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Adiabatic hyperspherical study of weakly bound helium–helium–alkali-metal triatomic systems
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4He2–alkali-metal triatomic molecular systems are studied using the adiabatic hyperspherical representation.
By adopting the best pairwise He-He and He-X interaction potentials, we search for weakly bound states of 4He2X
systems with X = 6Li, 7Li, 23Na, 39K, 40K, 41K, 85Rb, 87Rb, and 133Cs. We consider not only zero total angular
momentum J = 0 states, but also J > 0 states. We find that the 4He6

2Li and 4He7
2Li systems each possess two

bound states with J � = 0+ symmetry and none with J > 0, while the other 4He2–alkali-metal species are found
to support one 0+ and one 1− bound state. We calculate the bound-state energies of these molecular species and
discuss the essential features of the wave functions associated with these bound states.
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I. INTRODUCTION

Triatomic helium systems have been attracting considerable
interest due to the possibility of observing very weakly bound
states, since the 4He dimer supports one and only one very
weakly bound state whose binding energy is on the order of
millikelvins. Several sophisticated helium dimer interaction
potentials have been developed, such as the LM2M2 potential
by Aziz and Slaman [1], and the HFD-B3-FCI1 potential by
Aziz et al. [2]. Recently, Jeziorska et al. [3] and Cencek et al.
[4] proposed not only a helium dimer potential, but also the
nonadditive three-body term. All of these potentials have been
used to calculate various properties of the helium dimer and
trimer (and their isotopes) [5–9] as well as their scattering
observables [9–16]. On the other hand side, since the 4He
dimer is so weakly bound and is thus difficult to detect, it was
not until 1993 that experimental evidence for the existence
of a dimer bound state was obtained by Luo et al. [17,18].
Simultaneously, Schöllkopf and Toennies [19,20] measured
not only the helium dimer, but also the trimer and tetramer.
The system was revisited more recently in Refs. [21–23].

In addition to the well-studied helium dimers and trimers,
there exist other examples of weakly bound diatomic and
triatomic molecules that have binding energies of the order
of 1 K or less. Indeed, the interaction potentials between
He and alkali-metal atoms are also found to have a very
shallow well. These potentials have been investigated since the
1970s by Dehmer and Wharton [24] in scattering experiments.
Theoretically, the interaction potentials for helium–alkali-
metal systems were obtained by Cvetko et al. [25] and
Kleinekathöfer et al. [26,27]. It turns out that He–alkali-
metal potentials are even shallower than the He-He potential,
and one may find weakly bound diatomic molecules HeX
and triatomic molecules He2X (X = alkali-metal atom) with
binding energies as small as those of the helium-only systems.
Using these helium–alkali potentials mentioned above, several
theoretical investigations have been carried out for He2X
systems. Searching for weakly bound triatomic molecules,
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Yuan and Lin [28] studied the He2Li and He2Na systems and
found ground states bound by less than 1 K. In a later study,
Delfino et al. [29] investigated the same systems and predicted
the existence of an excited state, whose energy is close to
−2.31 mK, for the 4He7

2Li system. Baccarelli et al. [30,31]
confirmed the existence of, and studied the location and spatial
shape for, the ground and excited states of the 4He6

2Li and
4He7

2Li systems. The ground states of 4He7
2Li and 4He23

2 Na
were also considered by Di Paola et al. [32]. On the other
hand, Li et al. [33] found one bound state each for 4He39

2 K,
4He3He39K, and 3He39

2 K. Among the He–He–alkali-metal
systems, the heavier alkali-metal atoms, Rb and Cs, have not
been considered yet.

In this work, we study the bound states of 4He2–alkali-metal
triatomic molecules, extending the previous investigations in
Refs. [28–33]. We consider all the alkali-metal species, that
is, 6Li, 7Li, 23Na, 39K, 40K, 41K, 85Rb, 87Rb, and 133Cs. In
addition, we treat not only zero total nuclear orbital angular
momentum, i.e., J = 0 states, but also J > 0 states. Note
that none of these previous investigations [28–30,33] treated
rotational bound states of these systems. We calculate all
the existing bound-state energies for the 4He2–alkali-metal
triatomic molecules. The key ingredient in our numerical
calculations is the adiabatic hyperspherical representation
[5,14,34]. Enforcing the boson permutation symmetry is
greatly simplified using a modified version of the Smith-
Whitten hyperspherical coordinate system [14,35,36].

