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Electron-impact study of the NH radical using the R-matrix method
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We have employed the R-matrix method to compute elastic (integrated and differential), momentum-transfer,
excitation, and ionization cross sections for electron impact on the NH radical. The target states are represented
by including correlations via a configuration interaction technique. The results of the static exchange,
correlated one-state configuration interaction, and 19-state close-coupling approximation are presented. We
have detected a stable anionic bound state 2� of NH− having the configuration 1σ 22σ 23σ 21π 3. The data
of the momentum-transfer cross section, generated from the differential cross section, is used to compute
effective collision frequencies over a wide electron temperature range (200–30 000 K). The ionization cross
sections are calculated in the binary-encounter Bethe model in which Hartree-Fock molecular orbitals at
self-consistent levels are used to calculate kinetic and binding energies of the occupied molecular orbitals.
We have included up to the g partial wave (l = 4) in the scattering calculations. For this dipolar molecule we
have used a Born-closure top-up procedure to account for the higher partial waves for the convergence of the
cross section.
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I. INTRODUCTION

The NH radical, also known as the imidogen radical, is
an important species in molecular astrophysics [1] and in the
study of comets [2]. Several lines of 1→0 and 2→1 fundamen-
tal vibration-rotation bands of the NH radical were identified in
a high-resolution spectrum of supergiant α Orionis by Lambert
and Beer [3]. The NH free radical is an important reaction
intermediate in some flames, rocket-engine plasmas, electric
discharge, and astronomical emission sources [4]. In combus-
tion chemistry, the scientific community has shown a great
interest in determining the bond energies and the enthalpies of
formation of NH in the study of the combustion of nitramine
propellants in aeronautic applications [5]. The Hartree-Fock
ground-state configuration of NH is 1σ 22σ 23σ 21π2, which
leads to three low-lying electronic states X 3�−, a 1�, and
b 1�+. The next set of excited states A 3� and c 1� arises
from the electronic configuration σ π3. Cade and Huo have
carried out an exhaustive study of the potential energy and
spectroscopic constants for the second-row hydrides using the
Hartree-Fock-Roothaan wave function [6]. A configuration
interaction calculation of the energies of X 3�−, a 1�, and
b 1�+ states of NH has been carried out by [7], using Slater-
type functions in which single and double excitations were
allowed from the Hartree-Fock configuration. Meyer and Ros-
mus [8] calculated potential energy curves and dipole moment
functions for the ground state of NH by using coupled electron
pair approximations. Their calculation of the dipole moment
at Re = 2.0 a.u. is 0.6152 a.u. Engelking and Lineberger [9]
have determined the electron affinity (EA) of NH by using
laser photoelectron spectrometry of NH−. Their EA value for
X 3�− of NH is 0.381 ± 0.014 eV. Hay and Dunning [10]
calculated excitation energies and spectroscopic constants for
the X 3�−, a 1�, b 1�+, A 3�, and c 1� states of NH by
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using polarization configuration interaction wave functions.
Rosmus and Meyer [11] have recommended a value of 13.5 eV
for the adiabatic ionization energy of NH by employing a
coupled electron pair approach (CEPA) wave function. It is
well established experimentally that the ground states of most
AH− ions are bound. The CEPA study [12] has established an
adiabatic electron affinity of NH as 0.01 eV, as compared to
the experimental value of 0.38 eV [13]. Cvejanovic et al. [14]
measured the radiation lifetimes of the excited states of the
NH radical by using the electron-photon delayed coincidence
technique. Frenking and Koch [15] have calculated the electron
affinity of NH at different many-body perturbation (MP) levels
by using different basis sets. Their best value is 0.18 eV.
Joshipura et al. [16] have obtained the ionization cross section
by electron impact on NH through a complex optical potential.
The ionization cross section is extracted through the absorption
cross section. The energy range considered in their work is
20–2000 eV.

