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Rumpling of LiF(001) surface from fast atom diffraction
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Quantum diffraction of fast atoms scattered from the topmost layer of surfaces under grazing angles of incidence
can be employed for the analysis of detailed structural properties of insulator surfaces. From comparison of
measured and calculated diffraction patterns we deduce the rumpling of the topmost surface layer of LiF(001)
(i.e., an inward shift of Li+ ions with respect to F− ions). The effect of thermal vibrations on the measurement
of rumpling is accounted for by ab initio calculations of the mean-square vibrational amplitudes of surface ions.
At room temperature this leads to a reduction of the apparent rumpling by 0.008 Å. We then obtain a rumpling
of (0.05 ± 0.04) Å, which improves its accuracy achieved in previous work.
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I. INTRODUCTION

Diffraction effects for particles is a spectacular mani-
festation of quantum physics which has been observed for
objects as heavy as fullerenes [1]. In surface science, starting
with the pioneering work by Estermann and Stern [2], slow
(“thermal”) helium atom scattering, where the wavelength
of matter waves associated with the motion of atoms is
comparable to interatomic distances in the topmost surface
layer, has become a versatile and powerful analytical tool [3,4].
Recently, quantum diffraction was also observed for fast,
energetic (up to several keV) atoms scattered under grazing
angles of incidence along low indexed atomic strings of
the topmost surface layer [5–8] in terms of “axial surface
channeling” [9].

For fast atoms, the de Broglie wavelength associated with
matter waves is about three orders of magnitude smaller than
typical interatomic spacings in crystal lattices and smaller
than thermal vibration amplitudes of surface atoms with a
multitude of open reaction and excitation channels at these
projectile energies. Thus, one might expect the coherence in
the scattering process to be effectively destroyed. However,
electronic excitations owing to the wide-band gap of LiF and
inelastic phonon excitations are sufficiently suppressed for
quantum diffraction to persist [5–8,10,11].

In this work, fast atom diffraction (FAD) is used to
derive fine details of the surface structure with unprecedented
accuracy. We focus on the prominent case of slight deviations
of the stable (001) face of an LiF crystal surface from the ideal
coplanar square checkerboard lattice with alternating Li+ and
F− ions on adjacent lattice positions. These displacements
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between the equilibrium positions of the different ion species
normal to the surface plane, called “rumpling” or “buckling”
δz, result from the polarization of the ions of the surface in
the electrostatic field of the ions of the bulk [12–14]. Since
the polarizabilities of anions and cations are different, the
induced dipole moments lead to a different relaxation of the
F− sublattice with respect to the Li+ sublattice in the topmost
layer of LiF(001).

For this simple lattice arrangement, which makes the
topmost layers of the LiF(001) surface a model system for
the surface structure of ionic crystals, the position of atoms in
the topmost layers is far from being accurately known. Early
studies using low-energy electron diffraction (LEED) based
on the analysis of experimental diffraction spot intensities
versus electron energy [I(V)-curves] indicated a displacement
of the Li+ ions relative to the F− ions by 0.25 Å toward the
bulk [15]. The evaluation of data obtained via thermal energy
atom scattering with He atoms (HAS) concluded a shift of
(0.036 ± 0.006) Å in the opposite direction (i.e., from the
bulk toward vacuum [16,17]). Recently, a fully dynamical
LEED analysis of I(V) curves for thin LiF(001) films grown
on Pt(111) deduced a shift of the Li+ ions by (0.24 ± 0.04) Å
toward the bulk [18], whereas similar studies using a single
crystal (001) surface report a displacement of (0.04 ± 0.20) Å
only [19,20]. The latter value is in good agreement with
recent calculations based on Hartree-Fock theory [11] and on
density functional theory (DFT) [21–23] but has a considerable
uncertainty.

FAD interference patterns show a pronounced sensitivity on
the projectile-surface interaction potential which results from
the specific interatomic potentials depending on the positions
of the surface atoms. Based on DFT, we have performed first
principle calculations on the interaction potential for He atoms
in front of LiF(001) for given rumplings δz. These potentials
serve as input for wave-packet simulations of the scattering
process in order to deduce δz from best fits to experimental
diffraction patterns.
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FIG. 1. (Color online) Sketch for scattering of fast atoms from
the LiF(001) surface under the grazing angle of incidence �in along
a 〈110〉 direction.