We adopt the sum of the relevant pairwise potentials for the
total interaction. For the helium-helium interaction, we use
the representation of Jeziorska et al. [3], while the potential
of Kleinekathöfer et al. [27] is employed for the interaction
between helium and alkali-metal atoms. The scattering lengths
a and characteristic lengths r0, calculated from these poten-
tials, satisfy the so-called universality requirement (a/r0 � 1)
for the 4He-4He system (a/r0 ≈ 16) but not for the 4He–
alkali-metal systems (a/r0 ≈ 4). These interaction potentials
can also be used to calculate the three-body recombination
rates [37] and the atom-diatom scattering cross sections [38].

This paper is organized as follows. We explain our method
and give all necessary formulas for calculating the bound-
state energies of the 4He2–alkali-metal systems in Sec. II. The
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results are presented in Sec. III. A summary of this work is
given in Sec. IV. We use atomic units throughout except where
explicitly stated otherwise.

II. METHOD

We solve the Schrödinger equation for three interact-
ing atoms using the adiabatic hyperspherical representation
[5,9,14,34]. In the adiabatic hyperspherical representation,
we calculate eigenfunctions and eigenvalues of the fixed-
hyperradius Hamiltonian in order to construct a set of coupled
radial equations. The bound-state energies can be obtained
as the discrete eigenvalues from these coupled equations.
Since the method employed is largely the same as detailed
in Refs. [9], [14], and [37], we give only a brief outline here.

After separation of the center-of-mass motion, the three-
body problem can be described by six coordinates. Three of
these can be chosen as the Euler angles, α, β, and γ , that
specify the orientation of the body-fixed frame relative to the
space-fixed frame. The remaining three internal coordinates
can be represented by a hyperradius R and two hyperangles θ

and ϕ. To define these internal coordinates, we use a slightly
modified version of the Smith-Whitten hyperspherical coor-
dinates [9,14,35,36,39,40]. The hyperspherical coordinates
(R,�) ≡ (R,θ,ϕ,α,β,γ ) used in this work are defined in
Ref. [9].

In terms of a rescaled wave function ψn, which is
related to the usual Schrödinger solution 	n by ψn =
R5/2	n (the volume element relevant to integrals over
|ψn|2 becomes 2dR sin 2θdθdϕdα sin βdβdγ ), the nuclear
Schrödinger equation for three particles interacting through
the potential V (R,θ,ϕ) reads[

− 1

2µ

∂2

∂R2
+ �2 + 15/4

2µR2
+ V (R,θ,ϕ)

]
ψn = Enψn, (1)

where µ is the three-body reduced mass and is given by

µ2 = m1m2m3

m1 + m2 + m3
, (2)

with mi (i = 1,2,3) being the mass of particle i. The masses
of the atoms used in this work are listed in Table I. In our

TABLE I. Masses of the atoms used in this work. Relative atomic
masses, or masses in units of u, are those defined with respect to the
12C atomic mass being 12 and are taken from the NIST Element Data
Index [42]. Masses in atomic units (a.u.) are obtained by dividing
them by the electron mass in u, me = 5.485 799 094 3 × 10−4 u.

Atom Relative atomic mass Mass (a.u.)

4He 4.002 603 25 7296.299 37
6Li 6.015 122 79 109 64.8981
7Li 7.016 004 55 127 89.3939
23Na 22.989 769 28 419 07.785 69
39K 38.963 706 68 710 26.492 24
40K 39.963 998 48 728 49.912 64
41K 40.961 825 76 746 68.840 50
85Rb 84.911 789 74 154 784.723 76
133Cs 132.905 451 93 242 271.817 916
87Rb 86.909 180 53 158 425.744 43

convention, we designate the alkali-metal atom as particle 1
and the 4He atoms as particles 2 and 3. In expression (1),
�2 is the squared grand angular momentum operator. In our
calculations, the first step consists of solving the fixed-R
adiabatic eigenvalue equation for a given set of quantum
numbers J (total nuclear orbital angular momentum), M (its
projection on a laboratory-fixed axis), and � (parity with
respect to the inversion of the nuclear coordinates),[

�2 + 15/4

2µR2
+ V (R,θ,ϕ)

