spin, a single initial atom pair ψ0 = |29s,mA =

0〉|27d,mB〉 is coupled to several degenerate final states, ψi =
|29p,m′

A〉|28p,m′
B〉 or |28p,m′

A〉|29p,m′
B〉, with one, two, or

three different combinations of m′
A and m′

B for |mB | = 2, 1,
or 0, respectively. We can diagonalize the Hamiltonian, H , in
this basis of essential states for each mB . The diagonalization
reveals an effective two-level system with ψ0 coupled to
a single final state, ψ ′, that is constructed from a linear
combination of the ψi . The two interacting levels exhibit
an electric-field dependence that is identical to that shown
schematically in Fig. 1, with an mB-dependent scalar coupling
VDD(mB) = √∑

i |〈ψ0|VDD|ψi〉|2. Lastly, because all possible
orientations of atom B relative to the internuclear direction R̂

are possible, we define an angle-averaged interaction strength,
VDD = ∑

mB
VDD(mB)/5, which has the form µAµB/R3. The

most probable value of VDD for a typical atom pair in a random
ensemble at density ρ is V0 � 3πµAµBρ. By using a Numerov
integration to compute the radial matrix elements and standard
angular momentum algebra, we find the product of the effective
dipole matrix elements µAµB � 4.9 × 105 (a.u.). It is worth
noting that the interacting states have an average effective
principal quantum number, n̄ = 26.8, so µAµB � 0.95n̄4 is
nearly equal to its maximum value.

D. Resonance width in the long- and short-pulse regimes

In the experiments, the time interval T during which two
atoms interact is limited either by the relative motion of the
atoms or by the duration τ of the tuning field pulse. To simulate
the effects of the relative velocity reduction and the temporal
gating of the interactions (see Figs. 2 and 3), we use a pulsed,
constant-interaction model to approximate the T dependence
of the measured resonance line shapes.

Following the laser excitation, atoms in the |29s〉 and |27d〉
states are detuned very far from resonance and are effectively
noninteracting prior to the application of the electric-field
pulse. Once the tuning pulse is applied, neighboring atoms
are coupled via VDD, and population can be transferred from
the initial pair state ψ0 to ψ ′. In the short-pulse regime, the
relative motion of atoms in a pair is negligible during the tuning
pulse duration, τ , and therefore VDD is constant for each pair.
Assuming the tuning pulse is applied at a time t = 0, the
probability for finding the pair in state ψ ′ after the pulse is
given by the standard two-level Rabi formula,

|C ′(T )|2 = V 2
DD


2
sin2 
T , (19)

where 
 =
√

1
4E2 + V 2

DD is the Rabi frequency and E is
the energy splitting between the two uncoupled levels ψ0

and ψ ′. The resonance line shape for a given value of
T = τ is obtained by plotting the population transfer as a
function of E.

In the long-pulse regime, neighboring atoms move past each
other at a distance of closest approach (or impact parameter),
b, in a time τc ∼ 2b�v, which can be much less than τ .
In this case, the interaction time for a given pair of atoms
T is limited to a time comparable to the collision time for
that pair, τc. Unfortunately, because VDD varies with time,
the detuning dependence of the transition probability, from
ψ0 to ψ ′, cannot be expressed in closed form. However,
Eq. (19) can be used still to determine the approximate
dependence of the resonance width on �v. To do so, we
assume a constant interaction VDD = µAµB/b3 over a time
T = τc. Note that the time integral of this approximate,
constant potential is equal to that of the actual time-dependent
potential [24,34].

The experiments are performed with ensembles of atoms
with a distribution of different relative velocities and impact
parameters. Therefore, in all of the measurements, T is deter-
mined primarily by τc for some atom pairs (long-pulse regime)
and by τ for others (short-pulse regime). The demarcation
between the long- and short-pulse regimes for the ensemble
measurement is, therefore, only approximate, and requires that
one identify the relative velocity and separation of atoms that
are the majority contributors to the signal. Therefore, we define
a critical impact parameter, b0, as the largest value of b for
which the on-resonance (E = 0) transition probability is a
maximum (|C ′|2 = 1). In this case the argument of the sine in
Eq. (19) is 
T = VDDτc = π/2, or

µAµB

b3
0

2b0

�v
= π

2
. (20)

Solving for b0, we obtain [24,34]

b0 = 2

√
µAµB

π�v
. (21)

Atom pairs with b � b0 are the predominant contributors
to the resonant energy transfer signal. If left on resonance,
the typical interaction time for atom pairs with the critical

impact parameter is τ0 = 2b0/v0, where v0 =
√

2kT ′
πκM

is the
average relative speed of Rydberg atoms in the ensemble.
Accordingly, the duration of the tuning pulse relative to this
critical interaction time determines whether a measurement
is performed in the short-pulse regime (τ < τ0) where the
interaction is limited by the tuning pulse duration, or in the
long-pulse regime (τ > τ0) where the motion of neighboring
atoms defines the interaction time.