II. EXPERIMENTAL METHOD AND OBSERVATIONS

A. Experimental setup and interaction scenario

In our experiments, He atoms with kinetic energies E0 of
about 300 eV to 3 keV were scattered from a clean and flat
LiF(001) surface at room temperature under fixed grazing
angles of incidence �in ranging from about 0.5◦ to 1.5◦.
A 〈110〉 direction in the (001) plane was aligned along the
direction of the incident projectile beam so that scattering
proceeds along channels formed by alternating strings of
Li+ and F− ions in the topmost surface layer. A sketch of
the scattering geometry is shown in Fig. 1. The collision
with the surface proceeds in the regime of “axial surface
channeling” where the motions of projectiles parallel and
normal to the channels are widely decoupled in terms of a
“fast” parallel motion with energy E‖ = E0 cos2 �in and a
“slow” normal motion with energy E⊥ =E0 sin2 �in. Then
the effective potential of the projectile atom in front of the
surface results from averaging of the interaction potential
along strings formed by lattice atoms [9,24]. The effective
(averaged) interaction potential for He atoms scattered along
〈110〉 direction is shown in Fig. 2 in a plane normal to the
atomic strings. The contour lines denote equipotential planes
from 0.3 eV to 2.0 eV obtained from our DFT calculations
showing a pronounced corrugation with a maximum on top of
strings formed by F− ions and a minimum on top of Li+ strings.
This corrugation is significantly enhanced by the rumpling δz

resulting in a pronounced effect on the observed diffraction
patterns.

The beam of fast He atoms was produced by neutralization
of He+ ions from an accelerator with a 10-GHz electron
cyclotron resonance (ECR) ion source (Nanogan, Pantech-
nique, France). The neutralization of the He+ ions was
achieved via charge transfer in a gas cell mounted in the beam
line operated with He gas. Residual ions were removed by
an electric field. A base pressure of some 10−11 mbar was
achieved in our UHV chamber by a turbomolecular pump
in a series with a titanium sublimation pump. The pressure

FIG. 2. (Color online) Equipotential lines of potential between
the He atom and LiF(001) surface averaged along strings of Li+ and
F− ions of a 〈110〉 direction. δz, vertical displacement between F−

and Li+ in the topmost surface layer, so-called “rumpling”.

gradient with respect to the beam line was maintained by two
differential pumping stages. Two pairs of orthogonal slits of
0.2-mm widths which are separated by 740 mm were used
for the collimation of the incident beam to a divergence of
less than 0.03◦. Such a high angular collimation is needed for
resolving discrete diffraction spots.

The LiF(001) surface was prepared by cycles of grazing
sputtering with 25 keV Ar+ ions at 250 ◦C (where the ionic
conductivity of LiF is sufficiently enhanced) and subsequent
annealing to temperatures of about 350 ◦C.

B. Diffraction patterns

Angular distributions for scattered projectiles were
recorded 66 cm behind the target by means of a position
sensitive microchannel plate detector [25]. With a flux of
incident neutral atoms lower than 104 s−1 probing a surface
area of about 1 mm2, diffraction patterns can be recorded
in times of typically some seconds to minutes. Under these
conditions, radiation damage of the target surface as well as
charging effects are completely negligible. In contrast to avail-
able standard surface analytical tools, such as, for example,
low-energy electron diffraction (LEED), this technique can
therefore be applied in studies on surfaces of insulator crystal
targets at room temperature and surface structures sensitive to
electron or photon irradiation.

As representative examples, we present in Fig. 3 diffraction
patterns as recorded with the position-sensitive detector for
scattering of 0.65, 0.85, and 1.0 keV 3He atoms from LiF(001)
under �in = 0.99◦ along a 〈110〉 channel. The well-defined
diffraction spots are positioned on a circle of radius �in

owing to energy conservation of the normal motion for elastic
scattering from strings under axial symmetry (see circle in
the detector plane in Fig. 1). With increasing energy E0

(decreasing de Broglie wavelength with respect to normal
motion λdB⊥) the relative intensity of diffraction spots changes.
At E0 = 0.65 keV (top panel) the zeroth-order spot n = 0 in
the center of the distribution at � = 0 is very weak, whereas
the adjacent first-order diffraction spot n = 1 is intense. At

062902-2



RUMPLING OF LiF(001) SURFACE FROM FAST ATOM . . . PHYSICAL REVIEW A 82, 062902 (2010)

FIG. 3. (Color online) Diffraction pattern as recorded with
position-sensitive channel plate detector for 3He atoms scattered from
the LiF(001) surface along 〈110〉 under �in = 0.99◦ with energies
of 0.65 keV (top panel), 0.85 keV (middle panel), and 1.00 keV
(bottom panel). Color code is as follows: red (dark gray) indicates
high intensity, light blue (light gray) indicates low intensity. Circle of
radius �in indicates positions for elastic scattering.

