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Most of the current theories on the p-wave superfluid in cold atomic gases are based on the effective-
range theory for the two-body scattering, where the low-energy p-wave scattering amplitude f1(k) is given
by f1(k) = −1/[ik + 1/(Vk2) + 1/R]. Here k is the incident momentum, V and R are the k-independent
scattering volume and effective range, respectively. However, due to the long-range nature of the van der
Waals interaction between two colliding ultracold atoms, the p-wave scattering amplitude of the two atoms
is not described by the effective-range theory [J. Math. Phys. 4, 54 (1963); Phys. Rev. A 58, 4222 (1998)].
In this paper we provide an explicit calculation for the p-wave scattering of two ultracold atoms near the
p-wave magnetic Feshbach resonance. We show that in this case the low-energy p-wave scattering amplitude
f1(k) = −1/[ik + 1/(Veffk2) + 1/(Seffk) + 1/Reff ] whereVeff,Seff , andReff are k-dependent parameters. Based
on this result, we identify sufficient conditions for the effective-range theory to be a good approximation of the
exact scattering amplitude. Using these conditions we show that the effective-range theory is a good approximation
for the p-wave scattering in the ultracold gases of 6Li and 40K when the scattering volume is enhanced by the
resonance.
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I. INTRODUCTION

Recently, ultracold atomic gases with strong p-wave in-
teraction have attracted broad interest both experimentally
[1–13], and theoretically [14–63]. The p-wave magnetic
Feshbach resonances, which can generate tunable p-wave in-
teratomic interactions, have been observed in the cold gases of
40K [1–3], 6Li [6,7], 6Li-87Rb mixture [11], 6Li-40K mixture
[12], and 40K-87Rb mixture [13]. The p-wave Feshbach
molecules have also been created and studied in the gases of
40K [4,5] and 6Li [6,8–10]. These experimental achievements
stimulate theoretical researches on quantum superfluids of ul-
tracold atomic gases with strong p-wave interactions [14–50],
as well as the relevant few-body problems [50–63].

Until now, most theories of ultracold atomic gases with
strong p-wave interactions [33–36,38–40,50–55] are based on
the low-energy expansion of the p-wave scattering amplitude
f1(k) given by the effective-range theory [64]:

f1(k) = − 1

ik + 1
Vk2 + 1

R
. (1)

Here �k is the relative momentum of the two atoms; V is
the scattering volume and R is the effective range. The
effective-range theory for the scattering amplitude is used in
both theories of p-wave atomic superfluids [33–36,38–40,50]
and related few-body problems [50–55].

However, the effective-range theory is correct only for the
short-range potentials (e.g., Yukawa potential) [64] which
decays faster than any power-law function r−γ in the large
interatomic distance limit r → ∞. Here �r is the relative
coordinate between two atoms. However, a realistic interaction
between two cold atoms is described by a long-range potential
dominated by the van der Waals term −h̄2β4

6/(r6m) in the limit
r → ∞. Here m is the atomic mass, h̄ is the Plank constant, and
β6 is the van der Waals length. Due to the long-range nature of
the van der Waals potential, the effective-range theory, and the

low-energy expansion (1) of the p-wave scattering amplitude
are not applicable any longer [65,66].

In the presence of a p-wave magnetic Feshbach resonance
(PMFR) in the ultracold gases of polarized fermionic atoms,
the p-wave scattering amplitude of the atomic collision is
contributed by both the background potential in the open
channel and the bound state in the closed channel. It seems that
the long-range nature of the background potential makes the
final scattering amplitude inconsistent with the effective-range
theory.

Therefore, it is essential to investigate the condition
under which the effective-range theory (1) can be used as
an approximation of the exact p-wave scattering amplitude
under a PMFR. If the effective-range theory provides a good
approximation of the scattering amplitude, then previous
theories on p-wave superfluid would be applicable; on the
other hand, if the exact scattering amplitude is found to deviate
significantly from the one in Eq. (1), then previous theories
should be modified.

The low-energy p-wave scattering amplitude near a PMFR
has been investigated in Refs. [51,53]. However, these studies
are based on simplified models of the atomic interaction (e.g.,
zero background potential [51] or a separable background
potential that decays exponentially in the momentum space
[53]). The long-range van der Waals potential is not taken
into account in either case. Due to these simplifications, the
scattering amplitudes given in Refs. [51,53] automatically have
the form of Eq. (1) and cannot be used to judge the applicability
of the effective-range theory.

In this paper, based on the realistic long-range interatomic
potential, we provide an explicit calculation for the low-energy
p-wave scattering amplitude of two spin-polarized fermonic
atoms near a PMFR, and then discuss the condition under
which the effective-range theory can be used as a good approx-
imation. We find sufficient conditions for the effective-range
theory to be applicable, and show that for the ultracold gases
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of 6Li and 40K with the Fermi temperature on the order of and
below 1 µK, the effective-range theory can be used as a good
approximation in the resonance regime where the scattering
volume is enhanced.

A. Main results

The main results of this paper are summarized as follows.
In this work we first calculate the exact expression of the

low-energy p-wave scattering amplitude with a PMFR. We
prove that the scattering amplitude can be expressed as

f1mz
(k) = − 1

ik + 1
Veff (k;B;mz)k2 + 1

Seff (k;B;mz)k + 1
Reff (k;B;mz)

,

(2)

with B the strength of the magnetic field applied along the
z axis. Here mz is the z component of the angular momentum;
Veff, Seff , and Reff are k-dependent scattering parameters. We
obtain the general expressions for them. It is pointed out that,
the denominator of f1mz

(k) cannot be expressed as a Laurent
series with k-independent coefficients because Veff, Seff , and
Reff are not analytical functions of k.

Equation (2) shows that, in the presence of a PMFR, the
inconsistency of the scattering amplitude with the effective-
range theory is displayed in a complicated manner. The low-
energy p-wave scattering amplitude in Eq. (2) is different from
the one obtained from the standard effective-range theory in
the following two senses:

(1) The scattering parameters (Veff,Seff,Reff) depend on the
incident momentum k.

(2) The term 1/[Seff(k; B; mz)k] cannot be included in the
effective-range theory.

After obtaining the p-wave scattering amplitude under a
PMFR, we discuss the applicability of the effective-range
theory as an approximation of the scattering amplitude (2).
We find that, in the Bose-Einstein condensate (BEC) side of
the PMFR where Veff and Reff have the same sign, sufficient
conditions for the validity of the effective-range theory are
r1,r2 � 1. In the BCS side of the resonance, the sufficient
conditions become r1,r2,r3 � 1. Here r1, r2, and r3 are defined
in Eqs. (38), (33), and (42). If these conditions are satisfied,
the scattering amplitude of our system can be approximated as

f1mz
(k) ≈ − 1

ik + 1
Veff (0;B;mz)k2 + 1

Reff (0;B;mz)

, (3)

which has the same form as Eq. (1) derived by the effective-
range theory.

