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Two-center convergent close-coupling calculations for positron-lithium collisions
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We report on two-center convergent close-coupling calculations of positron-lithium collisions. The target is
treated as one active electron interacting with an inert ion core. The positronium formation channels are taken into
account explicitly utilizing both negative- and positive-energy Laguerre-based states. A large number of channels
and high partial waves are used to ensure the convergence of the cross sections. We find the Ramsauer-Townsend
minimum in total and elastic cross sections at an impact energy E of about 0.0016 eV. As found previously for
H and He, the contributions to the breakup cross section from both the Li and the Ps centers become the same as
the threshold is approached.
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I. INTRODUCTION

The physics of positron collisions with atomic targets is
of practical and fundamental interest. Positron interactions
with matter can be used to access a wealth of information
on atomic and molecular structures and reaction mecha-
nisms. Their understanding is crucial for the development
and improvement of a number of high-tech applications
such as positron-annihilation material analysis and cancer
imaging. The two-center nature of the problem, atom and
positronium, generates a particular challenge for theorists,
while the generation of suitable positron beams is a substantial
experimental challenge.

The last decade has seen significant advances in low-
energy trap-based positron beams [1–3]. New high-resolution
experiments have been conducted for a number of atomic and
molecular targets, such as He [4], Ne and Ar [3], CO2 [5],
H2 [6], and H2O and HCOOH [7]. From the theoretical
side there are several approaches to positron scattering, for
example, the eikonal final state-continuum distorted-wave
approximation [8,9], the exterior complex scaling method
[10], the hybrid R-matrix approach [11], the momentum-space
coupled-channel optical method [12], and the close-coupling
method [13,14].

In this paper we study positron scattering from atomic
lithium. For positron collisions with alkali-metal atoms, both
elastic and rearrangement channels are open at all incident
energies. Hence, the valid theoretical description has to treat
appropriately the “competition” between the positive-charge
centers, Li+ and positron, for the valence electron. However,
the first attempt to treat the problem was to use the one-center
expansion of the total wave function over atomic orbitals
[15–17]. This counterintuitive approach is consistent with
the idea of basis completeness. But convergence of such
expansions turned out to be very poor [18].

Another way to tackle the problem was to use the two-center
expansion, where both atom and positronium states are taken
into account on equal footing. This approach resulted in a better
agreement with the experiment. For the positron-lithium case
the two-center expansion was employed in Refs. [18–23].
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In this paper we report two-center convergent close-
coupling (CCC) calculations of positron scattering by atomic
lithium. Previously, this method was implemented for positron
collisions with hydrogen [24] and helium [25,26] targets. The
use of complete bases on both centers resolved the issue of
unphysical resonances [24] and resulted in excellent agreement
between the theory and the experiment. Our purpose is to
provide convergent results at energies where Ps formation is
not negligible. At very low energies we identify a Ramsauer-
Townsend minimum [19]. This structure has not previously
been found for this collision system. The paper is organized
as follows. In Sec. II we describe the theoretical approach
together with the model potentials used. The results are
presented in Sec. III, followed by concluding remarks.

II. THEORY

In this paper we follow the approach where a positron-
lithium collision is treated as a three-body problem. The
interacting particles are the incoming positron, the active
(outer-shell) electron, and the Li+ ion. The 1s electrons of
the core do not participate directly in the collision event. They
provide screening of the nucleus and take part in exchange
with the active electron.

The scattering wave function � satisfies the Shrödinger
equation

(E − H )� = 0, (1)

where E is the total energy and

H = H0 + V (2)

is the Hamiltonian of this system, with H0 and V being,
respectively, the three-free-particle Hamiltonian and the sum
of all two-body interactions. The Hamiltonian H0 is used in
two forms:

H0 = −(1/4)∇2
ρβ

− ∇2
rβ

, (3)

= −(1/2)∇2
ρα

− (1/2)∇2
rα

, (4)

corresponding to two different sets of Jacobi coordinates,
{rα ,ρα} and {rβ ,ρβ}; see Fig. 1. In this paper we follow
the notations adopted in Ref. [27]. In our case, symbols α,e,
and β indicate individual particles: positron, electron, and
Li+ ion, respectively. Also, they label the particle pairs so
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FIG. 1. Jacobi coordinates for positron (α), electron (e), and Li+

ion (β).

that α indicates electron-Li+,e indicates positron-Li+, and β

indicates electron-positron pair.
For potential V in Eq. (2) we use, in pairs, α,β, and e:

V = Vα(rα) + Ve(re) + Vβ(rβ), (5)

where the electron-ion and positron-ion terms, Vα and Ve, are

Vα(r) = Vst(r) + Vex(r), (6)