E0 = 0.85 keV (middle panel) both spots are present and at
E0 = 1.00 keV (bottom panel) n = 0 is intense whereas n = 1
is weak.

These features are most clearly present in Fig. 4, where
we show projections of the intensities for a narrow interval
of angles centered around circles of radius �in as a function
of the deflection angle �. The contributions of the zeroth-
and first-order diffraction spots are highlighted. � is related
to the azimuthal exit angle � (cf. Fig. 1) via the relation � =
arcsin(�/�in).

The quantum diffraction patterns can be attributed to
scattering from axial atomic strings oriented parallel to the
incident beam and separated by a distance d [5–7]. The
angular positions of diffraction spots of order n follow from
the Bragg condition d sin � = nλdB. This is equivalent to
d sin � = nλdB⊥ where λdB⊥ = λdB/ sin �in = h/(2ME⊥)1/2

is the de Broglie wavelength attributed to the motion of
projectiles normal to axial strings (h = Planck’s constant;
M = mass of the projectile). For grazing angles of incidence
of typically �in = 1◦, λdB⊥ is about two orders of magnitude

FIG. 4. (Color online) Intensity within a narrow interval of angles
centered around the circle of radius �in in Fig. 3 as a function of the
deflection angle �. Numbers denote diffraction order n with n = 0
being highlighted in red (center) and n = 1 in blue (just right of
center).

larger than λdB associated with the total projectile energy
and hence comparable to interatomic spacings of the crystal
lattice. The zeroth-order spot (n = 0) is located in the center
(� = � = 0), while higher orders appear symmetrically on
both sides for nonzero � or �. A striking feature of the
angular distributions as shown in Figs. 3 and 4 is a change
of relative spot intensities for a given diffraction order as a
function of λdB⊥. This change can be understood in terms of
“supernumerary rainbows” [7,26,27] and has its origin in the
corrugation of the interaction potential [6,7,11,22,28] which
depends on the rumpling.

In order to investigate the intensity modulations of
diffraction spots as a function of λdB⊥ in more detail, we
have constructed diffraction charts by combining projections
as shown in Fig. 4 for a series of normal de Broglie wave-
lengths λdB⊥. In Fig. 5, we show the intensity of diffraction
patterns as a function of λdB⊥ and � as “three-dimensional”
plots of experimental intensity distributions for the scattering
of 3He atoms from LiF(001) along a 〈110〉 direction. This
plot is generated from projections of 52 different intensity
distributions as shown in Fig. 4. For illustration, we have
highlighted the two projections from Fig. 4 by black curves in
the top panel. For comparison of experiment with calculations,
such diffraction charts contain complete information on the
diffraction scenario. One important advantage of those charts
is their detailed information on the modulation structure over
the relevant diffraction orders. Another is the better control
of decoherence as compared to the individual diffraction
pattern (such as Fig. 3; see [11]). The positions of diffraction
spots of order n are determined by the periodicity of the
interaction potential and result from the Bragg condition �n =
arcsin(nλdB⊥/d) while the positions of intensity maxima and
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FIG. 5. (Color online) Three-dimensional plots of experimentally
deduced intensities as function of deflection angle � and normal de
Broglie wavelength λdB⊥ for scattering of 3He atoms from LiF(001)
along a 〈110〉 direction. Projections of intensity distributions as shown
in Fig. 4 are highlighted as black curves in upper panel. The same
data are shown as two-dimensional diffraction chart in Fig. 8.

minima of given order n result from the corrugation of the
effective potential (cf. Fig. 2). The peak at maximum angular
deflection is the so-called “quantum surface rainbow” [26] in
close analogy to the classical rainbow [29] while maxima at
smaller deflection angles belong to different supernumerary
rainbows as discussed in Ref. [22]. From the comparison
of diffraction charts from experiments with simulations we
deduce the rumpling of LiF(001) as outlined below.