The present study uses the ab initio R-matrix method to
low-energy scattering of the NH molecule in the fixed nuclei
approximation. The calculations use the UK molecular R-
matrix code [19,20]. The R-matrix method has the advantage
over other scattering methods in providing cross sections at
a large number of scattering energies efficiently. It also has
the ability to include correlation effects and give an adequate
representation of several excited states of the molecule [21].
We are interested in the low-energy region (�10 eV) which
is a natural ground for the R-matrix method. The incoming
electron can occupy one of the many unoccupied molecular
orbitals or it can excite any of the occupied molecular orbitals
as it falls into another one. These processes give rise to the
phenomenon of resonances forming a negative molecular ion
for a finite time before the resonance decays into energetically
open channels.

Electron-scattering calculations are performed at the static
exchange, one-state configuration interaction (CI), and 19-
state close-coupling approximation in which we have retained
19 target states in the R-matrix formalism. The integrated
elastic, differential, and momentum cross sections for electron
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impact on the NH molecule from its ground state are reported.
The excitation cross sections from the ground state to the few
low-lying excited states have also been calculated. We have
also computed the binary-encounter-Bethe (BEB) ionization
cross section [22,23]. The BEB cross sections depend only
on the binding energies, kinetic energies, and the occupation
number of the occupied molecular orbitals of the target, and
on the energy of the incident electron. We have also shown
a comparison of the calculated momentum transfer cross
section (MTCS) for the NH radical and the PH radical [24].
The PH radical, like its isovalent first-row radical NH, is an
open-shell system with an unpaired π2 ground-state electronic
configuration. The momentum-transfer croctions calculated in
the R-matrix approximation have been used to calculate the
effective collision frequency for NH and PH radicals, over a
wide electron temperature range (200–30 000 K).

II. METHOD

A. Theory

In an R-matrix approach [26,27], the configuration space
of the scattering system is divided into two spatial regions: an
inner region and an outer region. These regions are treated
differently in accordance with the different interactions in
each region. The center of the R-matrix sphere coincides
with the center of mass of the molecule. When the scattering
electron leaves the inner region, the other target electrons are
confined to the inner region. In the present work the R-matrix
boundary radius dividing the two regions was chosen to be
10a0, centered at the NH center of mass. This sphere encloses
the entire charge cloud of the occupied and virtual molecular
orbitals included in the calculation. At 10a0, the amplitudes
of the molecular orbitals are less than 10−5a

−3/2
0 . However,

the continuum orbitals have finite amplitudes at the boundary.
Inside the R-matrix sphere, the electron-electron correlation
and exchange interactions are strong. Short-range correlation
effects are important for the accurate prediction of large-angle
elastic scattering, and exchange effects are important for spin-
forbidden excitation cross sections. A multicentered CI wave
function expansion is used in the inner region. The calculation
in the inner region is similar to a bound-state calculation,
which involves the solution of an eigenvalue problem for
(N + 1) electrons in the truncated space, where there are
N target electrons and a single scattering electron. Most of
the physics of the scattering problem is contained in this
(N + 1) electron bound-state molecular-structure calculation.
Outside the sphere, only long-range multipolar interactions
between the scattering electron and the various target states
are included. Because only direct potentials are involved in the
outer region, a single center approach is used to describe the
scattering electron via a set of coupled differential equations.
The R-matrix is a mathematical entity that connects the two
regions. It describes how the scattering electron enters and
leaves the inner region. In the outer region, the R-matrix on
the boundary is propagated outward [28,29] until the inner-
region solutions can be matched with asymptotic solutions,
thus yielding physical observables such as cross sections.
We include only the dipole and quadrupole moments in
the outer region.

In the polyatomic implementation of the UK molecular
R-matrix code [19,20], the continuum molecular orbitals
are constructed from atomic Gaussian-type orbitals (GTOs)
using basis functions centered on the center of gravity of
the molecule. The main advantage of GTOs is that integrals
involving them over all space can be evaluated analytically
in closed form. However, a tail contribution is subtracted to
yield the required integrals in the truncated space defined by
the inner region [19].