Qualitatively speaking, the previous sufficient conditions
mean that we can use the effective-range theory if the fermionic
momentum of the cold gas is sufficiently low, the magnetic
field is tuned close enough to the resonance point, and the
background scattering potential in the open channel is far away
from the zero-energy shape resonance point. For realistic cold
gases of fermionic atoms, if the background scattering is far
away from the shape resonance, the effective-range theory
can usually be used in the entire region where the p-wave
interaction is negligible.

The paper is organized as follows. In Sec. II, we calculate
the p-wave scattering amplitude near a PMFR, and obtain the

low-energy expansion in (2). The parameters (Veff,Seff,Reff)
are expressed in terms of the background scattering parameters
and the magnetic field. In Sec. III we discuss and give the
sufficient conditions for applicability of the effective-range
theory. We further show that these conditions are well satisfied
in the cold gases of 40K and 6Li when the scattering volume
is enhanced by a PMFR, and then the previous results based
on the effective-range theory are applicable for these systems.
In Sec. IV we conclude this paper. We describe some details
of our calculations in the appendices to avoid digressing from
the main subjects.

II. LOW-ENERGY SCATTERING AMPLITUDE NEAR THE
P-WAVE FESHBACH RESONANCE

A. p-wave phase shifts with PMFR

In this section we calculate the p-wave scattering amplitude
in the presence of a PMFR with a magnetic field along the z

direction. We begin with the two-channel Hamiltonian for the
relative motion of two atoms (Fig. 1):

H =
(

T + V (bg)(r) W (r)

W (r) T + V (cl)(�r) + ε(B)

)
, (4)

where T is the kinetic energy of relative motion, V (bg)(r) is
the background scattering potential in the open channel, W (r)
is the coupling between the open and closed channel, and
V (cl)(�r) is the interaction potential in the closed channel, that
has a B-dependent positive threshold ε(B). In this paper, for
simplicity, we assume that the background potential V bg(r)
is independent of the direction of �r and invariant under the
SO(3) rotation. We further assume that, in the closed channel
there are only three bare p-wave bound states |φ(mz)

res 〉 which
are near resonance with the threshold of the open channel.
Here mz = 0, ± 1 is the projected angular momentum along
the z axis. The energy difference E(cl)

mz
(B) = µres(B − B

(mz)
res )

of |φ(mz)
res 〉 relative to the open channel is determined by the

strength of the magnetic field. The difference between B
(mz)
res

with mz = 0, ± 1 depends on the atomic magnetic dipole. For
6Li which has small magnetic dipole, we have |B(0)

res − B(±1)
res | ∼

10 mG [9], while for 40K with large magnetic dipole, the gap
|B(0)

res − B(±1)
res | becomes as large as 0.5 G [5].

l d h l

open channel

closed channel

|Φ(mz)>
resE(cl)(B)

mz

V(bg)(r)

interatomic distance r

FIG. 1. (Color online) Two-channel model of the p-wave Fesh-
bach resonance.
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The p-wave scattering amplitude in the open channel can be
defined with the standard scattering theory [64]. To this end we
first introduce the two-component stationary scattering state,

|�(+)
�k 〉 ≡

(∣∣φ(op+)
�k

〉
∣∣φ(cl+)

�k
〉
)

= �+

(
|�k〉
0

)
, (5)

where |�k〉 is the eigenstate of the atomic relative momentum
with eigenvalue h̄�k, and �+ is the Møller operator defined as

�+ = lim
τ→∞ e−iHτ/h̄eiT τ/h̄. (6)

In the large interatomic distance limit r → ∞, the asymptotic
behavior of the state |�(+)

�k 〉 can be expressed as

〈�r|�(+)
�k 〉 = 1

(2πh̄)
3
2

(
ei�k·�r + f (r̂ ,�k) eikr

r

0

)
, (7)

with r̂ = �r/r and f (r̂ ,�k) the scattering amplitude which can
be further expanded in terms of different partial waves:

f (r̂ ,�k) = 4π
∑
lmz

flmz
(k)Ymz

l (r̂)Ymz

l (k̂)∗. (8)

Here Y
mz

l (r̂) is the spherical harmonic function. For a scattering
potential with the SO(3) symmetry, the partial wave scattering
amplitude only depends on the quantum number of the angular
momentum l. In our case, the SO(3) symmetry is broken
by the interaction between the atomic magnetic dipole and
the magnetic field. Then we have an mz-dependent scattering
amplitude flmz

(k).
In the case of low-energy scattering between two spin-

polarized fermonic atoms, one can ignore all the high partial
wave scattering amplitudes flmz

(k) with l � 2, and only
consider the p-wave amplitudes f1mz

(k), which can be further
expressed in terms of the p-wave phase shifts δ1mz

(k):

f1mz
(k) = − 1

ik − k cot δ1mz
(k)

. (9)

During the scattering process, the bare bound state |φ(mz)
res 〉

is coupled with the p-wave background scattering states
in the open channel and significantly changes the p-wave
scattering amplitude f1mz

(k). This effect can be directly
treated via the Feshbach resonance theory (e.g., the methods
in Refs. [67,69]).

After a straightforward calculation in Appendix A, we find
that the final phase shift δ1mz

(k) is the sum of the background
phase shift δ

(bg)
1 (k) for the background potential V (bg)(r) and a

correction 
1mz
(k) given by the closed channel:

δ1(k) = δ
(bg)
1 (k) + 
1mz

(k). (10)

Here 
1mz
(k) satisfies

−kcot
1mz
(k) = k

π

h̄2k2/m − E(cl)
mz

(B) − gmz
(k2)∣∣〈φ(mz)

res

∣∣W ∣∣ψ (bg+)
k1mz

〉∣∣2 . (11)

with |ψ (bg+)
k1mz

〉 and gmz
(k2) given by

∣∣φ(bg+)
�k

〉 =
(

2

mh̄k

) 1
2 ∑

l,mz

∣∣ψ (bg+)
k1mz

〉
Y

mz

l (k̂)∗, (12)

gmz
(k2) = Re

〈
φ(mz)

res

∣∣WG
(bg)
+ (k2)W

∣∣φ(mz)
res

〉
. (13)

In the previously mentioned equations we have used the
background Green’s function G