III. THEORETICAL MODEL

A. Interaction potential

The interaction potential between the He projectile and
the LiF surface was calculated with density-functional theory
(DFT) in the local density approximation (LDA) using the
code ABINIT [30]. The system is represented by a supercell,
comprising the projectile and a LiF slab that represents the
surface. By implementing supercells of different sizes, we
checked carefully that it is sufficient to use a two-layer slab
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FIG. 6. (Color online) Interaction potential, averaged along a
〈110〉 direction, between a He projectile and a LiF surface as a
function of the distance z to surface. Left solid curve, incidence
on top of Li ions; right solid curve, incidence on top of F ions; dashed
curves, potentials including an average over thermal displacements
(see text).

with an interslab vacuum of 7.5 Å and to represent the
surface by its primitive cell. This entails a periodic array of
He atoms with nearest-neighbor distance of 2.84 Å colliding
with the surface. However, due to the noble gas electronic
configuration, He atoms in neighboring supercells do not
interact with each other [31]. Wave functions were expanded in
plane waves with an energy cutoff at 40 hartree. Core electrons
were replaced by pseudopotentials of the Troullier-Martins
type [32]. The interaction potential was obtained as the total
energy of the combined system (slab + He) minus the sum of
the total energies of the slab and of the He atom, an example
of which is shown in Fig. 2, averaged along a 〈110〉 direction
(cf. Fig. 1). The curves represent the interpolation between
the calculated points (circles), which serves as input for our
wave-packet simulations. The key parameter in the simulation
of the diffraction pattern is the full corrugation �z (i.e., the
normal distance between the minimum of an equipotential
line above the string of Li+ ions and the maximum above the
F− ions). In Fig. 6, we show the potential averaged along
a 〈110〉 direction for the He atom on top of a string of F−
ions and a string of Li+ ions (solid curves). The two curves
are almost parallel (i.e., the corrugation �z as function of
the potential energy is almost constant). For energies larger
than 0.3 eV the corrugation �z is in accord with results
from DFT calculations by Pruneda reported in Ref. [22] as
well as the potential from Hartree-Fock calculations used in
Ref. [11]. The latter was extrapolated to the region of limited
computational accuracy (energies smaller than 0.5 eV) under
the constraint of �z remaining constant in order to achieve
good agreement with the experiment. For energies lower than
0.3 eV, the corrugation in the three calculations (Refs. [11,22];
this work) differs [33]. Therefore, we consider in our analysis
of the rumpling diffraction patterns for energies E⊥ > 0.3 eV
only.

The corrugation of the potential depends sensitively on
the rumpling of the surface. Furthermore, it may be affected
by the thermal displacements of the surface ions, in particular,
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when the vibrational amplitudes of the lighter Li+ ions are
considerably larger than the vibrational amplitudes of the
heavier F− ions. Rumpling and vibrational amplitudes have
therefore to be discussed in detail.

B. Surface rumpling and effect of thermal displacements

In order to scrutinize the reliability of our DFT-LDA calcu-
lation of surface rumpling and thermal vibration amplitudes,
we checked if the phonon dispersion relation of bulk LiF is
adequately reproduced.

1. Phonons of bulk LiF

The vibronic structure of bulk LiF was calculated using
density-functional perturbation theory (DFPT) [34,35] im-
plemented in the code ABINIT [30]. The plane wave energy
cutoff was set to 100 hartree and we carefully checked the
convergence of the Li pseudopotential (using a cutoff radius
of 0.5 a.u.), explicitly including the Li 1s electrons as valence
electrons [36]. Geometry optimization (energy minimization)
yielded a lattice constant of 7.428 a.u. (slightly smaller than
the experimental value 7.6 a.u.). We used the optimized
lattice constant for the phonon calculations. The resulting
bulk phonon dispersion relation [Fig. 7(a)] is in excellent

Γ X M Γ
0

5

10

15

20

ph
on

on
 f

re
qu

en
cy

 (
T

H
z)

Γ X Γ L
0

5

10

15

20

ph
on

on
 f

re
qu

en
cy

 (
T

H
z)

LO

TO

(a)

(b)

FIG. 7. (Color online) (a) Phonon dispersion relation of bulk LiF.
Solid lines, our ab initio calculations; circles, neutron diffraction data
(T = 295 K) from Ref. [37]. (b) Phonon dispersion relation of a
five-layer LiF slab. Circles, measurement of the Rayleigh mode by
high-resolution helium time-of-flight studies from Ref. [38] (solid
circles) and Ref. [39] (open circles).