The target molecular orbital space is divided into core
(inactive), valence (active), and virtual orbitals. The target
molecular orbitals are supplemented with a set of continuum
orbitals, centered on the center of gravity of the molecule.
The continuum basis functions used in polyatomic R-matrix
calculations are Gaussian functions and do not require fixed
boundary conditions. First, target and continuum molecular
orbitals are orthogonalized using Schmidt orthogonalization.
Then symmetric or Löwdin orthogonalization is used to
orthogonalize the continuum molecular orbitals among them-
selves and remove linearly dependent functions [19,30]. In
general, and in this work, all calculations are performed
within the fixed-nuclei approximation. This is based on the
assumption in which electronic, vibrational, and rotational
motions are uncoupled.

In the inner region, the wave function of the scattering
system, consisting of target plus scattering electrons, is written
using the CI expression

�N+1
k = A

∑
i

φN
i (x1, . . . ,xN )

∑
j

ξj (xN+1)aijk

+
∑
m

χm(x1, . . . ,xN ,xN+1) bmk, (1)

where A is an antisymmetrization operator, xN is the spatial and
spin coordinates of the N th electron, φN

i represents the ith state
of the N -electron target, ξj is a continuum orbital spin coupled
with the scattering electron, and k refers to a particular R-
matrix basis function. Coefficients aijk and bmk are variational
parameters determined as a result of the matrix diagonaliza-
tion. To obtain reliable results, it is important to maintain a
balance between the N -electron target representation φN

i and
the (N + 1) electron-scattering wave function. The summation
in the second term of Eq. (1) runs over configurations χm,
where all electrons are placed in target-occupied and virtual
molecular orbitals. The choice of appropriate χm is crucial in
this [31]. These are known as L2 configurations and are needed
to account for orthogonality relaxation and for correlation
effects arising from virtual excitation to higher electronic states
that are excluded in the first expansion. The wave function
ψN+1

k is independent of the scattering energy but is used to
construct the energy-dependent R matrix on the boundary. The
basis for the continuum electron is parametrically dependent
on the R-matrix radius and provides a good approximation to
an equivalent basis of orthonormal spherical Bessel functions
[32]. In the one-state CI model, we have included the ground
state only, but have used the CI wave function to describe
it. In the 19-state model calculation, each target state is
represented by a CI wave function since we can include
only a finite number of excited states, which implies that the
contribution of the target continuum is taken into account. This
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TABLE I. Properties of the NH target, ground-state energy, and dipole moment (in a.u.) and the ionization potential (IP, in eV) and rotational
constant (Be, in cm−1), SCF at bond length Re = 1.94a0, and CI at bond length Re = 2.0a0. The experimental values, from [6], are given in
the square brackets.

Present work

SCF CI SCFa CEPAa CIb SPDCI-VRc

E −54.96 754 −55.00 341 −54.97 353 −55.136 763 −54.97 806 [−55.2520] −55.13 180
µ 0.685 0.659 0.650 0.621 0.642 0.594
IP 14.56 14.56 12.82 [13.1 ± 0.1]
Be 17.023 16.007 17.28 16.60 17.319 [16.668] 16.44

aMeyer and Rosmus [8].
bCade and Huo [6].
cGoldfield and Kirby [18].

limits the effect of polarization interaction in the scattering
calculations.