(bg)
+ (k2),

G
(bg)
+ (k2) = 1

h̄2k2/m − T − V (bg) + i0+ , (14)

and the background scattering state |φ(bg+)
�k 〉 defined as∣∣φ(bg+)

�k
〉 = |�k〉 + G

(bg)
+ (k2)V (bg)|�k〉. (15)

In the following subsections, we evaluate the low-energy
expression of the scattering amplitude f1mz

(k) by expanding
the term −k cot δ1mz

(k) in Eq. (9) in the limit k → 0. As shown
in Eq. (10), the phase shift δ1mz

(k) is the sum of δ
(bg)
1 (k) and


1mz
(k). The low-energy behavior of background phase shift

δ
(bg)
1 (k) is already known to be [65,66]

−kcotδ(bg)
1 (k) = 1

V (bg)

1

k2
+ 1

S (bg)

1

k
+ 1

R(bg)
. (16)

Therefore, if we can further obtain the low-energy expansion
of term −kcot
1mz

(k), then the corresponding expressions of
−k cot δ1mz

(k) and f1mz
(k) can be calculated straightforwardly.

B. The low-energy expansion of −kcot�1mz (k)

In this subsection we investigate the expression of
−kcot
1mz

(k) in the limit k → 0. To this end, we need to
expand both the numerator and the denominator of (11) in the
low-energy limit.

In this paper we assume the background scattering vol-
ume in the open channel is finite. It can be proved that
(Appendix C), in this case the function gmz

(k2) can be
expanded as

gmz
(k2) = g(0)

mz
+ g(2)

mz
k2 + O(k3), (17)

with g(2)
mz

� 0.
On the other hand, due to the long-range nature of the van

der Waals potential, the partial wave scattering state |ψ (bg+)
k1mz

〉
is not an analytical function of the incident momentum k in
the neighborhood of k = 0 [64]. To investigate the low-energy
behavior of |ψ (bg+)

k1mz
〉 and then the denominator of (11), we

separate the nonanalytical part of |ψ (bg+)
k1mz

〉 by introducing the
background Jost function J (k) [64] defined by

〈�r∣∣ψ (bg+)
k1mz

〉 = il
1

h̄J (k)

(
m

πk

) 1
2 1

r
Y

mz

1 (r̂)F̃ (bg)
k1mz

(r). (18)

Here F̃
(bg)
k1mz

(r) is the canonical solution of the radial equation,(
− d2

dr2
+ V (bg)(r) + 2

r2

)
F̃

(bg)
k1mz

(r) = k2F̃
(bg)
k1mz

(r), (19)

with boundary condition,

F̃
(bg)
k1mz

(r → 0) → ĵ1(kr), (20)

where

ĵ1(x) = sin x

x
− cos x (21)
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is the first-order regular Riccati-Bessel function [64]. Ac-
cording to the standard scattering theory [64], F̃

(bg)
k1mz

(r) is an
analytical function of k, and can be expanded as a Talyor series
of k:

F̃
(bg)
k1mz

(r) = 1

(2n)!

∞∑
n=1

d2n

dk2n
F̃

(bg)
k1mz

(r)

∣∣∣∣
k=0

k2n. (22)

It can be shown that all the odd-order terms in the previously
mentioned Taylor series vanish. Thus the nonanalytical part of
|ψ (bg+)

k1mz
〉 is included in the term with the Jost function J (k).

Substituting Eqs. (22), (18), and (17) into Eq. (11), we find
that in the low-energy limit the factor −kcot
1mz

(k) takes the
form,

−kcot
1mz
(k) = 1

V (
)(B; k; mz)

1

k2
+ 1

R(
)(B; k; mz)
. (23)

Here we have the k-dependent parameters:

V (
)(B; k; mz) = −|J (k)|−2 πwmz

µres

1

B − B0
; (24)

R(
)(B; k; mz) = |J (k)|−2πwmz

×
[(

h̄2

m
− g(2)

mz

)
− w′

mz

wmz

µres (B − B0)

]−1

,

(25)

with the parameters B0 and wmz
defined by

B0 = Bres − g(0)
mz

/µres; (26)

wmz
= 1

6

d3

dk3

[∣∣〈φ(mz)
res

∣∣W ∣∣ψ (bg+)
k1mz

〉∣∣2|J (k)|2]
k=0;

(27)

w′
mz

= 1

120

d5

dk5

[∣∣〈φ(mz)
res

∣∣W ∣∣ψ (bg+)
k1mz

〉∣∣2|J (k)|2]
k=0.

C. The low-energy p-wave scattering amplitude

In the previous subsection we get the expansion (23) of the
factor −kcot
1mz

(k). Substituting Eqs. (23), (16), and (10) into
(9), we finally obtain the low-energy behavior of the p-wave
scattering amplitude f1mz

(k) in the presence of a PMFR:

f1mz
(k) = − 1

ik + 1
Veff (k;B;mz)k2 + 1

Seff (k;B;mz)k + 1
Reff (k;B;mz)

,

(28)

where the k-dependent scattering parameters are given by

Veff = V (bg)

(
1 − bmz

B − B0
|J (k)|−2

)
; (29)

Seff = S (bg)

V (bg)2
Veff2; (30)

1

Reff
= 1

R(
)
(1 − 2x + x2) + 1

R(bg)
x2 + V (bg)

S (bg)2
(x2 − x3).

(31)

Here the parameters bmz
and x are defined as

bmz
= πwmz

V (bg)µres
; x = V (bg)

Veff
.

So far we have obtained the low-energy expression of the
p-wave scattering amplitude f1mz

(k) in the presence of PMFR.
With the help of the scattering theory, we obtain the general
expressions (28) and (29) for the scattering amplitude f1mz

(k)
as well as the scattering parameters (Veff,Seff,Reff), which are
formulated in terms of the background scattering parameters
(V (bg),S (bg),R(bg)) and the magnetic field. Although due to the
long-range nature of the van der Waals potential we cannot
express the denominator of f1mz

(k) as a Laurent series with
k-independent coefficients, we successfully include all the k-
dependence of the parameters (Veff,Seff,Reff) into the Jost
function J (k).

Equation (29) clearly shows the effect of the PMFA,
namely, the scattering volumeVeff diverges under the magnetic
field B = B0. In the cold atom gases, in order to have the
observable effects with p-wave interaction, the scattering
volume |Veff| should be large enough. Particularly, |Veff|1/3

should be much larger than the van der Waals length so
that in the BCS region, the superfluid transition temperature
Tc ∼ (EF /kB) exp[−π/(2k3

BVeff)] [71] is achievable and in
the BEC region the binding energy of the p-wave Feshbach
molecule is robust with respect to the details of the atom-atom
interaction potential.