]
�ν(R; �) = Uν(R)�ν(R; �),

(3)

to obtain the channel functions �ν(R; �) and the potential
curves Uν(R). The adiabatic eigenfunction expansion gives
the total wave function ψn in terms of the complete, or-
thonormal set of angular wave functions �ν and radial wave
functions Fνn,

ψn(R,�) =
∑

ν

Fνn(R)�ν(R; �), (4)

where ν is a collective index that includes all the quantum
numbers necessary to identify each channel. If the expansion
in Eq. (4) includes the complete, infinite set of �ν , this
representation of ψn is exact. In practice, the sum is truncated
to a finite number of terms but can be extended systematically
to obtain any desired level of accuracy. The adiabatic equation
in Eq. (3) is solved by further expanding the channel functions
on Wigner rotation matrices DJ

KM ,

�ν(R; �) =
∑
K

φKν(R; θ,ϕ)DJ
KM (α,β,γ ), (5)

where K takes the values J,J − 2, . . . , − (J − 2), − J

for the party-favored case, � = (−1)J , and J − 1,J −
3, . . . , − (J − 3), − (J − 1) for the parity-unfavored case,
� = (−1)J+1. The remaining degrees of freedom are solved
by expanding φKν(R; θ,ϕ) onto a direct product of fifth-order
basis splines [41] in θ and ϕ.

Insertion of ψn from Eq. (4) into the Schrödinger equation
from Eq. (1) results in a set of coupled ordinary differential
equations:[
− 1

2µ

d2

dR2
+ Uν(R) − 1

2µ
Qνν(R)

]
Fνn(R)

− 1

2µ

∑
ν ′ �=ν

[
2Pνν ′ (R)

d

dR
+ Qνν ′(R)

]
Fν ′n(R) = EnFνn(R).

(6)

The coupling elements Pνν ′ (R) and Qνν ′(R) involve partial
first and second derivatives of the channel functions �ν with
respect to R and are defined as

Pνν ′ (R) =
〈〈

�ν(R)

∣∣∣∣ ∂

∂R

∣∣∣∣ �ν ′(R)

〉〉
, (7)

and

Qνν ′(R) =
〈〈

�ν(R)

∣∣∣∣ ∂2

∂R2

∣∣∣∣�ν ′(R)

〉〉
. (8)

The double-bracket matrix element signifies that integrations
are carried out only over the angular coordinates �. The
bound-state energies EJ�

n (n = 0,1, . . .) can be obtained as
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FIG. 1. (Color online) Pairwise interaction potentials for He-He
and He-X (X = alkali-metal atom).

the discrete eigenenergies from the coupled equations in
Eq. (6).

The interaction potential V (R,θ,ϕ) used in this work is
expressed as a sum of three pairwise potentials,

V (R,θ,ϕ) = vHeX(r12) + vHeHe(r23) + vHeX(r31), (9)

where rij are the interparticle distances. In terms of hyper-
spherical coordinates, these are expressed as

rij = 2−1/2dijR[1 + sin θ cos(ϕ + ϕij )]1/2, (10)

with ϕ12 = 2 tan−1(m2/µ), ϕ23 = 0, ϕ31 = −2 tan−1(m3/µ),
and

d2
ij = (mk/µ)(mi + mj )

mi + mj + mk

, (11)

where the indices (i,j,k) are a cyclic permutation of (1,2,3).
For the helium dimer potential vHeHe(r), we use the represen-
tation of Jeziorska et al. [3]; and for the helium–alkali-metal
interactions vHeX(r), the potentials of Kleinekathöfer et al.
[27]. These two-body potentials are shown in Fig. 1. For the
4He7

2Li system, we also employ the He-He potential of Aziz
and Slaman [1] and the Li-He potential of Cvetko et al. [25]
for the sake of comparison with the previous calculations in
Refs. [30] and [31], which use these potentials, so that we
can see the discrepancies due to the computational method.
The 4He2 and 4HeX bound-state energies Ev=0,l=0 and the
scattering lengths a calculated from all these interaction
potentials are summarized in Table II. These values agree
well with the ones given in Ref. [3] and [27]. Note that all
the 4He–alkali-metal molecules, except 4He6Li, have larger
binding energies |E00| than the 4He2 dimer—and thus smaller
scattering lengths—moving them further from the universal
regime.