B. NH target model

Diradicals are a species with a pair of degenerate (equal
energy) molecular orbitals and two electrons. A diradical can
occur in a triplet and in a singlet state. The oxygen we breathe
in is a diradical in a triplet state. The ground-state electronic
configuration (π2) of the NH molecule has two unpaired
electrons occupying two degenerate molecular orbitals. These
orbitals are antibonding and hence NH is paramagnetic. The
molecule NH is a linear open-shell system that has ground
state X 3�− in the C∞v point group, which is reduced to
the C2v point group when the symmetry is lowered. In the
R-matrix suite of programs, the highest Abelian group is D2h

and therefore we work in the C2v point group, which is a subset
of the D2h point group. The results are reported in the natural
symmetry point group as well as in the C2v point group for the
sake of convenience. We used a double zeta plus polarization
(DZP) Gaussian basis set [33] contracted as (9,5,1)/(4,2,1) for
N and (4,1)/(2,1) for H. We avoided using diffuse functions
as these would extend outside the R-matrix box. We first
performed an self-consistent field (SCF) calculation for the
ground state of the NH molecule with the chosen DZP basis
set and obtained an occupied and virtual set of molecular
orbitals.

The Hartree-Fock electronic configuration for the ground
state is 1σ 22σ 23σ 21π2, which gives rise to the lowest-lying

X 3�−, a 1�, and b 1�+ states. The energy of the occupied
1π orbital is −14.56 eV and by Koopman’s theorem it is the
first ionization energy. Since the SCF procedure is inadequate
to provide a good representation of the target states, we
improve the energy of the ground as well as the excited
states by using CI wave functions. This lowers the energies
and the correlation introduced provides a better description
of the target wave-function and excitation energies. In our
limited CI model, we keep two electrons frozen in the 1σ 2

configuration and allow the remaining six electrons to move
freely in molecular orbitals 2σ , 3σ , 4σ , 5σ , 1π , and 2π . The
CI ground-state energy for the NH molecule is −55.003 410
hartrees, at a bond length of Re = 2.0a0. We computed the
value of vertical electronic affinity (VEA), which is 0.034 eV,
by performing a bound-state calculation of NH− by including
the continuum electron basis functions centered at the origin.
We detect a stable bound state of NH− with 2� symmetry
having the configuration 1σ 22σ 23σ 21π3.

To provide additional information on the charge distribution
in the NH molecule, we have also calculated the dipole and
quadrupole moments. In our CI model the dipole moment
and the absolute values of quadrupole component Q20 for the
ground state are 0.659 and 0.378 a.u., respectively. The values
of the ground-state energy, the dipole moment, the ionization
potential, and the rotational constant are compared with other
work in Table I.

In Table II, we list the vertical excitation energies and the
number of configuration state functions (CSFs) for the target

TABLE II. The vertical excitation energies (VEE, in eV) and N , the number of CSFs for the target states of NH at bond length Re = 2.0a0.
The experimental values, from [17], are given in the square brackets.

State Present work Previous worka POL-CIb CASSCFc CASPT2c

C2v/C∞v (VEE in eV) (VEE in eV) (VEE in eV) (VEE in eV) (VEE in eV) N

X 3A2/X 3�− 0.0 864
a(1A2,1A1)/a 1� 1.88 1.6 1.96 1.92 1.616 [1.56] 584 696
b(1A1)/b 1�+ 2.7 2.67 2.84 2.60 2.656 [2.63] 696
A 3B1,

3B2/A
3� 3.8 3.69 4.08 3.86 3.747 [3.70] 858

c 1B2,
1B1/c

1� 5.95 5.42 6.06 5.72 5.520 [5.43] 620
d(1A1)/d 1�+ 10.84 10.32 10.57 10.484 [10.311] 696

aCvejanovic et al. [14].
bHay et al. [10].
cRajendra et al. [17].
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TABLE III. Comparison of dipole moments (µ in a.u.) for the
target states of NH, at bond length Re = 2.0a0, with [10].

Dipole momenta Dipole moment (this work)
State (µ in a.u.) (µ in a.u.)

a 1� 0.6126 (1.955a0) 0.6634
b 1�+ 0.5822 (1.956a0) 0.6482
A 3� 0.5520 (1.958a0) 0.6479
c 1� 0.7125 (2.081a0) 0.7545

aHay et al. [10].

states. The vertical excitation energies are in good agreement
with experimental [14] and other theoretical work [10,17]. The
singlet-singlet (1�-1�+) splitting value of 0.82 eV is in better
agreement with the corresponding value of 0.80 eV with the
results of [7].