Finally, we consider the dependence of the effective range
Reff on the magnetic field B. According to Eq. (29), Reff

depends on B through the ratio x between V (bg) and Veff , and
the quantity R(
)(B; k; mz). In the cold gases of 6Li and 40K,
the background scattering volumes V (bg) are on the order of
(105–106)a3

0 . According to the previous discussion, they are
too small to create p-wave superfluids [71]. Therefore in these
systems the strong enough p-wave interactions can only be
obtained in the resonance region with |Veff| � |V (bg)| or x �
1, which implies Reff ≈ R(
)(B; k; mz). On the other hand,
according to Eq. (25), the dependence of R(
)(B; k; mz) on B

is significant when the magnetic field is sufficiently far away
from the resonant point B0 so that the factor |w′

mz
µres(B −

B0)/wmz
| is comparable to or larger than |h̄2/m − g(2)

mz
|. The

values of w′
mz

and wmz
are not available for 6Li and 40K.

Nevertheless, the binding energies of the p-wave Feshbach
molecules were measured and found to be linear functions
of the magnetic field [5,9] in the region with large enough
p-wave scattering volumes (Veff >∼ 107a3

0). This observation
shows that in these regions the term |w′

mz
µres(B − B0)/wmz

|
is negligible and the effective range Reff can be approximated
as a B-independent constant R(
)(0; k; mz).

III. THE APPLICABILITY OF THE
EFFECTIVE-RANGE THEORY

In the previous section, we have obtained the expression
(28) of the p-wave scattering amplitude f1mz

(k) in the region
near the point of a PMFR. It is apparent that this expression
is different from Eq. (1) given by the effective-range theory in
the following two senses:

(1) In the standard effective-range theory, the scattering
volume V and effective-range R are independent of the
incident momentum k. Nevertheless, in the expression (28)
the scattering parameters (Veff,Seff,Reff) depend on k through
the Jost function J (k).
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(2) The term 1/[Seff(k; B; mz)k] cannot be included in the
effective-range theory.

It is apparent that, if under some condition, the scattering
amplitude (28) can be approximated as

f1mz
(k) ≈ − 1

ik + 1
Veff (0;B;mz)k2 + 1

Reff (0;B;mz)

, (32)

that is, both the k dependence of |J (k)|2 and the term
1/[Seff(k; B; mz)k] can be neglected, the behavior of the
system would be approximately described by the effective-
range theory. In this section, we investigate the conditions
for the approximation (32) or (3), or the applicability of
effective-range theory. We will consider the importance of
the term 1/[Seff(k; B; mz)k] and the k dependence of the Jost
function, respectively.

A. The k dependence of the scattering parameters

In this subsection we investigate the sufficient condition for
the k dependence of the scattering parameters (Veff,Seff,Reff)
to be neglected. As we have discussed earlier, the k dependence
of the scattering parameters arises from the modulus square of
the Jost function J (k). In the ultracold gases of the fermionic
atoms, the maximum value of the relative momentum of two
atoms is on the order of the Fermi momentum kF . Therefore,
the importance of the k dependence of the parameters
(Veff,Seff,Reff) can be described by the factor,

r1 = |J (kF )|−2 − |J (0)|−2

|J (0)|−2
. (33)

Obviously, when r1 � 1, we can replace |J (k)|−2 with
|J (0)|−2 and neglect the k dependence of the parameters
(Veff,Seff,Reff).

To investigate the behavior of the ratio r1, we first calculate
the Jost function J (k). By means of the quantum defect
theory [74], we can obtain the expression of |J (k)|−2 (see
Appendix D):

|J (k)|−2 = α−2β3
6
π

2

{[
Dff (k) − K0

l=1Dgf (k)
]2

+ [
Dfg(k) − K0

l=1Dgg(k)
]2}−1

, (34)

where α is a k-independent coefficient and Dij (k) =
(kβ6)3/2Zij (k) (i,j = f,g) with Zij (k) defined in [68]. In Fig. 2
we plot the functions Dij (k) in the low-energy case.

The parameter K0
l=1 denoted as K0

l=1 is related to the
background scattering parameters [66]. Expanding the p-wave
phase shift in Eq. (7) of Ref. [66], we can express (V (bg),S (bg))
in terms of K0

l=1:

V (bg) = −
(
1 + K0

l=1

)
π

18K0
l=1�[3/4]2

β3
6 ; (35)

S (bg) = − 35
(
1 + K0

l=1

)2
π

324
(
K0

l=1

)2
�[3/4]4

β2
6 . (36)

The previous expression shows that when K0
l=1 >∼

π/(18�[3/4]2) ∼ 0.1, we haveV (bg) ∼ β3
6 and the background

scattering potential is far away from the shape resonance; when
K0

l=1 is much smaller than 0.1, the background potential is in
the shape resonance region which gives V (bg) � β3

6 .

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02
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6
)

D
ij

 

 

D
fg

D
ff

D
gf

×10−2

D
gg

FIG. 2. (Color online) The k dependence of Dfg(k) (blue dash-
dotted curve), Dff (k) (open circle), Dgf (k) (black solid curve), and
Dgg(k) (red dashed curve) in Eq. (34).

Now we consider the features of the ratio r1, which is
determined by the parameter K0

l=1. Figure 2 shows that in the
low-energy case with kβ6 � 1, the function Dgf (k) is almost
a k-independent constant and much larger than the other three
D functions. Therefore, if the parameter K0

l=1 is large or the
background scattering potential in the open channel is far away
from the shape resonance, then according to Eq. (34), the Jost
function |J (k)| is dominated by the term with K0

l=1Dgf (k).
In this case the variation of |J (k)|−2 with respect to k is
negligible and we have r1 � 1. On the other hand, if K0

l=1 is
close to zero and the background scattering potential is close to
the shape resonance, then |J (k)| becomes a rapidly changing
function of k and the ratio r1 would be significant.