Ve(r) = −Vst(r), (7)

with Vst and Vex being the static and exchange terms of the
Hartree-Fock potential. The static term is calculated as

Vst(r) = −Z

r
+ 2

∑
ψj ∈C

∫
d3r ′ |ψj (r ′)|2

|r − r ′| , (8)

where Z is the charge of the nucleus and ψj are the states of the
ion core C generated by performing the self-consistent-field
Hartree-Fock (SCFHF) calculations [28]. The summation in
Eq. (8) is done for all core states. The exchange between the
active electron and core electrons is taken into account in the
framework of the equivalent local-exchange approximation
[29–31],

Vex(r,Eex) = 1
2 {[Eex − Vst(r)] −

√
[Eex − Vst(r)]2 + ρ(r)},

(9)

where

ρ(r) =
∑
ψj ∈C

∫
dr̂|ψj (r)|2 (10)

is the electron density distribution in the core and Eex

is an adjustment parameter. Finally, the electron-positron
interaction Vβ in Eq. (5) is the Coulomb potential.

Following the two-center CCC approach [27], wave func-
tion � in Eq. (1) is sought as an expansion,

� ≈
Nα∑
α

Fα(ρα)ψNα

α (rα) +
Nβ∑
β

Fβ(ρβ)ψ
Nβ

β (rβ), (11)

where ψNα
α and ψ

Nβ

β are atomic and positronium pseudostates,
respectively, and Fα and Fβ are their associated weight

TABLE I. Experimental and theoretical energies of several low-
lying levels of lithium (in eV).

State Expt. SCHF Nl = 10 Nl = 50

2s −5.392 −5.342 −5.392 −5.392
2p −3.544 −3.501 −3.614 −3.614
3s −2.019 −2.009 −2.009 −2.019
3p −1.558 −1.544 −1.540 −1.579
3d −1.513 −1.512 −1.493 −1.514
4s −1.051 −1.047 −0.589 −1.051
4p −0.870 −0.865 −0.144 −0.879
4d −0.851 −0.850 −0.316 −0.851

functions. Pseudostates ψNα
α and ψ

Nβ

β are generated by
diagonalizing the one-particle Hamiltonians [32]

Hα = − 1
2∇r + Vα(r) (12)

and

Hβ = − 1
4∇r + Vβ(r), (13)

using the square-integrable orthogonal Laguerre basis,

ξn,l(r) =
[

λl(n − 1)!

(2l + 1 + n)!

]1/2

(λlr)l+1exp[−λlr] L2l+2
n−1 (−λlr),

(14)

where L2l+2
n−1 (x) is the associated Laguerre polynomial and

n ranges from 1 to the basis size Nl for l = 0,1, . . . ,lmax.
The complete sets of pseudostates contain both negative-
and positive-energy states. Negative-energy states correspond
to the bound states of the atomic target and positronium,
while positive-energy states provide a discretization of their
continuum spectra. The number of negative-energy states
depends on the parameters λl and Nl , which are specific for
every given orbital momentum number l.

Table I reports the energies of a few low levels resulting
from the Hamiltonian dioganalization with Nl = 10 − l and
Nl = 50 − l, with Eex = −0.3831 a.u.. These energy values
are compared with the experimental data from Ref. [33] as well
as the results of SCFHF calculations. The value of the local-
exchange parameter Eex was chosen so that the ground-level
energy was equal to the experimental value. We see that the
positions of the low-energy levels are well reproduced when
a sufficiently large Nl is used. For Nl = 50 − l the largest
relative error is 1.9%. This is comparable with the 1.2% error
for the energy obtained with the SCFHF method.

Substituting expansion (11) into (1) and following Ref. [27],
one can derive the set of momentum-space coupled-channel
equations for transition matrix elements,

Tγ ′,γ (qγ ′ ,qγ ) = Vγ ′,γ (qγ ′ ,qγ ) +
Nα+Nβ∑

γ ′′

∫
dqγ ′′

(2π )3

× Vγ ′,γ (q ′
γ ,qγ ′′)Tγ ′,γ (qγ ′′ ,qγ )[

E + i0 − εγ ′′ − q2
γ ′′/(2Mγ ′′ )

] , (15)

where qγ is the momentum of the free particle γ relative to
the c.m. of the bound pair in channel γ (γ = α or β), εγ is the
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corresponding pseudoenergy of the bound pair, and Mγ is its
reduced mass. The effective potential Vγ ′,γ is defined as

Vγ ′,γ (qγ ′ ,qγ ) = 〈qγ ′ |〈ψγ ′ |Uγ ′,γ |ψγ 〉|qγ 〉, (16)

where |qγ 〉 is a plane wave representing the free particle γ and
Uγ ′,γ represents one of the following channel operators:

Uα,α = V − Vα, Uβ,β = V − Vβ, Uα,β = H0 + V − E.