In Table III, we have compared the dipole moments of the
excited states a 1�, b 1�+, A 3�, and c 1� with the work of
[10]. These values are given at slightly different bond lengths
which are also shown in Table III. The agreement between our
results and that of [10] is quite good. We have also compared
the transition moments of the allowed transitions 3�− → 3�,
1� → 1�, and 1�+ → 1� in Table IV, at a bond length
of Re = 2.00a0. We notice, once again, that the agreement is
quite satisfactory. This comparison shows that the use of wave
functions of the ground and the excited states employed in the
scattering calculations are of good quality.

C. Scattering model

The lowest three states of NH arise from three different
asymptotic atomic limits. We impose a chemically reasonable
restriction on the 1σ orbital to be doubly occupied. This is
nearly the N 1s orbital, which remains frozen during the
interaction. In the limit of infinite separation the system
approaches a ground-state hydrogen atom (2S) and a nitrogen
atom in a (1s22s22p3)(4S), (2D), (2P ) state for the 3�−, 1�,
and 1�+ molecular states, respectively. We have included
19 target states (two of 1A2, four of 3A2, three of 1A1, two
of 3A1, two of 1B1, two of 3B1, two of 1B2, and two of
3B2) in the trial wave function describing the electron plus
target system. However, excitation cross sections are reported
only for the three excited states (a 1�, b 1�+, and A 3�).
Calculations were performed for doublet and quartet scattering
states with A1,A2,B1, and B2 symmetries. Continuum orbitals
up to l = 4 (g partial wave) were included in the scattering
calculation.

TABLE IV. Comparison of transition moments (in a.u.) of allowed
transitions for NH, at bond length Re = 2.0a0, with [10].

Transition momenta Transition moment
Transition (in a.u.) (this work) (in a.u.)

3�− → 3� 0.2668 0.3226
1� → 1� 0.1681 0.2097
1�+ → 1� 0.0833 0.0972

aHay et al. [10].

TABLE V. NH molecular orbital binding and average kinetic
energies for the DZP basis set at equilibrium geometry. |B| is the
binding energy (eV), U is the kinetic energy (eV), and N is the
occupation number.

Molecular orbital |B| (eV) U (eV) N

1σ (1a1) 424.72 602.33 2
2σ (2a1) 28.41 53.50 2
3σ (3a1) 14.90 42.95 2
1π (1b1) 7.28 49.08 1
1π (1b2) 7.28 49.08 1

Due to the presence of the long-range dipole interaction, the
elastic cross sections are formally divergent in the fixed-nuclei
approximation as the differential cross section is singular in
the forward direction. To obtain converged cross sections, the
effect of rotation must be included along with a very large
number of partial waves. The effects of partial waves with
l > 4 were included using a Born correction via a closure
approach [34]. Our partial g-wave cross section using the R-
matrix method nearly coincided with the g-wave Born results.
This establishes the correctness of our procedure to use Born
correction beyond the g-partial wave.

III. RESULTS

A. Elastic and inelastic total cross sections

The ground-state electronic configuration of NH has two
unpaired π electrons. Due to vacancy in the 1π orbital of
the ground state of NH, the scattering electron can occupy it
forming a stable anionic ground state of NH with a symmetry
2�. In our 19-state model, we found an R-matrix pole at
−55.004 66 a.u. at Re in the scattering symmetry 2� which is
lower than the energy −55.003 41 a.u. of ground state X 3�−
of NH, which indicates the detection of an anionic bound
state. We calculated the bound-state energies of this anionic
2� state at different bond lengths by performing an L2-type
calculation in which we placed the scattering electron at the
center of mass of the molecule.