In practice, we solve the adiabatic equation, (3), for a set
of more than 180 radial grid points Ri up to R ≈ 2000–
4000 a.u. to obtain the potential curves Uν(R) and the coupling
matrix elements Pνν ′ (R) and Qνν ′ (R). In solving the adiabatic
equation, (3), we generate the basis splines for θ from 100 mesh
points, while we use 120 mesh points for ϕ.

TABLE II. Bound-state energies E00 (1 a.u. = 3.157 746 5 ×
108 mK) and scattering lengths a for the 4He-4He and 4He–alkali-
metal systems.

E00 (a.u.) E00 (mK) a (a.u.) a (Å)

4He2 −5.472 × 10−9 −1.728 165.4 87.53
4He2

a −4.148 × 10−9 −1.310 189.0 100.01
4He6Li −4.797 × 10−9 −1.515 169.0 89.43
4He7Li −1.780 × 10−8 −5.622 92.29 48.84
4He7Lib −8.883 × 10−9 −2.805 124.8 66.04
4He23Na −9.178 × 10−8 −28.98 44.14 23.36
4He39K −3.547 × 10−8 −11.20 62.96 33.32
4He40K −3.618 × 10−8 −11.42 62.44 33.04
4He41K −3.686 × 10−8 −11.64 61.96 32.79
4He85Rb −3.253 × 10−8 −10.27 64.27 34.01
4He87Rb −3.282 × 10−8 −10.36 64.04 33.41
4He133Cs −1.566 × 10−8 −4.945 85.63 45.31

aUsing the He-He potential from Ref. [1].
bUsing the Li-He potential from Ref. [25].

III. RESULTS AND DISCUSSION

For the parity-unfavored cases � = (−1)J+1, all the adia-
batic hyperspherical potential curves are found to be repulsive
and no bound state may exist. We hence limit our consideration
only to the parity-favored cases � = (−1)J , that is, J� = 0+,
1−,. . .. For each of these symmetries, the lowest potential
curve ν = 0 corresponds asymptotically to 4HeX + 4He—a
4He–alkali-metal molecule and a 4He atom far away-while
the second lowest one, ν = 1, correlates with 4He2 + X—a
4He dimer and an alkali-metal atom far away. These potential
curves asymptotically (R → ∞) behave as

U0(R) − 1

2µ
Q00(R) → E

4HeX
00 + J (J + 1)

2µR2
(12)

and

U1(R) − 1

2µ
Q11(R) → E

4He2
00 + J (J + 1)

2µR2
, (13)

where E
4HeX
00 and E

4He2
00 are the bound-state energies of

4HeX and 4He2, respectively. This behavior holds for all
the 4He2–alkali-metal systems except 4He6

2Li. For the latter
system, the potential curves in Eqs. (12) and (13) are
reversed in order, and the lowest and second-lowest ones
correspond asymptotically to 4He2 + 6Li and 4He6Li + 4He,
respectively. All the higher channels, ν = 2,3,4, . . ., for each
symmetry correspond asymptotically to three-body contin-
uum states, i.e., all three atoms far away from each other
as R → ∞. We recall that in the adiabatic hyperspheri-
cal representation the three-body continuum is rigorously
discretized since the adiabatic Hamiltonian depends only
on the bounded hyperangles. These three-body continuum
channel functions converge asymptotically to the hyperspher-
ical harmonics. The corresponding potential curves therefore
behave as

Uν(R) → λ(λ + 4) + 15
4

2µR2
, for R → ∞. (14)

In principle, λ can take on any non-negative integer value,
but its possible values are restricted by the requirements
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TABLE III. Bound-state energies of 4He2–alkali-metal molecules at various levels of approximation. Energies are given in units of
millikelvins and are relative to the three-body dissociation threshold. For νmax → ∞, energies measured relative to the lowest atom-molecule
dissociation threshold, or binding energies, are also shown.