agreement with the measured phonon dispersion [37], only the
frequencies of the transverse optical (TO) mode are slightly
overestimated in our calculations. In Fig. 7(b) we show the
phonon dispersion relation of a five-layer slab of LiF. The
lowest acoustic mode is the Rayleigh mode (which is localized
at the surface). It compares reasonably well with experimental
data [38–40] along the directions �̄ → M̄ and �̄ → X̄. We
conclude that DFT-LDA is sufficiently reliable to calculate the
forces between lattice ions of LiF. Thus we expect an adequate
description of the surface rumpling and the amplitudes of
thermal vibrations for LiF.

2. Surface rumpling

In order to determine the relaxation of surface ions,
we used a five-layer slab with the optimized bulk lattice
constant. Geometry optimization yielded a surface rumpling
of δz = 0.057 Å with the F− ions displaced outward and the
Li+ ions displaced inward. This is in reasonable agreement
with earlier DFT calculations (δz = 0.06 Å using LDA and
a Gaussian orbital basis [21], δz = 0.068 Å based on the
generalized-gradient approximation (GGA) [23], and δz =
0.049 Å from LDA [22]). Indeed, the differences between the
calculations are a measure for the uncertainties inherent in the
DFT calculations which depend on the exchange-correlation
functional: LDA tends to overbind (underestimate of bond
lengths and thus also of rumpling) and GGA tends to underbind
(overestimate of the bond lengths and the rumpling) [41].
Our calculated surface rumpling is also close to the value
of 0.062 Å, obtained by de Wette et al. with the semiempirical
shell model [13] (which was parameterized to yield good
agreement for the bulk phonon dispersion relation).

3. Root-mean-square vibrational amplitudes

From the phonon frequencies ωn(�k) (n denoting the phonon
branch) and the normalized phonon eigenvectors en,α,i(�k), we
derive the mean-square vibrational amplitude (MSVA) of atom
α in direction i [42]:

〈
u2

α,i

〉 = h̄

2Mα

∑
n=1

∫
d3k

1

ωn(�k)
|en,α,i(�k)|2 coth

[
h̄ωn(�k)

2kBT

]
.

(1)

The integral is performed over all wave vectors in the
first Brillouin zone. For bulk LiF at T = 300 K we obtain
〈u2

Li〉 = 0.0118 Å2 and 〈u2
F〉 = 0.0081 Å2 which is very close

to the values of Gupta [42], obtained with the semiempirical
shell model for the phonons: 〈u2

Li〉 = 0.0116 Å2 and 〈u2
F〉 =

0.0079 Å2.
In order to evaluate the MSVA of surface ions, we have

calculated the phonons of the same five-layer slab of LiF that
has been used for the calculation of the surface rumpling.
For the surface ions we find vertical vibration amplitudes:
〈u2

Li,⊥〉 = 0.0135 Å2 and 〈u2
F,⊥〉 = 0.0097 Å2 which are

increased by about 20% compared to bulk vibration am-
plitudes. The corresponding root-mean-square vibrational
amplitudes (RMSVA) at the surface are 0.116 Å for Li+ ions
and 0.098 Å for the F− ions. These values are about twice
as large as the value for the surface rumpling. One may thus
wonder if the thermal vibrations partially cancel the effect
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A. SCHÜLLER et al. PHYSICAL REVIEW A 82, 062902 (2010)

of the surface rumpling on the corrugation of the He-LiF
interaction potential.

C. Influence of thermal vibrations on the interaction potential

In order to estimate the effect of thermal vibrations on the
He-LiF interaction potential, we have calculated the interaction
potential V̄ (z), averaged over 10 000 different positions of the
surface ions. Each ion is individually and randomly displaced
such that on average it follows a Gaussian distribution with the
full width at half maximum (FWHM) given by the respective
RMSVA presented in Sec. III B 3. This corresponds to an
uncorrelated motion of neighboring ions. We have used a fit of
the ab initio potential surface data to analytic functions [43].