The previous argument is quantitatively verified in Fig. 3,
where the ratio r1 is plotted as functions of k with respect to
different values of K0

l=1 or V (bg). It is clearly demonstrated
that, if the fermionic momentum kF <∼ 0.1β−1

6 , then the ratio
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−0.1

0

0.1
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k
F
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)

r 1
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0 =−0.01

K
l=1
0 =−0.1

K
l=1
0 =−1

FIG. 3. (Color online) Ratio r1 defined in Eq. (33) as a function of
the Fermi momentum kF with K0

l=1 = 0.01 (V (bg) = −11.79β3
6 , blue

solid curve), K0
l=1 = 0.1 (V (bg) = −1.27β3

6 , green empty square),
K0

l=1 = 1 (V (bg) = −0.23β3
6 , black empty circle), K0

l=1 = −0.01
(V (bg) = 11.51β3

6 , blue dash-dotted curve), K0
l=1 = −0.1 (V (bg) =

10.4β3
6 , green solid square), K0

l=1 = −1 (V (bg) = 0, red dashed curve).
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r1 and the k dependence of the scattering parameters can
be neglected when the background potential is far off from
the shape resonance so that V (bg) <∼ β3

6 . If kF <∼ 0.01β−1
6 , this

restriction can be further relaxed to V (bg) <∼ 10β3
6 .

B. The importance of the term 1/[Seff (k; B; mz)k]

Now we discuss the importance of the term
1/[Seff(k; B; mz)k]. Since the purpose of this paper is to
obtain the sufficient condition for the effective-range theory,
or the approximation (32), for simplicity, in this subsection
we assume the condition r1 � 1 obtained in the previous
section is already met, and the k dependence of the coefficients
(Veff,Seff,Reff) can be neglected.

In the BEC side of the PMFR where B < B0, since g(2)
mz

< 0,
the parameters Reff and Veff have the same sign. In that case,
if the absolute value of 1/(Seffk) is much smaller than the
one of 1/(Veffk2), then it would be also much smaller than
1/(Veffk2) + 1/Reff , and can be neglected. It is obvious that,
in the limit k → 0, the term 1/(Seffk) would be much smaller
than 1/(Veffk2). Therefore the importance of the term 1/(Seffk)
is actually determined by the ratio r2 between the two terms
for the upper limit of the relative momentum kF :

r2 =
∣∣∣∣∣ 1/[Seff(0; B; mz)kF ]

1
/[

Veff(0; B; mz)k2
F

]
∣∣∣∣∣ . (37)

When r2 is much smaller than unity, we can neglect the term
1/(Seffk). If r2 is comparable to or larger than unity, the term
1/(Seffk) would be necessary for the theory.

The straightforward calculation with Eqs. (29), (30), (35),
and (36) yields

r2 = π

35

β3
6

|Veff(kF ; B; mz)| (β6kF ). (38)

In practice, for cold atom systems we have β6kF � 1.
Therefore, in the resonance region with Veff >∼ β3

6 , the ratio
r2 in Eq. (38) is much smaller than unity, and then the term
1/(Seffk), is negligible.

In the BEC side of the resonance with B > B0, the
parameters Veff and Reff have different signs. In that case,
there is a special momentum,

k∗ =
√

−Reff(0; B; mz)

Veff(0; B; mz)
, (39)

which makes the terms 1/[Veffk2
∗] and 1/[Reff] cancel with

each other or

1

Veff(0; B; mz)k2∗
+ 1

Reff(0; B; mz)
= 0. (40)

Therefore, if the atomic relative momentum k is far away
from k∗, the absolute value of 1/(Reffk2) would be quite
different from the one of 1/Veff . In that case we can still
neglect the term 1/(Seffk) under the condition r2 � 1 or
|1/(Seffk)| � |1/(Reffk2)|.

If the atomic relative momentum k is in the neighborhood
of k∗ and the term 1/(Reffk2

∗) is canceled with 1/Veff , the
scattering amplitude (28) can be expressed as

f1mz
(k) = − 1

ik∗ + 1
Seff (0;B;mz)k∗

. (41)

In that case, if the absolute value of 1/[Seff(0; B; mz)k∗] is
much smaller than k∗, we can also neglect the term with Seff ,
even in the neighborhood of k∗. We define a parameter r3 as

r3 = 1

|Seff (0; B; mz) k2∗|
.

Then the term with Seff can be neglected when r2,3 � 1. A
further calculation with Eqs. (39), (29) (30), (35), and (36)
implies that

r3 = πβ4
6

35|Veff (0; B; mz)Reff (0; B; mz) | . (42)

As shown earlier, the condition r3 � 1 is obtained for the
momentum region k ∼ k∗. Since the realistic momentum of the
atomic relative motion takes the value between zero and kF ,
in the cases with kF < k∗, we can disregard the restriction of
the ratio r3, and use effective-range theory under the condition
r1,r2 � 1 in both BEC and BCS sides of the resonance.

C. Summary

In summary, the general sufficient conditions for the
effective-range theory in the BCS side of the resonance are
given by

r1,r2,r3 � 1, (43)

while the ones for the BEC side are

r1,r2 � 1. (44)

From the definition of the ratios r1,r2, and r3, we notice that for
the typical cold gases of Fermi atoms, the crucial factors for
the use of effective range theory are the background p-wave
scattering volume V (bg) and the B dependence of the factor
R(
)(0; B; mz). If the background p-wave scattering is far
away from the shape resonance so that V (bg) ∼ β3

6 ∼ (100a0)3

then according to our previous discussions and Eq. (38), the
conditions r1,r2 � 1 can be satisfied in the region Veff >∼
10β3

6 ∼ 107a3
0 where the p-wave interaction is strong enough

for the creation of p-wave superfluids. In that region we also
have Reff(0; B; mz) = R(
)(0; B; mz). If R(
)(0; B; mz) can
be further approximated as a B-independent constant which is
of the order β6, then the condition r3 � 1 can also be satisfied,
and the effective range theory gives a good approximation of
the real scattering amplitude. In the following subsection we
show that the PMFRs in the cold gases of 40K and 6Li are
precisely in this case.

D. Discussion for the cold gases of 40K and 6Li

In the previous subsections we have obtained the sufficient
conditions (43) and (44) of the effective-range theory for the
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p-wave scattering amplitudes of polarized fermonic atoms near
a PMFR. In this subsection, with the help of the conditions, we
discuss the use of the effective-range theory in the ultracold
gases of 40K and 6Li.