J � n BO Adiabatic νmax = 5 νmax = 10 νmax = 20 νmax → ∞ νmax → ∞a

4He6
2Li 0+ 0 −117.53 −45.33 −57.05 −57.95 −58.42 −58.88 −57.36

1 −2.80 −1.89 −2.07 −2.08 −2.09 −2.09 −0.58
4He7

2Li 0+ 0 −147.96 −63.59 −78.90 −80.03 −80.62 −81.29 −75.67
1 −6.74 —b −5.65 −5.65 −5.66 −5.67 −0.04

4He7
2Lic 0+ 0 −120.13 −51.15 −62.75 −63.56 −64.08 −64.26 −61.46

1 −3.81 −2.86 −2.98 −2.99 −3.00 −3.01 −0.21
4He23

2 Na 0+ 0 −217.28 −133.97 −148.90 −151.53 −152.32 −152.68 −123.70
1− 0 −113.95 −50.91 −57.96 −60.60 −61.39 −61.99 −33.00

4He39
2 K 0+ 0 −127.66 −79.33 −87.32 −88.96 −89.44 −89.76 −78.56

1− 0 −61.58 −25.94 −29.30 −30.84 −31.43 −31.93 −20.73
4He40

2 K 0+ 0 −128.49 −80.06 −88.08 −89.73 −90.22 −90.68 −79.26
1− 0 −62.53 −26.64 −30.06 −31.62 −32.25 −32.67 −21.25

4He41
2 K 0+ 0 −129.28 −80.75 −88.81 −90.48 −90.97 −91.12 −79.48

1− 0 −63.44 −27.31 −30.78 −32.55 −33.20 −33.50 −21.86
4He85

2 Rb 0+ 0 −118.17 −75.48 −82.52 −84.07 −84.49 −84.69 −74.42
1− 0 −61.40 −28.52 −31.80 −33.22 −33.94 −34.37 −24.10

4He87
2 Rb 0+ 0 −118.52 −75.76 −82.84 −84.39 −84.81 −84.96 −74.60

1− 0 −61.80 −28.82 −32.11 −33.54 −34.26 −34.46 −24.10
4He133

2 Cs 0+ 0 −87.74 −54.90 −60.15 −61.33 −61.64 −61.77 −56.83
1− 0 −40.95 −16.93 −19.10 −19.92 −20.55 −20.63 −15.69

aEnergies measured relative to the lowest atom-molecule dissociation threshold.
bNo state is found below the lowest atom-molecule dissociation threshold.
cUsing the He-He potential from Ref. [1] and the Li-He potential from Ref. [25].

of permutation symmetry [43]. The calculated adia-
batic potential curves and nonadiabatic couplings are
found to be accurate to three or four significant
digits.

The “adiabatic approximation” corresponds to solving
Eq. (6) with only one channel ν, where the sum over ν ′ is
eliminated on the left-hand side. This leaves a one-dimensional
Schrödinger equation with an effective hyper-radial potential
Uν(R) − 1

2µ
Qνν(R) that determines the three-body spectrum

in the adiabatic approximation. The lowest energy level with
ν = 0 obtained by solving Eq. (6) neglecting all nondiagonal
coupling elements gives a variational upper bound to the
exact n = 0 state energy EJ�

0 . One can also solve Eq. (6) by
further neglecting the diagonal coupling term Qνν(R), which
is the hyperspherical equivalent of the Born-Oppenheimer
(BO) approximation. The lowest ν = 0 energy level thus
obtained gives a rigorous lower bound to the exact n = 0
state energy EJ�

0 . Finally, solving Eq. (6) with the sums
truncated at νmax gives variational approximations to the
exact bound energies. These energies will thus converge to
the exact energies from above in the limit νmax → ∞. Our
bound-state energies are converged to at least three significant
digits.

The bound-state energies calculated within these various
approximations are summarized in Table III for the 4He2X
systems with X = 6Li, 7Li, 23Na, 39K, 40K, 41K, 85Rb, 87Rb,
and 133Cs. We also include an estimate of the exact energy
obtained by extrapolation (denoted νmax → ∞). Extrapolation
has been carried out by fitting the νmax-dependent energies
to Eνmax = Eexact + α/ν

β
max. To summarize, the 4He6

2Li and

4He7
2Li systems have each been found to possess two bound

states (n = 0 and 1) for the J� = 0+ symmetry and none for
the other symmetries. The other 4He2X systems have been
shown to support one bound state each for the J� = 0+
and 1− symmetries, and none for the J � 2 symmetries. In
Table IV, the present results for the bound-state energies
are compared with the previous results obtained using the
hyperspherical adiabatic approximation [28,33], Faddeev [29],
distributed Gaussian function [30,31], and diffusion Monte
Carlo [32] approaches. The agreement between the present
results and the previous calculations is found to be on only a
qualitative level, even if the same combination of interaction
potentials is used. We can see that binding energy calculations
for these molecules are indeed very sensitive, depending upon
the computational methods as well as on the potential models
used. Specifically, our 4He7