The retention of a large number of closed electronic
excitation channels in a 19-state model provides the necessary
polarization potential in an ab initio way; this polarization
potential is critical in determining the resonance parameters of
the detected resonances. In Fig. 1 we have presented the elastic
cross sections of the electron impact on the NH molecule at
Re for a 19-state calculation.

In Figs. 2–4 we have shown the inelastic cross sections from
the ground state to the three physical states whose vertical
excitation thresholds along, and the number of CSFs included
in the CI expansion are given in Table II.

In Figs. 2 and 3 we have shown the comparison of
the excitation cross sections for X 3�−-a 1� transition and
X 3�−-b 1�+ transition, respectively, of the NH molecule with
PH [24] and O2 [25]. The cross sections for PH are higher
than those of NH since it is a bigger molecule. The cross
sections of isovalent O2 are lower than these due to the fact
that it is nonpolar.

Figure 4 depicts the excitation cross section for the
optically allowed transition X 3A2(X 3�−)-A 3B1/

3B2(A 3�).

062710-4



ELECTRON-IMPACT STUDY OF THE NH RADICAL USING . . . PHYSICAL REVIEW A 82, 062710 (2010)

0 1 2 3 4 5 6 7 8 9 10

Energy (eV)

0

50

100

150

200

E
la

st
ic

 c
ro

ss
 s

ec
ti

on
 (

un
it

s 
of

 a
02

Doublets
Quartets
Born correction
Total (Doublets + Quartets)
Born corrected

)

FIG. 1. Elastic cross sections of the electron impact on the NH
molecule at Re for 19-state calculations: dashed dotted curve, doublets
sum; dashed curve, quartets sum; thin solid curve, total (doublets +
quartets); dotted curve, Born correction; thick solid line, Born
corrected (sum of doublets, quartets, and Born correction).

The contribution of quartet and doublet symmetries is shown
separately. The contribution of the quartets is once again higher
than that of the doublet symmetries. The Born correction is also
included for this dipole transition to include the contribution
of the higher partial waves that are not included in the
R-matrix calculations.

B. Ionization cross section

Figure 5 shows the electron-impact ionization cross section
of NH from threshold 14.56 to 5000 eV by using the
standard formalism of the binary-encounter-Bethe (BEB)
model [22,23]. This formalism requires the binding energy and
kinetic energy of each occupied orbital in a molecular structure
calculation. The ionization cross section rises from a threshold
to a peak value of 2.768 Å2 at 74.98 eV and then shows ln E/E

behavior as E approaches higher values. We have also shown
the results of previous theoretical work [16]. Except at the

1 2 3 4 5 6 7 8 9 10

Energy (eV)

0

0.5

1

1.5

E
xc

it
at

io
n 

cr
os

s 
se

ct
io

n 
(u

ni
ts

 o
f 

a 02
)

PH
NH
O

2

X 
3Σ-

 --> a 
1∆

FIG. 2. Comparison of electron-impact excitation cross sections
from the ground X 3�− (3A2) state to the a 1�/[a(1A2/

1A1)] of the
NH molecule with PH [24] and O2 [25].
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FIG. 3. Comparison of electron-impact excitation cross sections
from the ground X 3�− (3A2) state to b 1�+/[b(1A1)] of the NH
molecule with PH [24] and O2 [25].

peak, we have good agreement with this theoretical work. The
molecular orbital data used in the calculation of the BEB cross
section is given in Table III which is generated at the SCF level.
The BEB ionization cross section σ is obtained by summing
over each orbital cross section σi , where

σi(t) = s

t + u+ 1

[
1

2

(
1 − 1

t2

)
ln t +

(
1 − 1

t

)
− ln t

t + 1

]
,

(2)

where t = T/B, u = U/B, and s = 4πa2
0N (R/B)2. Here, R

is the Rydberg energy, T is the kinetic energy of the inci-
dent electron, U is the orbital kinetic energy, N is the electron
occupation number, and B is the binding energy of the orbital.
The relevant data for U and B is given in Table V.