In Fig. 6, V̄ (z) is compared to the potential V0(z), the
potential at the average position of the surface ions. Clearly,
V̄ (z) is shifted outward with respect to V0(z). In the energy
interval between 0.25 and 0.8 eV (the interval of interest for
our scattering experiments), the offset between V̄ (z) and V0(z)
is almost energy independent: V̄ (z) = V0(z − �). The outward
shift is slightly larger on top of the Li-ion chain than on top
of the F-ion chain: �Li = 0.025 Å and �F = 0.017 Å. This
introduces an additional “thermal corrugation” of the potential
with amplitude �F − �Li = −0.008 Å. This is about 14% of
the calculated geometric rumpling. Since its sign is negative,
it reduces the effect of geometric rumpling on the potential
corrugation.

D. Wave-packet simulation of atom-surface scattering

Our scattering analysis is based on the solution of the
stochastic Schrödinger equation for a wave packet scattered
from the LiF(001) surface, taking into account collisionally
induced decoherence within the framework of an open quan-
tum system (OQS) approach in terms of random momentum
transfers [44]. While violent collisions lead to electronic
excitations and ionization, soft collisions result in momentum
and energy exchange with the surface, namely the excitation
of optical and acoustic phonons, giving rise to angular spread
and, concomitantly, to random phases for the evolution of the
wave packet and thus decoherence. Propagation of the wave
packet proceeds in the two-dimensional landscape of the axial
channeling potential,

V (y,z) = 1

L

∫ x0+L

x0

dxV (x,y,z), (2)

using as input the full three-dimensional surface potential
discussed in Sec. III A. We assume that the free motion
along the surface (x̂) and in the transverse plane (y,z)
are approximately decoupled from each other. However, the
stochastic momentum transfers account, to first order, for
coupling between these degrees of freedom.

Accordingly, we use the split-operator fast Fourier trans-
form (FFT) method [45] for calculating the propagation of
the normal component. Neglecting the initial incoherent beam
divergence, the incident wave packet has the form,

�in(�r) = eik‖x�⊥(y,z). (3)

The normal component is taken in the form of the Gaussian
wave packet,

�⊥(x,y) ∝ e−ik⊥ze−y2/2σ 2
y e−(z−z0)2/2σ 2

z , (4)

where k‖,⊥ = 2π/λdB‖,⊥ = (2ME‖,⊥)1/2/h̄ are the parallel
(normal) components of the incident particle wave vector
k. Here, σy,z are equal to the transverse coherence length
of the incident beam. The transverse coherence length is
large compared to the lattice spacing. In fact, Eq. (4) is
close to a delocalized plane wave. The effect of decohering
interactions with the surface results in a drastic reduction
of the transverse coherence length along the polar angle,
σ out

z 	 σ in
z , and thus a localization of the transverse wave

packet in the z direction [11]. However, since the diffraction
charts introduced in Sec. II B are less affected by incoherent
beam broadening and reduction of transverse coherence length
than individual diffraction images at a fixed λdB, these charts
can be approximately reconstructed using the initial wave
packets �⊥ with a very large σy and almost any value for
σz provided that the initial wave packet does not overlap with
the surface. In the special case when σy → ∞ the wave packet
(4) reduces to a plane wave modulated in the z direction only
[i.e., �⊥(y,z) ∝ e−ik⊥ze−(z−z0)2/2σ 2

z ]. In this case, making use
of the periodicity of the averaged potential, the calculation
can be performed in the grid area restricted to a single lattice
period (or few of them) of the averaged potential.

For extracting the probability distribution of the scattered
wave in the asymptotic region it is convenient to use the
momentum representation of wave function (the distribution
|�out

⊥ (ky,kz)|2 reproduces the interference pattern). Since the
application of the evolution operator in the method used here
is based on the transformations from the coordinate to the
momentum representation and vice versa (by use of the FFT
procedure; see Ref. [45]), this method automatically provides
the wave function in both representations.

In Fig. 8, we compare diffraction charts from the experi-
ments with those from wave-packet simulations for scattering
of 3He atoms along a 〈110〉 direction. Since the charts are
symmetric with respect to �, we have plotted for a better

FIG. 8. (Color online) “Diffraction charts” constructed from a
series of diffraction patterns for scattering of 3He atoms from
LiF(001) along a 〈110〉 direction. Experimental data (left) are in
accord with theoretical results from wave-packet simulations taking
into account a rumpling of δz = 0.05 Å (right). Red (dark oval
shapes), high intensity; blue (background), low intensity.
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comparison the experimental data in the left half of the
chart and the calculated pattern in the right part only. The
experimental data are the same as shown in Fig. 5. The position
of intensity maxima and minima of all diffraction orders as
well as the intensity distribution are well reproduced by the
wave-packet simulation if rumpling is taken into account.