2Li energy level obtained from the
Li-He potential in Ref. [25] and the He-He potential in Ref. [1]
disagrees with that of Baccarelli et al. [30,31] using the same
potentials. Baccarelli et al. find a binding energy 14% bigger
than ours, and we do not know the reason for this discrepancy.
However, we are confident in our computational method, since
it gives the bound-state energy of −14.31 mK for 4He3

2He [9],
which agrees fairly well with the findings of Kolganova et al.
[44], Nakaichi-Maeda and Lim [45], Roudnev [11], and Salci
et al. [46], who obtained bound-state energies of −13.84,
−13.66, −14.21, and −13.3 mK, respectively, employing
diverse computational approaches but using the exact same
He-He potential. Although these binding energies are smaller
than that of He2Li, the largest relative error with our result is
still only half of that for He2Li.
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TABLE IV. Bound-state energies for the 4He6
2Li, 4He7

2Li, and 4He23
2 Na systems, all in the J � = 0+ symmetry. Energies are given in units

of millikelvins and are relative to the three-body dissociation threshold. The present results (those with νmax → ∞) are compared with those
calculated by Yuan and Lin [28] using the adiabatic hyperspherical approximation, Delfino et al. [29] using the Faddeev formalism, Baccarelli
et al. [30,31] using the distributed Gaussian functions approach, Di Paola et al. [32] using the diffusion Monte Carlo method, and Li et al. [33]
using the adiabatic hyperspherical approximation.

4He6
2Li 4He7

2Li 4He23
2 Na 4He39

2 K

n = 0 n = 1 n = 0 n = 1 n = 0 n = 0

This work −58.88 −2.09 −81.29, −64.26a −5.67, −3.01a −152.68 −89.76
Reference [28] −31.4b −45.7b −103.1c

Reference [29] −31.4d −45.7d −2.31d −103.1d

References [30], [31] −53.4a −7.9a −73.4a −12a

Reference [32] −57.1,e −65.0,f −80.0g −119,h −148.5i

Reference [33] −66.6,j −115k

aUsing the Li-He potential from Ref. [25] and the He-He potential from Ref. [1].
bUsing the Li-He and He-He potentials from Ref. [26].
cUsing the Na-He and He-He potentials from Ref. [26].
dUsing a renormalized zero-range model.
eUsing the Li-He and He-He potentials from Ref. [25].
fUsing the Li-He potential from Ref. [27] and the He-He potential from Ref. [26].
gUsing the Li-He potential from Ref. [27] and the He-He potential from Ref. [47].
hUsing the Li-He potential from Ref. [27] and the He-He potential from Ref. [47].
iUsing the Na-He potential from Ref. [27] and the He-He potential from Ref. [26].
jEstimation of the upper bound.
kEstimation of the lower bound.

A. 4He6
2Li and 4He7

2Li systems

The 4He6
2Li and 4He7

2Li systems possess bound states
only for the J� = 0+ symmetry, and none for the J > 0
symmetries. Figures 2(a) and 2(b) show the seven lowest
J� = 0+ adiabatic potential curves (ν = 0–6) for the 4He6

2Li
and 4He7

2Li systems, respectively, along with the bound-state
energy levels. The effects due to the two different masses
between 6Li and 7Li are shown here, and the potential curves
for 4He7

2Li have a slightly deeper potential well than those for
4He6

2Li. The energy levels for the heavier system (4He7
2Li)

therefore lie at slightly lower energies than those for its
lighter isotope (4He6

2Li). In Fig. 2(a), as R → ∞, the lowest
potential curve ν = 0 approaches the 4He2 + 6Li dissociation
threshold E

4He2
00 = −5.472 × 10−9 a.u., and the second lowest

one, ν = 1, the 4He6Li + 4He dissociation threshold E
4He6Li
00 =

−4.787 × 10−9 a.u. In Fig. 2(b), as R → ∞, the ν = 0
potential curve approaches the 4He7Li + 4He dissociation
threshold E

4He7Li
00 = −1.780 × 10−8 a.u.; and the ν = 1 poten-

tial, the 4He2 + 7Li dissociation threshold E
4He2
00 = −5.472 ×

10−9 a.u..
Figure 3 shows two-dimensional contour plots of the

potential surface V (R,θ,ϕ) as well as the ν = 0 and 1 channel
functions for 4He6