C. Differential cross section

The evaluation of the differential cross sections (DCS)
provides a more stringent test for any theoretical model. The
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FIG. 4. Electron-impact excitation cross sections from the ground
X 3�− (3A2) state of the NH molecule to the A 3� (3B1/

3B2) state
for 19-states calculation: dashed dotted curve, doublets sum; dashed
curve, quartets sum; thin solid line, total (doublets + quartets); dotted
curve, Born correction; thick solid line, Born corrected.
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FIG. 5. Electron-impact BEB ionization cross sections of the NH
molecule: dotted curve, Joshipura et al. [16]; solid line, our BEB
model.

rotational excitation cross sections for electron impact on a
neutral molecule can be calculated from the scattering param-
eters of elastic scattering in the fixed nuclei approximation
provided the nuclei are assumed to be of infinite masses [35].
In particular, starting from an initial rotor state J = 0, the sum
of all transitions from the J = 0 level to a high enough J value
for convergence is equivalent to the elastic cross section in the
fixed nuclei approach. We have employed this methodology
to extract rotationally elastic and rotationally inelastic cross
sections from the K-matrix elements calculated in the one-state
R-matrix model. The DCS for a general polyatomic molecule
is given by the familiar expression

dσ

d�
=

∑
L

ALPL(cos θ ), (3)

where PL is a Legendre polynomial of order L. The AL

coefficients have already been discussed in detail [36]. For
a polar molecule this expansion over L converges slowly. To
circumvent this problem, we use the closure formula

dσ

d�
= dσB

d�
+

∑
L

(
AL − AB

L

)
PL(cos θ ). (4)

The superscript B denotes that the relevant quantity is
calculated in the Born approximation with an electron-point
dipole interaction. The convergence of the series is now rapid
since the contribution from the higher partial waves to the DCS
is dominated by the electron-dipole interaction. The quantity
dσ
d�

for any initial rotor state |Jm〉 is given by the sum over all
final rotor states |J′m′〉,

dσ

d�
=

∑
J′m′

dσ

d�
(Jm → J′m′), (5)

where J is the rotational angular momentum and m is its
projection on the internuclear axis. To obtain converged
results, we calculate the maximum value of J ′ = 5. We have
calculated the DCS by using the POLYDCS program of Sanna
and Gianturco [37], which requires basic molecular input
parameters along with K matrices evaluated in a particular
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FIG. 6. Differential cross sections at 4, 6, 8, and 10 eV for the
one-state CI model (with spin average) at Re: dotted curve, 4 eV;
dashed curve, 6 eV; dashed dotted curve, 8 eV; solid curve, 10 eV.

scattering calculation. We have used this code to compute
the DCS in a one-state CI model. Since NH is an open-shell
molecule having X 3�− as its ground state, the spin coupling
between this target state and the spin of the incoming electron
allows two spin-specific channels, namely, the doublet (D)
and quartet (Q) couplings. The spin-averaged DCS for elastic
electron scattering from the NH radical are calculated by
using the statistical weight 2/6 for doublet and 4/6 for quartet
scattering channels. We then use Eq. (3) as follows to calculate
DCS:

dσ

d�
= 1

3

[
2

(
dσ

d�

)Q

+
(

dσ

d�

)D
]

, (6)

where ( dσ
d�

)Q,D represent DCS for the quartet and doublet
cases, respectively.