For the ultracold gas with 40K atoms in the state |9/2, −
7/2〉, we have C6 = 3897 (a.u.) [75] and V (bg) = −106a3

0 [3].
These parameters lead to β6 = 130a0 and K0

l=1 = −0.16. If
the Fermi temperature TF = 1 µK, then we have kF β6 =
0.06. The straightforward calculation shows that r1 = 0.01.
Therefore the k dependence of the scattering parameters can be
safely neglected. The p-wave Feshbach resonance for the states
with ml = ±1 occurs at B0 = 198.37 G with width 
B = 25
G and the effective range Reff = 47.2a0. The resonance for
the states with ml = 0 occurs at B0 = 198.85 G with a width

B = 22 G and effective range Reff = 46.2a0 [3]. According
to these data we have r3 < 0.02 when k∗ < kF . Then the effect
from the ratio r3 is also negligible. Therefore the sufficient
condition for the use of the effective-range theory simply
becomes r2 � 1. Further calculation shows that r2 � 0.013
when |Veff| � |V (bg)|. Then the effective-range approximation
(32) is applicable for 40K atoms in the state |9/2, − 7/2〉 in
the whole region of PMFR with |Veff| � |V (bg)|. The condition
for the effective-range approximation is violated only in the
small region 220.5 G < B < 221 G (ml = 0) or 223 G <

B < 223.7 G (ml = ±1) where we have |Veff| � 0.005β3
6 or

r2 � 1.
Now we consider the gas with 6Li atoms in the ground

hyperfine state |F = 1; mF = 1〉. In that case we have C6 =
1393 (a.u.) [70,76] and V (bg) = −(35.3a0)3. These parameters
lead to β6 = 62a0 and K0

l=1 = −0.38. If the Fermi temperature
TF = 1µK, we have kF β6 = 0.01 which implies r1 = 2 ×
10−4. Then similarly to the earlier case, the effective-range
approximation (32) is also applicable for 6Li atoms in the
whole region of a PMFR with |Veff| � |V (bg)|.

IV. CONCLUSION

In this work we obtain the explicit expression of the p-wave
scattering amplitude of two ultracold spin-polarized fermonic
atoms near the p-wave Feshbach resonance. We show that due
to the long-range nature of the van der Waals potential, the
scattering amplitude is explicitly described by Eq. (2) in the
low-energy case. With the help of the quantum defect theory,
we formulate all the scattering parameters (Veff,Seff,Reff)
in terms of the background parameters and the interchannel
coupling.

Based on this result, we discuss the applicability of the
effective-range theory, or Eq. (3) as an approximation of the
exact scattering amplitude. We show that, in the BEC side of
the resonance, the sufficient conditions of the effective-range
theory can be quantitatively described as r1,r2 � 1 while in the
BCS side the conditions become r1,r2,r3 � 1, where r1,r2,r3

are defined in Eqs. (38), (33), and (42). The applicability
of the effective-range theory for the ultracold gases of 40K
and 6Li are examined with our results. The effective-range
theory is shown to be a good approximation in both cases
in the resonance regime where the absolute value of the
scattering volume is equal to or larger than the background
one.
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APPENDIX A: THE p-WAVE PHASE SHIFT WITH PMFR

In this Appendix we show the derivation of the p-wave
phase shift δ1mz

(k) in Eqs. (10) and (11). Our calculation
is based on the method in Ref. [69]. We start from the
scattering state |�(+)

�k 〉 in Eq. (5). According to the scattering

theory [64], the open-channel component |φ(op+)
�k 〉 and closed-

channel component |φ(cl)
�k 〉 of |�(+)

�k 〉 satisfy the two-channel
Lippmman-Schwinger equation,∣∣φ(op+)

�k
〉 = |�k〉 + G

(+)
0 (k2)V (bg)

∣∣φ(op+)
�k

〉 + G
(+)
0 (k2)W

∣∣φ(cl+)
�k

〉
;

(A1)

∣∣φ(cl+)
�k

〉 = G
(cl)
0 (k2)V (cl)

∣∣φ(cl+)
�k

〉 + G
(cl)
0 (k2)W

∣∣φ(op+)
�k

〉
, (A2)

with the free Green’s functions,

G
(+)
0 (k2) = 1

h̄2k2/m − T + i0+ ; (A3)

G
(cl)
0 (k2) = 1

h̄2k2/m − T − ε(B)
. (A4)

We further define the background Green’s function G
(+)
bg (k2)

and the closed-channel Green’s function Gcl as

G
(+)
bg (k2) = 1

h̄2k2/m + i0+ − T − V (bg)
; (A5)

Gcl(k
2) = 1

h̄2k2/m − T − V (cl) − ε(B)
. (A6)

Then we have the relations,

G
(+)
0 (k2) = G

(+)
bg (k2) − G

(+)
bg (k2)V (bg)G

(+)
0 (k2); (A7)

G
(cl)
0 (k2) = Gcl(k

2) − Gcl(k
2)V (cl)G

(cl)
0 (k2). (A8)

Substituting Eqs. (A7) and (A8) into the last terms of the
right-hand side (r.h.s.) of Eqs. (A1) and (A2), and using
the Lippmman Schwinger equation (15) for the background
scattering state |φ(bg+)

�k 〉, we get the equation which relates

|�(+)
�k 〉 to the background scattering state |φ(bg+)

�k 〉 [69] as∣∣φ(op+)
�k

〉 = ∣∣φ(bg+)
�k

〉 + G
(+)
bg (k2)W

∣∣φ(cl+)
�k

〉
, (A9)∣∣φ(cl+)

�k
〉 = Gcl(k

2)W
∣∣φ(op+)

�k
〉
. (A10)

To calculate the p-wave phase shifts δ1mz
(k), we operate the

projection operator Pmz
for the manifold (l = 1,Lz = mz)on

both of the two sides of Eqs. (A9) and(A10). Then we have

Pmz

∣∣φ(op+)
�k

〉 = Pmz

∣∣φ(bg+)
�k

〉 + Pmz
G

(+)
bg (k2)WPmz

∣∣φ(cl+)
�k

〉
,

(A11)

Pmz

∣∣φ(cl+)
�k

〉 = ∣∣φ(mz)
res

〉 〈
φ

(mz)
res

∣∣WPmz

∣∣φ(op+)
�k

〉
h̄2k2/m − µres

(
B − B

(mz)
res

) . (A12)
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Here we have used

Pmz
G

(+)
bg (k2) = Pmz

G
(+)
bg (k2)Pmz

; (A13)

Pmz
Gcl(k

2) = Pmz
Gcl(k

2)Pmz
, (A14)

which are guaranteed by the rotational symmetry around the
z axis of the system. We also made the approximation,

Gcl(k
2) ≈

∑
mz

∣∣φ(mz)
res

〉〈
φ

(mz)
res

∣∣
h̄2k2/m − µres

(
B − B

(mz)
res

) , (A15)

that is, we only take into account the contribution from the
near-resonance bound state |φ(mz)

res 〉 in the closed channel.
Substituting Eq. (A12) into Eq. (A11), we get

Pmz

∣∣φ(op+)
�k

〉 = Pmz

∣∣φ(bg+)
�k

〉
+G

(+)
bg (k2)W

∣∣φ(mz)
res

〉
A(mz)(B,k2), (A16)

with

A(mz)(B,k2) =
〈
φ

(mz)
res

∣∣WPmz

∣∣φ(op+)
�k

〉
h̄2k2/m − µres

(
B − B

(mz)
res

) . (A17)