(17)

By performing partial-wave expansion in the total orbital
angular momentum J , one can get from Eq. (15)

T L′LJ
γ ′,γ (qγ ′ ,qγ ) = V L′LJ

γ ′,γ (qγ ′ ,qγ ) +
Nα+Nβ∑

γ ′′

∑
L′′

∫
dqγ ′′ q2

γ ′′

(2π )3

× V L′L′′J
γ ′,γ (q ′

γ ,qγ ′′ )T L′′LJ
γ ′,γ (qγ ′′ ,qγ )[

E + i0 − εγ ′′ − q2
γ ′′

/
(2Mγ ′′)

] , (18)

where Vγ ′,γ (qγ ′ ,qγ ) and V L′LJ
γ ′,γ (qγ ′ ,qγ ) [and, similarly,

Tγ ′,γ (qγ ′ ,qγ ) and T L′LJ
γ ′,γ (qγ ′ ,qγ )] are related to each other by

Vγ ′,γ (qγ ′ ,qγ ) =
∑

L′,M ′,L,M,J,K

YL′M ′(q̂γ ′)CJK
L′M ′l′m′

×V L′LJ
γ ′,γ (qγ ′ ,qγ )CJK

LMlmY ∗
LM (q̂γ ) (19)

and

V L′LJ
γ ′,γ (qγ ′ ,qγ ) =

∑
m′,m,M ′,M

∫ ∫
dq̂γ ′dq̂γ ′Y

∗
L′M ′(q̂γ ′)

×CJK
L′M ′l′m′Vγ ′,γ (qγ ′ ,qγ )CJK

LMlmYLM (q̂γ ),

(20)

where YLM is a spherical harmonic and CJK
L′M ′l′m′ is a Clebsch-

Gordan coefficient. The effective potentials V L′LJ
γ ′,γ (qγ ′ ,qγ ) can

be computed similarly to how it was done for the positron-
hydrogen problem [27].

III. MATRIX ELEMENTS

Calculation of the effective potentials V L′LJ
γ ′,γ (qγ ′ ,qγ ) is

straightforward but tedious. In contrast to the hydrogen case,
there is no analytical expressions for the potentials Ve(r) and
Vα(r). These potentials are available in numerical form only.
This means that we cannot use intermediate analytical steps
in calculation of the matrix elements, which increases the
computation time significantly.

To calculate matrix elements for direct (atom-atom and
positronium-positronium) transitions, one needs the spherical
harmonic expansion of Vα′,α(qα′ ,qγ ) and Vβ ′,β(qβ ′ ,qβ). In
turn, this requires the spherical-wave expansion of Uα,α and
Uβ,β . Using the approximation re ≈ ρα (atomic c.m. assumed
to be at the ion center), one gets

Uα,α = V − Vα = Ve(re) + Vβ(rβ)

≈
∞∑

λ=0

4π

2λ + 1
Uλ

α,α(ρα,rα)[Yλ(ρ̂α) · Yλ(r̂α)], (21)

where

Uλ
α,α(ρα,rα) = Ve(ρα)δλ,0 − min[rα,ρα]λ

max[rα,ρα]λ+1
(22)

and

[Yλ(ρ̂α) · Yλ(r̂α)] =
λ∑

µ=−λ

[Y ∗
λ,µ(ρ̂α)Yλ,µ(r̂α)]. (23)

Taking into account that re = −ρβ − rβ/2 and rα =
−ρβ + rβ/2, we derive

Uβ,β = V − Vβ = Ve(re) + Vα(rα)

=
∑

λ

4π

2λ + 1
U

(λ)
β,β(ρβ,rβ)[Yλ(ρ̂β) · Yλ(r̂β)], (24)

where

U
(λ)
β,β(ρβ,rβ)

= 2λ + 1

2

∫ 1

−1
dzPλ(z)

[
Ve

(
ρβ + rβ

2

)
+ Vα

(
ρβ − rβ

2

)]

= 2λ + 1

2

∫ 1

−1
dzPλ(z)

{
Vα

(√
r2
< + r2

> − 2zr<r>

)

+(−1)λVe

(√
r2
< + r2

> − 2zr<r>

)}
(25)

and where Pλ(z) is the Legendre polynomial of degree l,r< =
min(ρ,r/2) and r> = max(ρ,r/2).