In Fig. 6 we have displayed spin-averaged DCS at 4, 6,
8, and 10 eV in the one-state CI model at Re. Besides this,
the data on the DCS is further used to calculate the MTCS
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FIG. 7. Momentum-transfer cross sections (MTCS) at different
energies of NH and PH [24] radicals, for a one-state CI model: solid
curve, NH; dashed curve, PH.
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FIG. 8. Comparison of effective collision frequency, as a function of electron temperature, for NH and PH radicals: solid curve, NH; dashed
curve, PH.

that shows the importance of backward angle scattering.
Since the DCS are not very sensitive to correlation effects
for backward scattering, we expect our MTCS to be quite
reliable in the 0.02–10 eV range. These are calculated in the
one-state CI model with the inclusion of spin averaging. MTCS
provide useful input in solving the Boltzmann equation for
the electron distribution function. In contrast to the diverging
nature of the DCS in the forward direction, the MTCS show
no singularity due to the weighting factor (1 − cos θ ), where
θ is scattering angle. This factor vanishes as θ → 0. The
MTCS are useful in the study of electrons drifting through
a molecular gas. When a swarm of electrons travel through a
molecular gas under the influence of an electric field, several
transport observables, such as diffusion coefficient D and
mobility µ, can be obtained if we have a knowledge of the
momentum-transfer cross sections. In Fig. 7, we have shown
a comparison of the calculated MTCS for the NH radical,
and the PH radical [24]. Beyond 1.5 eV, the MTCS for
PH are higher than their corresponding values for the NH
radical.

D. Effective collision frequency of electrons

The effective electron-neutral collision frequency 〈v〉
which is averaged over a Maxwellian distribution can be
obtained from the momentum-transfer cross section Q(m)(v)
as follows [38]:

〈v〉 = 8

3π1/2
N

(
me

2kTe

)5/2 ∫ ∞

0
v5Q(m)(v)exp

(−mev
2

2kTe

)
dv,

(7)

where me and Te are the electron mass and electron tempera-
ture, respectively, k is Boltzmann’s constant, v is the electron
velocity, and N is the number density of the gas particles. The
averaging is over a Maxwellian speed distribution function for
an electron temperature Te which is given by

f (v) = 4πv2

(
me

2πkTe

)3/2

exp

(−mev
2

2kTe

)
. (8)

This type of collision frequency is often used to evaluate the
energy transfer between particles. Alternatively, the effective

collision frequency for electrons can be defined from the dc
conductivity as follows [38,39]:

v̄−1 = 8

3π1/2N

(
me

2kTe

)5/2 ∫ ∞

0

v3

Q(m)(v)
exp

(−mev
2

2kTe

)
dv.

(9)

This explicit form of effective collision frequency v̄ is
related to the drift velocity of electrons in a gas, insofar as
a Maxwell distribution can be assumed. When Q(m)(v) is
proportional to v−1, the two effective collision frequencies
〈v〉 and v̄ agree. In Fig. 8, we have shown the comparison of
both types of effective collision frequencies for NH and PH
radicals, as a function of electron temperature. It is to be noted
that 〈v〉 lies higher than v̄ in the electron temperature range
(200–30 000 K).

IV. CONCLUSIONS

This is a comprehensive ab initio study of electron impact
on the NH molecule using the UK molecular R-matrix codes.
Elastic (integrated and differential), momentum-transfer, ex-
citation, and ionization cross sections have been presented.
The results of the static-exchange, one-state CI, and 19-state
close-coupling approximation are presented. We detect a stable
bound state of NH− having configuration 1σ 22σ 23σ 21π3.
The target states are represented by including correlations via
a configuration interaction technique. Our CI model yields
a dipole moment of 1.676 Debye at the equilibrium N-H
bond length of 2.0a0 that agrees with experimental value
1.621 D [17]. The vertical excitation energies are in good
agreement with experimental [14] and other theoretical work
[10]. The dipole moments of the excited states and the
transition moments of allowed transition compare well with
the other theoretical work implying the good quality of the
wave function employed in the scattering calculation. For the
ionization cross section we have performed the standard BEB
model [23] and compared our results with other theoretical
work [16]. The derived MTCS from the DCS, and two types
of effective collision frequencies have also been presented that
may be useful to the scientific community.
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