IV. EXTRACTION OF SURFACE RUMPLING

In Fig. 9, the relative intensities of the diffraction orders
n = 0 (top panel) and n = 1 (bottom panel) are plotted as a
function of E⊥ = h2/(λ2

dB⊥2M). This corresponds to a cut in
the diffraction chart in Fig. 8 at � = 0 and � = arcsin λdB⊥/d,
respectively. Since the corrugation of the present ab initio
potential (if δz = 0.049 Å is chosen) is in agreement with the
ab initio calculation from Pruneda [22] at V > 0.3 eV only, we
consider data with normal energies E⊥ > 0.3 eV. The relative
intensity for n = 0 shows a maximum, when n = 1 exhibits a
minimum, and vice versa (cf. also blue and red area in Fig. 4).
The positions of the maxima and minima depend (via the
interaction potential) on the rumpling δz. For comparison with
our experimental data, we have calculated the He-LiF(001)
interaction potential for 11 different rumpling values 0 <

δz < 0.1 Å and performed the corresponding wave-packet
simulations. The simulations taking into account a rumpling
of δz = 0.042 Å (solid curve in Fig. 9) are in good accord
with the experimental data (gray symbols). The deviation in

FIG. 9. (Color online) Normalized relative intensity of diffraction
order n = 0 (top) and n = 1 (bottom) for scattering of 3He atoms
from LiF(001) along a 〈110〉 direction under angle of incidence
�in = 0.61◦ (circles), 0.81◦ (squares), 0.99◦ (triangles) as a function
of normal energy E⊥. (Curves) Wave-packet simulations based on
He-LiF(001) interaction potential taking into account no rumpling
(dash-dotted), a rumpling of δz = 0.042 Å (solid curve), and
δz = 0.084 Å (dashed).

FIG. 10. (Color online) Mean-square deviation of measured and
calculated relative intensities of diffraction order n = 0 (circles) and
n = 1 (diamonds) as shown in Fig. 9 as a function of rumpling δz.

the heights of the minima might result from the increase of
an incoherent background (offset) due to decoherence pro-
cesses resulting from electronic excitations which become
more probable with increasing energy or angle of incidence
[46]. The dash-dotted curve results from a simulation without
rumpling. The maxima and minima are shifted to larger E⊥
compared to the experimental data. The negative rumpling of
δz = −0.036 Å as deduced by Garcia [16,17] would result
in an even stronger deviation. The dashed curve results from
a simulation taking into account a rumpling twice as large
(δz = 0.084 Å). This curve is shifted to smaller E⊥. A larger
rumpling as deduced by Roberts et al. (δz = 0.24 Å) [18] or
Laramore and Switendick (δz = 0.25 Å) [15] would result in
an even more pronounced offset from the experiment.

Figure 10 shows the mean-square deviation
∑N

i=1
(I exp

i − I calc
i )2/N between experimental and calculated rela-

tive intensities of diffraction order n = 0 (circles) and n = 1
(diamonds) as shown in Fig. 9 as a function of rumpling δz. The
best agreement with the experiment is found for a rumpling of
δz = 0.042 Å. Taking into account the reduction of the effect
of geometric rumpling on the potential corrugation by the
“thermal corrugation,” the actual rumpling is δz = (0.042 +
0.008) Å = 0.05 Å. A conservative estimate of the experimen-
tal uncertainty is 0.015 Å. A change of δz by this value results
in an increase of the mean-square deviation by almost 50%.
The uncertainty of the total energy and energy width of the
incident beam is negligibly small. Since the relative intensities
at given normal energy is similar for different angles of
incidence (symbols in Fig. 9) the uncertainty due to the angular
spread contributes only slightly to the uncertainty of δz. A
similar experiment analyzed with the same DFT potential will
yield a comparable result, but small changes in the theoretical
potential can result in a shift of the minimum in Fig. 10. This
depends sensitively on the choice of the approximation made
for the calculation (e.g., Hartree-Fock or DFT). Within DFT,
the result depends on the choice of the exchange-correlation
functional (i.e., LDA, GGA, hybrid functionals). Furthermore,
the choice of the basis set, energy cutoff, and pseudopotential
functions [47] can influence the corrugation. An estimation
based on different parameter choices results in an uncertainty
of ±0.03 Å.
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FIG. 11. (Color online) Surface rumpling of LiF(001). (Squares)
Experimental values deduced by LEED from Laramore and
Switendick [15], Vogt and Weiss [19,20], and Roberts et al. [18],
by HAS from Garcia [16], and by FAD from this work (black error
bar, uncertainty based on present interaction potential; gray error
bar, estimation on possible results with other interaction potentials
from different approximations within the DFT). (Circles) Theoretical
values from shell-model calculations from Benson and Claxton [14],
Welton-Cook and Prutton [12], and de Wette et al. [13], from
Hartree-Fock calculations by Wirtz reported in Ref. [11], and from
DFT calculations by Wang et al. [21], Vogt [23], Pruneda reported in
Ref. [22], and Wirtz (this work).