The matrix elements Vβ,α(qβ,qα) for rearrangement tran-

sitions are presented as a sum of two terms, V
(1)
β,α(qβ,qα) and

V
(2)
β,α(qβ,qα), calculated separately. The first term is

V
(1)
β,α(qβ,qα) =

∫ ∫
dρβd rβe−iqβ ·ρβ ψ∗

β (rβ)

× [(H0 −E)+Vβ(rβ) + Vα(rα)]ψα(rα)eiqα · ρα

= (2π )3[E(qβ,qα)ψ̃∗
β ( pβ)ψ̃α( pα)

+ ψ̃∗
β ( pβ)g̃α( pα) + g̃∗

β( pβ)ψ̃α( pα)], (26)

where pα = qβ − qα , pβ = qβ/2 − qα , and E(qβ,qα) =
p2

α/2 + q2
α/2 − E. Functions with a tilde, ψ̃i( p) and g̃i( p),

are the Fourier images of ψi(r) and Vi(r)ψi(r), respectively.
The second term, V

(2)
β,α(qβ,qα), is

V
(2)
β,α(qβ,qα)

=
∫ ∫

dρβd rβe−iqβ ·ρβ ψ∗
β (rβ)Ve(re)ψα(rα)eiqα ·ρα

= (2π )3
∫

d p
(2π )3/2

ψ̃∗
β ( p′

β)Ṽe( p − qα)ψ̃α( p′
α), (27)

where p′
β = (qβ/2) − p, p′

α = qβ − p and Ṽe( p) is the
Fourier transform of Ve(r). Equation (27) leads to the
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FIG. 2. (Color online) Breakup cross section σion(Li + Ps) and
2σion(Ps) as functions of energy computed within the S-wave model;
see text. Numbers of states used in calculations are indicated in the
key.

following expression for its reduced matrix element:

VL′L(2)
βα (qβ,qα)

= 1

8π3

∫ ∞

0
dq q2Q′

L(q,qα)
∑

m,m′,M,M ′
CL′l′J

M ′m′KCLlJ
MmK

×
∫ ∫

d q̂βd q̂Y ∗
L′M ′ (q̂β)YLM (q̂)ψ̃∗

β ( p′
β)ψ̃∗

α ( p′
α), (28)

where

Q
(v)
l (q,qα) = 2π

∫ 1

−1
Pl(z)Ve(q − qα) dz, (29)

with z = cos(α) and α the angle between vector q and vector
qα .

Calculation of matrix elements, especially those for rear-
rangement transitions, is the most time consuming part of the

CCC calculations. The system of close-coupled equations we
need to solve is ill-conditioned due to the usage of the two
center expansion, requiring the matrix elements.

IV. RESULTS

To obtain the transition matrix elements Tγ ′,γ (qγ ′ ,qγ ), the
system of coupled momentum-space integral equations (17)
is converted into equations for the K matrix and then
solved numerically using real arithmetic [32]. Calculations are
performed for a limited number of partial waves J . We found
that the first 10 partial waves is enough for get reliable results
for the positronium formation cross sections at all energies.
Direct scattering channels require at least 10 more partial
waves at the higher energies. Using the developed code we
perform calculations with as many pseudostates from both
centers as required for the convergence

We conduct calculations with different basis sets to be sure
that our results are independent of the set parameters such
as the exponential fall-off parameter λl and convergent when
increasing the parameters contributing to the basis size,

N =
lLi
max∑
l=0

NLi
l +

lPs
max∑
l=0

NPs
l . (30)

To make convergence issues simpler, we set λPs
l = λPs,λLi

l =
λLi,lPs

max = lLi
max = lmax, and NPs

l = NLi
l = N0 − l. This way

we reduce the number of parameters to just N0, lmax, λLi,
and λPs.

Given the commensurate treatment of both centers, we need
to demonstrate that convergence is possible and that there is
no double-counting of the ionization processes due to positive-
energy states of both centers. We illustrate this in Fig. 2, within
the S-wave model, where only 0 orbital angular momenta
are retained. Presented are the total breakup cross section,
σion(Li + Ps), as well as the positronium breakup cross section,
σion(Ps), multiplied by two. The first one equals the sum of all
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FIG. 3. (Color online) (a) Total, (b) elastic, and (c) positronium formation cross sections for positron-lithium collisions calculated using
the two-center CCC method. The numbers of basis states were the same for both centers and were N0 = 20 s states for the s basis, N0 = 10
and N1 = 9 for the sp basis, and N0 = 10,N1 = 9, and N2 = 8 for the spd basis.
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FIG. 4. (Color online) Total cross sections for positron-lithium
scattering. CCC results [solid (red) lines] are compared with the data
from Ref. [18] [dashed (black) line]. The spd basis as in Fig. 3 was
used in calculations.