For all of the measurements reported here, T � V −1
0 . In

effect, the resonances are Fourier-transform broadened by
the limited interaction time and, when integrated over the
ensemble, the contribution of the “natural” linewidth 4V0 to the
resonance line shape is negligible. By ignoring VDD compared
to E in our constant potential approximation, the line shape
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given by Eq. (19) becomes

|C ′(T )|2 = V 2
DDT 2 sinc2(ET /2), (22)

which has a FWHM energy width, �E � √
32/T (a.u.). Thus,

as the duration of the tuning pulse is decreased in the short-
pulse regime, we expect the resonance linewidth to increase as
1/τ . Similarly, in the long-pulse regime, the linewidth scales
as 1/τ0 = v0

2b0
. In this case, Eq. (21) can be used to obtain

an approximate expression for the linewidth in terms of the
average relative speed and relevant constants,

�E �
√

2π

µAµB

v
3/2
0 . (23)

This approximation should predict accurately the velocity
dependence of the resonance width, even though the functional
form of the observed line shape is not actually a sinc2. The
correct line shape depends on the details of the time-dependent
interaction potential for each atom pair, integrated over the
relative velocity and position distribution functions for the
ensemble [7,11,24,34].

It is worth noting that for long expansion times,
√

κ �
�t
d

√
kT ′
M

, so v0 �
√

2
π

d
�t

depends only on the excitation laser
diameter and the expansion time. In this case, provided τ0 �
V −1

0 , the resonance width is independent of the initial beam
density and temperature and can be expressed as

�E �
(

32

πµ2
Aµ2

B

)1/4 (
d

�t

)3/2

. (24)

E. On-resonance population transfer

In the long-pulse regime, the magnitude of the population
transfer at the peak of the resonance line shape is directly
related to the Rydberg atom density at a given expansion time,
�t . The number of atom pairs undergoing population transfer
is straightforward to calculate if one treats the energy exchange
process as a collision [24]. In this case, if the atoms remain in
resonance for a duration τ , then the number of atom pairs that
are collisionally excited from ψ0 to ψ ′ is

N ′ = N0ρσv0τ ≈ 4N0ρµAµBτ, (25)

where σ = πb2
0 is the effective collision cross section, N0

is the number of Rydberg atom pairs initially in ψ0, and
N ′ is the number of atom pairs in ψ ′ after a time τ . Thus,
the on-resonance population transfer probability for a given
expansion factor κ can be written as

P0 = N ′/N0 ≈ 4ρ0µAµBτ/
√

κ. (26)

Equations (25) and (26) are valid provided N ′ � N0, as is the
case for all of the measurements taken for �t � 500 ns.

V. COMPARISON WITH EXPERIMENT

The expressions derived in Sec. IV can, in principle, be used
to (i) determine the reduction in the effective temperature of
the Rydberg sample for increasing pulse delays �t , (ii) predict
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FIG. 4. (Color online) Resonance widths �E plotted as a function
of expansion time �t . The solid line is a least-squares fit to the
data points assuming the resonance widths include homogeneous
and inhomogeneous contributions, with the homogeneous width
given by Eq. (24). The laser beam diameter, d0 = 127 ± 2 µm,
and the inhomogeneous width, �Ei = 4.47 ± 0.05 MHz, are the fit
parameters.

the decrease in the resonance linewidths �E and maximum
population transfer P0 with increasing �t , and (iii) compute
the increase in the resonance linewidths owing to coherent
Fourier transform broadening as the tuning pulse duration, τ ,
is decreased at a fixed expansion time �t . However, to do so
requires knowledge of the K oven temperature, initial beam
density, and the diameter of the cylinder of Rydberg atoms
initially excited by the focused laser beams. These parameters
could not be measured accurately in the experiment. However,
we can extract their values by fitting the measured delay
dependence of �E and P0 in the long-pulse regime. The
best-fit values allow us to predict the transform-limited widths
of the resonances for the controlled interactions in the short-
pulse regime. The calculated values are found to be in good
agreement with our measurements.

For long expansion times �t � 500 ns, the resonance
widths �E are essentially independent of the initial beam
temperature [see Eq. (24)]. Therefore, the laser beam diameter,
d0, is used as a fit parameter within Eq. (24) to reproduce the
linewidths of resonance curve data similar to that shown in
Fig. 2. Figure 4 shows the best fit to the resonance width
data, which is obtained for d0 = 127 ± 2 µm. This beam
diameter is consistent with expectations based on the experi-
mental focusing geometry. The fit includes an inhomogeneous
broadening contribution, �Ei = 4.47 ± 0.05 MHz, added in
semiquadrature to the homogeneous resonance width obtained
from Eq. (24). This additional broadening can be attributed to
the presence of electric-field inhomogeneities, on the order of
150 mV/cm, in the interaction region.