Replacing the Pmz
|φ(op+)

�k 〉 in the r.h.s. of Eq. (A17) with the
r.h.s. of (A16), we get

A(mz)(B,k2)

=
〈
φ

(mz)
res

∣∣W ∣∣φ(bg+)
�k

〉
h̄2k2/m − µres

(
B − B

(mz)
res

) − 〈
φ

(mz)
res

∣∣WG
(+)
bg (E)W

∣∣φ(mz)
res

〉 .
(A18)

Substituting Eq. (A18) into Eq. (A16), and using the
asymptotic expression (7) of the scattering state and the
definition (8) of the partial wave scattering amplitude, we can
obtain the p-wave scattering amplitude,

f1mz
(k) = f

(bg)
1mz

(k) − π

k

〈
ψ

(bg−)
k1mz

∣∣W ∣∣φ(mz)
res

〉〈
φ

(mz)
res

∣∣W ∣∣ψ (bg+)
k1mz

〉
h̄2k2/m − µres

(
B − B

(mz)
res

) − 〈
φ

(mz)
res

∣∣WG
(+)
bg (k2)W

∣∣φ(mz)
res

〉 . (A19)

Here |ψ (bg+)
k1mz

〉 is defined in Eq. (12). |ψ (bg−)
k1mz

〉 is defined as

∣∣φ(bg−)
�k

〉 =
(

2

mh̄k

) 1
2 ∑

l,mz

∣∣ψ (bg−)
k1mz

〉
Y

mz

l (k̂)∗, (A20)

with∣∣φ(bg−)
�k

〉 = |�k〉 + 1

h̄2k2/m − T − V (bg) + i0− V (bg)|�k〉
(A21)

the background state with an ingoing boundary condition. In
the previous calculation we also used the asymptotic behavior
of the background Green’s function:

lim
r→∞〈�r|G(+)

bg (k2)|�r ′〉 = −m

√
π

2h̄

eikr

r

〈
φ

(bg−)
kr̂

∣∣�r 〉, (A22)

with r̂ = �r/r .
With straightforward calculation, we can further rewrite the

scattering amplitude f1mz
(k) in Eq. (A19) as

f1mz
(k) = f

(bg)
1 (k) − e2iδ

(bg)
1 (k) 1

ik + C(k)
, (A23)

with

C(k) = k

π

1∣∣〈φ(mz)
res

∣∣W ∣∣ψ (+)
k10

〉∣∣2

× [
h̄2k2/m − µres

(
B − B(mz)

res

) − gmz
(k2)

]
. (A24)

In the derivation of Eq. (A23) we have used the relation
(Appendix B), ∣∣ψ (−)

k1mz

〉 = e−2iδ
(bg)
1 (k)

∣∣ψ (+)
k1mz

〉
, (A25)

and

G
(+)
bg (k2) = (mh̄)

∫
d �k′

∣∣φ(bg+)
�k′

〉〈
φ

(bg+)
�k′

∣∣
k2 + i0+ − k′2

= −(m2/h̄)πi

∫
d �k′δ(k2 − k′2)

∣∣φ(bg+)
�k′

〉〈
φ

(bg+)
�k′

∣∣
+ (mh̄)P

∫
d �k′

∣∣φ(bg+)
�k′

〉〈
φ

(bg+)
�k′

∣∣
k2 − k′2 . (A26)

Here P
∫

refers to the principle value of the integral.
Considering the relation (9) between the scattering ampli-

tude f1mz
(k) and the phase shift δ1mz

(k), it is easy to prove
that the phase shift δ1mz

(k) corresponding to the scattering
amplitude (A23) is the one given in Eqs. (10) and (11). This
result can also be proved with the method in Ref. [67].

APPENDIX B: THE SCATTERING STATES WITH INGOING
AND OUTGOING BOUNDARY CONDITIONS

In this Appendix we prove the formula (A25) in
Appendix A. We start from the relationship [69] between the
three-dimensional scattering states with ingoing and outgoing
boundary conditions:

〈�r∣∣φ(bg−)
�k

〉 = 〈
φ

(bg+)

−�k
∣∣�r 〉. (B1)

Considering the definitions (12) and (A20) of |ψ (bg±)
klmz

〉, we can
obtain

∑
l,mz

〈�r∣∣ψ (bg+)
klmz

〉
Y

mz

l (k̂)∗ =
∑
l,mz

〈
ψ

(bg−)
klmz

∣∣�r 〉Ymz

l (−k̂). (B2)
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We further define the one-dimensional functions F
(bg±)
k1 (r) as

[64]

〈�r∣∣ψ (bg±)
k1mz

〉 = il
1

h̄

(
m

πk

) 1
2 1

r
F

(bg±)
k1 (r)Ymz

1 (r̂). (B3)

Using the relationships,

Y
mz

1 (−k̂) = (−1)mz+1Y
−mz

1 (k̂)∗; (B4)

Y
mz

1 (r̂) = (−1)mzY
−mz

1 (r̂)∗, (B5)

we get

F
(bg+)
k1 (r) = F

(bg−)
k1 (r)∗. (B6)

On the other hand, we know that F
(bg+)
k1 (r) and F

(bg−)
k1 (r)

satisfy the same differential equation,(
− d2

dr2
+ V (bg) + 2

r2

)
F

(bg±)
k1 (r) = k2F

(bg±)
k1 (r), (B7)

with the same boundary condition F
(bg±)
k1 (0) = 0. Then

F
(bg−)
k1 (r) is proportional to F

(bg+)
k1 (r). To calculate the ratio

between F
(bg±)
k1 (r), we consider their asymptotic behaviors in

the limit r → ∞:

F
(bg+)
k1 (r) = ĵ1(kr) + kf

(bg)
k1 (k)[n̂1(kr) + iĵ1(kr)]; (B8)

F
(bg−)
k1 (r) = ĵ1(kr) + kf

(bg)
k1 (k)∗[n̂1(kr) − iĵ1(kr)], (B9)

with ĵ1(x)defined in (21) and

n̂1(x) = −cos x

x
− sin x (B10)

is the irregular first-order Riccati-Bessel function. Comparing
the coefficients of n̂l(kr), we have

F
(bg−)
k1 (r) = e−2iδ

(bg)
1 (k)F

(bg−)
k1 (r). (B11)

Here we have used

f
(bg)
k1 (k) = − 1

ik − k cot δ(bg)
1 (k)

= 1

k
sin δ

(bg)
1 (k)eiδ

(bg)
1 (k). (B12)

Substituting Eq. (B11) into Eq. (B3), we obtain Eq. (A25).