2Li (J� = 0+) at fixed hyperradii R, R =
18.2, 29.2, 60, and 640 a.u., as functions of the hyperangles
θ and ϕ. The first R value, R = 18.2 a.u., corresponds to
the minimum of the lowest potential curve Uν=0(R), and
the second one, R = 29.2 a.u., to the maximum of the first
radial component Fν=0,n=0(R) of the n = 0 state. The channel
functions are plotted as sin 2θ |φ0ν |2, with φ0ν being the only
component in the expansion of �ν on the Wigner rotation
matrices in Eq. (5). The maximum of sin 2θ |φ0ν |2 is found
to correlate with the minimum of the potential surface at

a given value of R. At R = 18.2 a.u., the ν = 0 channel
function maximizes around (θ,ϕ) ≈ (0.3π,π ), for which the
geometry of the triatomic system is a tall isosceles triangle,
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FIG. 2. (Color online) Adiabatic hyperspherical potential curves
Uν(R) as a function of the hyperradius R for (a) 4He6

2Li (J � =
0+) and (b) 4He7

2Li (J � = 1−). The seven lowest potential curves
(ν = 0–6) are shown, while the bound-state energies are indicated as
horizontal lines.
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FIG. 3. (Color online) Two-dimensional contour plots of the
potential surface V (R,θ,ϕ) (left column) and the ν = 0 (middle
column) and ν = 1 (right column) channel functions plotted as
sin 2θ |φ0ν |2 for 4He6

2Li (J � = 0+) at four R values, as functions of
the hyperangles θ and ϕ. The first row corresponds to R = 19.2 a.u.;
the second row, to R = 29.2 a.u.; the third row, to R = 60 a.u.;
and the fourth row, to R = 640 a.u.. The contour line of the
potential surface with the lowest energy and that of the channel
functions with the highest density are indicated by a dotted line.
The 4He-6Li and 4He-4He coalescence points located respectively at
(θ,ϕ) = (0.5π,0.37π ) and (0.5π,π ) are shown as filled circles (the
lowest row excepted for visibility of the contour lines).

with 6Li being at the top. As R increases, the maximum
moves slowly toward larger values of θ along the line defined
by ϕ = π . When R becomes much larger, it settles around

(θ,ϕ) ≈ (π/2,π ), representing a 4He dimer and a 6Li atom far
away. The ν = 1 channel function maximizes around (θ,ϕ) ≈
(0.35π,0.85π ) for R = 18.2 a.u. but has a node around a
line joining the points (θ,ϕ) ≈ (0.15π,π ) and (0.35π,0). At
R = 29.2 a.u., however, the maximum switches to a point
around (θ,ϕ) ≈ (0.35π,0), corresponding to a scalene triangle.
When R becomes larger, it slowly approaches the point
(θ,ϕ) = (π/2,0.37π ), corresponding to a 4He6

2Li molecule
and a 4He atom far away. The channel functions for the isotopic
4He7

2Li system are found to exhibit a behavior similar to that
for the 4He6

2Li system.
For all of the 4He6

2Li and 4He7
2Li bound states, the

ν = 0 radial wave function, corresponding to the lowest
channel, is found to dominate, while the second-lowest channel
(ν = 1) is the next dominant one. The contributions from
the other channels are by far smaller. Quantitatively, we
can define the occupation probability of channel ν in state
n by

∫ ∞
0 Fnν(R)2dR. The occupation probabilities in the

ground and excited states of 4He6
2Li and 4He7

2Li are reported
in Table V. These are calculated including the six lowest
channels in the coupled equations (6), or νmax = 5. For
all these states, the lowest channel, ν = 0, dominates with
a probability of more than 96%, while the second-lowest
channel, ν = 1, possesses a probability of less than about
3%. The higher channels contribute with probabilities of less
than about 1%. However, as can be seen in Table III, the
bound-state energy levels are still sensitive to the number of
channels and are lowered significantly with further inclusion of
channels.