The inferred value for d0 can be used to determine the initial
K beam density and temperature by comparing the measured
expansion time dependence of the on-resonance population
transfer with that predicted by Eq. (26). For �t = 0, the
magnitude of the on-resonance signal saturates at the level
shown in Fig. 2 for on-resonance times τ > 1 µs. Therefore,
that maximum signal level represents a population transfer
probability, P0 = 1/2, and can be used to normalize the
resonance curves taken at different expansion times. In this
way, the peak signal amplitudes can be directly compared to
the population transfer probabilities from Eq. (26).
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FIG. 5. (Color online) On-resonance transition probability, P0,
as a function of expansion time for a fixed tuning pulse duration,
τ = 1 µs. The data points are the measured transition probabilities.
The solid line is the best fit of Eq. (26) to the data, obtained with
T = 523 ± 3 K.

The density of K atoms in our effusive beam at a distance
L in front of the exit hole in the oven source is

ρK = 6.5 × 1017 PAo

L2T
cm−3, (27)

where P is the K vapor pressure inside the oven in Torr,
Ao = 0.002 cm2 is the area of the exit hole in the thin walled
oven, L = 26 cm is the distance from the oven to the laser
excitation region, and T is the temperature of the oven and
the K beam in degrees Kelvin [35,36]. Each of the three
dye lasers saturates their respective transitions. Therefore,
immediately following the laser excitation, the 4s, 4p, 29s,
and 27d levels are uniformly populated and the initial density
in each of the two Rydberg states is ρ0 = ρK/4. By using
the known temperature dependence of the vapor pressure,
P , for potassium [37], Eq. (27) is used to express ρ0 as a
function of T ,

ρ0 = exp(−1.73 × 105/T 2 − 9.29 × 103/T + 36.2), (28)

for T in degrees Kelvin and ρ0 in cm−3. From this expression,
Eq. (26) can be written in terms of T and known constants. As
shown in Fig. 5, we use Eq. (26) with T as a fit parameter
to reproduce the measured decrease in the on-resonance
transition probability P0 with increasing expansion time �t .
The best fit yields T = 523 ± 3 K, which corresponds to an
initial Rydberg density of ρ0 = 5.4 × 107 cm−3.

Recall that in using Eq. (24) to determine the beam diameter
d0, we implicitly neglected the small temperature dependence
of the resonance widths at long expansion times. If we use T =
523 K and Eq. (23) to refit the linewidth data as a consistency
check, we find negligible differences in the two values for d0.

Following the determination of the laser beam diameter,
initial Rydberg density, and temperature, we can quantify
the degree of effective cooling achieved in the experiment.
Specifically, for �t = 2 µs, κ � 63, and the effective beam
temperature is reduced from 523 to 8 K. At these low effective
temperatures, the tuning pulse duration, and not the relative
motion of atom pairs, determines the length of time that
typical atoms interact. The reduction in interaction time with
decreasing τ is reflected by an increase in the measured
resonance widths. Figure 6 shows the measured and calculated
variation in the resonance linewidth as a function of τ for a
fixed expansion time, �t = 1.5 µs. Here the critical interaction
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FIG. 6. (Color online) Resonance widths �E as a function of
tuning pulse duration τ for a fixed expansion time, �t = 1.5 µs.
The data points are the widths of measured resonances, similar to
those shown in Fig. 3. Under these conditions, τ0 = 490 ns separates
the long- and short-pulse regimes. The dashed line denotes the
predicted width in the long-pulse regime, where τ > 490 ns [i.e.,
for Eq. (23) added in semiquadrature to the 4.5-MHz inhomogeneous
width discussed in the text]. The solid line is the predicted width
for the short-pulse regime, where τ < 490 ns (i.e., for �E = √

32/τ

added in semiquadrature to the inhomogeneous width).

time defining the long- and short-pulse regimes is τ0 =
490 ns. The data for τ � τ0 agree with the calculated width
for RET in the long-pulse regime. Conversely, for τ � τ0, the
measured widths are in good agreement with the short-pulse
prediction,�E = √

32/τ . It is in this short-pulse regime that
coherent interactions between all atoms begin and end at the
same times. Accordingly, the coherence of the interaction can
be exploited and controlled in a predictable way [9,27,31].

VI. SUMMARY AND CONCLUSION

A laser-based atomic beam chopper has been used to
reduce the relative velocities of Rydberg atoms in an effusive
beam, enabling control over coherent RET between atoms.
A reduction by more than a factor of 60 in the effective
temperature of K atoms in an effusive beam is achieved. Sig-
nificant Fourier-transform broadening of electric-field tuned
resonances is observed as the allowed time of interaction
between atoms is reduced below the time scale for collisions
between typical atom pairs. This coherence can be exploited
to enable pulsed-field control of DD interactions.

The laser-chopper technique demonstrated and analyzed
here offers a straightforward approach for achieving transform-
limited Rydberg-Rydberg interactions without the need for
laser cooling and/or trapping. Indeed, if used in conjunction
with a supersonic expansion, effective temperatures well below
1 K might be produced. For example, for a beam initially at
1 K, the effective temperature of the interacting atoms can be
reduced to 10 mK by using an expansion time of �t ∼ 10 µs
and a Rydberg excitation beam diameter of d ∼ 25 µm.
More generally, the method might be effective for studying
interactions between cold atoms or molecules that have been
laser excited to metastable, or stable, neutral, or ionic states.
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