In Fig. 11, we compare theoretical (circles) and exper-
imental (squares) rumpling values from literature with the
rumpling derived in this work. The black error bar represents
the experimental uncertainty from the analysis based on
the present DFT interaction potential. The gray error bar
symbolizes our estimate on possible results in the analysis of
experimental data based on other interaction potentials from
calculation using different established approximations within
the DFT. Our final result of δz = (0.05 ± 0.04) Å is in good
agreement with our DFT calculation of δz = 0.057 Å and
the DFT calculations from Wang et al. [21], Vogt [23], and
Pruneda reported in Ref. [22]. The result from an I(V)-LEED
analysis by Vogt and Weiss [19,20] (δz = 0.04 ± 0.2 Å) is
in accord with our work, but has a larger uncertainty. The
analysis of experimental data by Garcia [16,17], Laramore and
Switendick [15], and Roberts et al. [18] are in conflict with our
result. The analysis of thermal helium scattering by Garcia is
based on a “hard wall approximation” [16,17]. The evaluation
relies on a touching hard sphere model, which is a rather crude
model. Thus, the resulting negative rumpling value might
result from a poor description of the interaction potential.
Laramore and Switendick [15] did not provide error bars. Since
a significantly wider data range has been investigated in the
experiments by Vogt and Weiss [19], we consider the latter
as more reliable. Roberts et al. [18] performed an analysis
of I(V)-LEED curves similar to the I(V)-LEED curves from

Vogt and Weiss [19], but obtained a larger rumpling. A possible
reason for this anomalous large value is ascribed to a reduction
of the ionic radii at surface. DFT calculations, however, do not
provide an indication for such an effect [23].

V. SUMMARY AND CONCLUSIONS

Fast atom diffraction is applied to study the surface
rumpling of LiF(001) in the topmost surface layer (i.e.,
a contraction of Li+ ions toward the bulk compared to
F− ions). From a comparison of experimental diffraction charts
with wave-packet simulations based on ab initio interaction
potentials for different rumpling values taking into account
the effect of thermal vibrations of surface atoms, we deduce
δz = (0.05 ± 0.04) Å. This value is in good agreement with
our DFT calculations with δz = 0.057 Å and is more accurate
than previous experimental results. The accuracy of the ab
initio calculations for the potential surfaces is, however, limited
by the approximations used (DFT-LDA). Future theoretical
work may improve the accuracy of the interaction potential
[47] and result in a reduced uncertainty for the deduced
rumpling. The major theoretical advance of this paper with
respect to previous results consists in the detailed analysis
of the influence of the thermal vibrations on the corrugation
of the potential. We performed ab initio calculations of the
root-mean-square vibrational amplitudes of the surface ions
and obtained 0.116 Å for Li+ ions and 0.098 Å for the F− ions.
Performing a thermal average of the potential surfaces with
these vibrational amplitudes leads to a “thermal” contribution
to the potential corrugation of −0.008 Å.

The remarkable spatial resolution of the highly surface-
sensitive FAD method bears the potential for a versatile
surface-analytical tool, whenever decoherent processes in fast
atomic surface scattering are sufficiently suppressed [11].
This feature was demonstrated in studies on insulator [5,6]
and semiconductor [48,49] surfaces with direct band gap.
Recent work demonstrates that such a regime is also met for
scattering from clean [50,51] and adsorbate covered [52,53]
metal surfaces, as well as thin films on metal substrates [54].
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