APPENDIX C: THE EXPANSION OF THE FACTOR gmz (k2)

In this Appendix we prove the Eq. (17). We firstly rewrite
the factor gmz

(k2) as

gmz
(k2) = Re

〈
φ(mz)

res

∣∣WG
(bg)
+ (0)W

∣∣φ(mz)
res

〉
− k2Re

〈
φ(mz)

res

∣∣WG
(bg)
+ (0)G(bg)

+ (k2)W
∣∣φ(mz)

res

〉
. (C1)

Here we have used the identity

G
(bg)
+ (k2) = G

(bg)
+ (0) − k2G

(bg)
+ (0)G(bg)

+ (k2). (C2)

The first term in the r.h.s. of (C1) is independent of k. It
contributes to the constant term g(0)

mz
in Eq. (17).

On the other hand, the second term in Eq. (C1) can be
rewritten as

k2Re
〈
φ(mz)

res

∣∣WG
(bg)
+ (0)G(bg)

+ (k2)W
∣∣φ(mz)

res

〉
= m2k2

h̄4 Re lim
ς1,ς2→0+

∫
d �k′

∣∣〈φ(mz)
res

∣∣W ∣∣φ(bg+)
�k′

〉∣∣2

(k′2 − iς1)(k′2 − k2 − iς2)
.

(C3)

In the limit k = 0, we have

lim
k→0

Re
〈
φ(mz)

res

∣∣WG
(bg)
+ (0)G(bg)

+ (k2)W
∣∣φ(mz)

res

〉

∝
∫

dp

∣∣〈φ(mz)
res

∣∣W ∣∣ψ (bg+)
p1mz

〉∣∣2

p3
. (C4)

We know that the function |〈φ(mz)
res |W |ψ (bg+)

p1mz
〉|2 decays to zero

when p → ∞. On the other hand, as we have shown in
Sec. IIIB, the factor |J (k)|2 tends to a nonzero constant
in the low-energy limit if the background scattering volume
in the open channel is finite. Using the relationship (18)
between J (k), F̃

(bg±)
k1 (r) and |ψ (bg+)

p1mz
〉, and the low-energy

behavior (22) of F̃
(bg±)
k1 (r), it is easy to prove that the factor

|〈φ(mz)
res |W |ψ (bg+)

p1mz
〉|2 is proportional to p3 in the limit p → 0.

Therefore, the previous integration in Eq. (C4) converges to
a finite constant in the limit k2 → 0. Then the expansion in
Eq. (17) is proved and we have

g(2)
mz

= −〈
φ(mz)

res

∣∣WG
(bg)
+ (0)G(bg)

+ (0)W
∣∣φ(mz)

res

〉
� 0. (C5)

APPENDIX D: THE BACKGROUND JOST FUNCTION

In this Appendix we calculate the Jost function J (k) of
the background scattering state. To this end, we introduce a
function F̄

(bg±)
k1 (r) = F̃

(bg±)
k1 (r)/k2 where F̃

(bg±)
k1 (r) is defined

in Eq. (18). We first note that F̄
(bg±)
k1 (r) is a solution of the

radial equation,(
− d2

dr2
+ V (bg)(r) + 2

r2

)
F̄

(bg)
k1 (r) = k2F̄

(bg)
k1 (r), (D1)

with a k-independent boundary condition,

F̄
(bg)
k1 (r → 0) → r2. (D2)

Following the spirit of quantum defect theory [74], we
assume the scattering potential V (bg)(r) can be approximated
as the van der Waals potential −h̄2β4

6/(r6m) when r is larger
than a critical distance r0 which is much smaller than β6.
In the region with r < r0, V (bg)(r) is assumed to be so large
that the atomic kinetic energy k2 is negligible in comparison
with V (bg)(r), and then F̄

(bg)
k1 (r) is independent of k.

In the region r > r0, F̄ (bg)
k1 (r) is the superposition of the two

independent solutions χ
(0)
ε1 (r) and κ

(0)
ε1 (r) of Eq. (D1) [68] [in

Ref. [68], χ (0)
ε1 (r) and κ

(0)
ε1 (r) are denoted as f

(0)
ε1 (r) and g

(0)
ε1 (r)]:

F̄
(bg)
k1 (r) = αkχ

(0)
k21(r) + βkκ

(0)
k21(r). (D3)

In the short distance region with r � β6, χ
(0)
k21(r), and κ

(0)
k21(r)

are almost independent of k [74].
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The wave function F̄
(bg)
k1 (r) in the two regions are connected

at point r = r0, where F̄
(bg)
k1 (r), χ (0)

ε1 (r), and κ
(0)
ε1 (r) are approx-

imately independent of k. Then αk and βk are independent of
k and we have

F̄
(bg)
k1 (r) = αχ

(0)
εk1(r) + βκ

(0)
εk1(r), (D4)

with εk = h̄2k2/m. The previous equation leads to

F̃
(bg)
k1 (r) = k2αχ

(0)
εk1(r) + k2βκ

(0)
εk1(r). (D5)

In the region r → ∞, the asymptotic behaviors of χ
(0)
εk1(r)

and κ
(0)
εk1(r) can be expressed in terms of Zij (k) (i,j = f,g)

defined in [68]

χ
(0)
εk1(r) →

√
2

πk

[
Zff sin

(
kr − π

2

)
− Zfg cos

(
kr − π

2

)]
;

(D6)

κ
(0)
εk1(r) →

√
2

πk

[
Zgf sin

(
kr − π

2

)
− Zgg cos

(
kr − π

2

)]
.

(D7)

On the other hand we know that in the same limit we have [64]

F̃
(bg)
k1 (r) = J (k)

[
eiδ

(bg)
1 (k) sin

(
kr − π

2
+ δ

(bg)
1 (k)

)]
. (D8)

Together with Eqs. (D5), (D6), and (D7) as well as (D8), we
obtain the expression of (34) of |J (k)|2 and the background
phase shift:

tan δ
(bg)
1 = −K0

l=1Zgg − Zfg

K0
l=1Zgf − Zff

, (D9)

where Dij (k) = (kβ6)3/2Zij (k) and K0
l=1 = −β/α is the one

in Sec. III. The result (D9) is also given in [66].
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[19] M. Iskin and C. A. R. Sá de Melo, Phys. Rev. B 72, 224513

(2005).

[20] W. V. Liu, Phys. Rev. A 72, 053613 (2005).
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