cross sections over the positive-energy pseudostates of both
centers,

σion(Li + Ps) =
∑

n:εLi
n >0

σn +
∑

n:εPs
n >0

σn

≡ σion(Li) + σion(Ps), (31)

while the second, σion(Ps), is due to the contributions of
just the positronium positive-energy pseudostates. We see
excellent convergence for both σion(Li + Ps) and σion(Ps) when
the number of states on each center goes from 35 to 40.
The two values of N0 yield indistinguishable results at all
energies except in a small region around 10 eV. Thus, the
two independent Li and Ps contributions to the breakup cross
section are independently convergent. Furthermore, the fact
that the curves converge on each other at threshold indicates
that there σion(Ps) ≈ σion(Li). Previously, such behavior was
demonstrated for the cases of hydrogen [34] and helium [25].
We note that the system of equations becomes rapidly ill
conditioned as N0 is increased.

Having established convergence in a model problem, we
now consider the full problem. Figure 3 shows the total, elastic,
and positronium formation cross sections as functions of the
impact energy. They where calculated using three different
sets with lmax = 0 (s basis), lmax = 1 (sp basis), and lmax = 2
(spd basis). Equal numbers of pseudostates were taken for
both centers in our calculations. Figures 3(a)–3(c) reveal the
significant difference in energy dependence between results
calculated with the s versus the sp basis. Differences between
the sp- and the spd-basis calculations are only marginal. These
results suggest good convergence with N0 and lmax for the
presented transitions.

The grand total and elastic cross sections are presented in
Figs. 4 and 5. They were calculated with the use of Nl = 10 − l

pseudostates for each center with lmax = 2. Also shown, by
dashed lines, are calculations from Ref. [18]. We see that the
results are generally in good agreement. The only difference
is the resonant-like structure in the total cross section near
1.6 eV. We found this structure and its position to be basis
dependent. It disappears for sufficiently large bases on both

McAlinden et al
CCC: Ps form.
CCC: elastic
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FIG. 5. (Color online) Same as Fig. 4 but for elastic cross
sections. Also shown [dashed (black) line] is the positronium
formation cross section. The CCC basis is the same as for Fig. 4.

centers. Also, for very low energies, CCC predicts a shallow
Ramsauer-like minimum in both total and elastic cross sections
near E = 0.0016 eV (see Fig. 5).

Figure 6 shows the positronium formation cross section.
We compare our calculations [solid (red) and dashed (black)
lines] with the experimental data from Ref. [35] and theoretical
results from Refs. [18] and [23]. We also present results from
a truncated basis that has only 3 eigenstates (1s, 2s, and 2p) for
positronium and 29 states (2s-9s, 2p-9p, 3d-9d, and 4f -9f )
for lithium. The states were chosen so that their energies were
in close correspondence to the energies of the mixed-basis
states used in Ref. [18].

We see that all theoretical curves are in overall qualitative
agreement with each other. Our truncated-basis calculations
agree well with the results in Ref. [18], with both having a
pseudoresonance, though at different energies. The differences
can be attributed to the fact that we take into account the
exchange part of the electron-electron interaction and, also, use
slightly different lithium states. The exchange interaction was
also taken into account in the hyperspherical close-coupling
calculations [23]. Those authors obtained a resonance-free

McAlinden et al
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CCC: spd basis
Surdutovic et al: expt.2
Surdutovic et al: expt.1
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FIG. 6. (Color online) Total positronium formation cross section
for e+-Li along with experimental points [35] and theoretical
calculations [18,23]. The CCC basis is the same as for Fig. 4. The
truncated basis CCC calculation is an attempt to reproduce the states
used in Ref. [18].
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energy dependence for the positronium formation cross
section. We see that the only slight disagreement of the CCC
and their results is in the magnitude of the peak. The agreement
with experiment is not at the level that we would hope for this
relatively simple collision system.

V. CONCLUSION

The two-center CCC method has been developed to
calculate positron scattering with lithium atoms, where the
positronium formation channel is taken into account explicitly.
Direct scattering and positronium formation cross sections
have been calculated for a broad range of energies of practical
interest. Convergence in the calculated cross sections was
demonstrated by increasing the basis sizes and orbital angular

momentum of the included states for each of the centers.
The results obtained are in good agreement with available
theoretical data. Our calculations reveal a shallow Ramsauer-
like minimum in the total and elastic cross sections near
0.0016 eV. We would appreciate further experimental investi-
gation to see if the present discrepancy with experiment can be
resolved.
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