The ν = 0 radial wave function F00(R) of the 4He6
2Li

ground state is found to peak at R = 29.2 a.u., for which, as
shown in Fig. 3, the ν = 0 channel function maximizes around
(θ,ϕ) ≈ (0.35π,π ), in a tall isoceles triangle configuration.
Therefore, using Eq. (10), this ground state can be thought of
as exhibiting a tall isoceles triangle with r12 = r31 ≈ 25 a.u.
and r23 ≈ 7.8 a.u. or, in other words, the 4He dimer with the 6Li
atom a little loosely attached. The excited state of 4He6

2Li has
its first radial component F10(R) peaking at a very large value
of R, about R ≈ 200 a.u., for which �0 shows two 4He atoms
bound together and a 6Li atom far away. This excited state thus
displays essentially a 6Li atom very loosely attached to a 4He
dimer, with the atom-molecule distance being about 200 a.u..
We have found similar Fnν(R) for 4He7

2Li, so this discussion
should apply to it as well. Our determination of the molecular
geometry is based on the position of the maxima of the

TABLE V. Occupation probabilities of the bound states for 4He6
2Li, 4He7

2Li, and 4He23
2 Na, calculated by including six channels (νmax = 5).

4He6
2Li 4He7

2Li 4He23
2 Na

J � = 0+ J � = 0+ J � = 0+ J � = 1−

ν n = 0 n = 1 n = 0 n = 1 n = 0 n = 0

0 0.985 0.968 0.981 0.998 0.983 0.980
1 1.22 × 10−2 3.01 × 10−2 1.61 × 10−2 1.55 × 10−3 1.28 × 10−2 1.68 × 10−2

2 2.33 × 10−4 1.47 × 10−3 3.19 × 10−4 3.95 × 10−4 9.67 × 10−4 1.46 × 10−3

3 1.32 × 10−3 2.62 × 10−5 1.65 × 10−3 1.22 × 10−5 2.12 × 10−3 2.32 × 10−4

4 2.53 × 10−4 3.12 × 10−5 3.52 × 10−4 1.34 × 10−5 1.29 × 10−3 2.96 × 10−4

5 1.88 × 10−4 7.47 × 10−6 2.02 × 10−4 1.28 × 10−5 1.41 × 10−3 8.80 × 10−4

062521-6



ADIABATIC HYPERSPHERICAL STUDY OF WEAKLY . . . PHYSICAL REVIEW A 82, 062521 (2010)

hyperangular probability distribution using Eq. (10) rather than
on direct calculations of 〈rij 〉. Our findings—(rLiHe,rHeHe) ≈
(25,7.8) a.u. for the ground state and rHeHe 
 rLiHe ≈ 200 a.u.
for the excited state—are somewhat more qualitative than the
geometries calculated by Baccarelli et al. [31]. They predict
(〈rLiHe〉,〈rHeHe〉) = (29.1,23.1) a.u. and (66.1,88.4) a.u. for
the 4He6

2Li ground and excited states, respectively. Although
we do not expect quantitative agreement, our results differ
from theirs already at qualitative level and predict quite
different geometries for these states. Such disagreement,
however, should probably be expected given the rather
substantial differences in energies—even when the same
interaction potentials are used. (Note that Ref. [31] gives a
very detailed discussion of the dominant spatial configurations
for 4He6

2Li and 4He7
2Li.) The excited state of both 4He6

2Li and
4He7

2Li is found to extend to surprisingly large hyperradii R,
especially for 4He7

2Li, with its radial function F10 spreading
over several thousands of atomic units. This might suggest that
these molecules are among the largest triatomic molecules.
The spatial extents of these excited states are found to be even
larger than that of the 4He3 excited state, and their binding
energies are lower (for 4He3 we obtained a binding energy of
more than 1 mK for 4He3 in Ref. [9]). Both of these excited
states satisfy the condition 〈R2〉/R2

0 > 2 (R0 is the scaling
parameter defined in Ref. [48]) to qualify as a halo state, since
we find 〈R2〉/R2

0 ≈ 130 for 4He6
2Li and 〈R2〉/R2

0 ≈ 700 for
4He7

2Li.

B. 4He23
2 Na and other 4He2–alkali-metal systems

The 4He23
2 Na system is found to possess not only one

bound state with J� = 0+ but also one bound state with
J� = 1−. No bound state exists for the other symmetries.
Figures 4(a) and 4(b) shows the seven lowest adiabatic
potential curves (ν = 0–6) of the 4He23

2 Na system in the
J� = 0+ and 1− symmetries, respectively. For a given ν, the
potential curve in the 1− symmetry is shallower than that in
the 0+ case. This is mainly due to additional terms amounting
to J (J + 1)/2µR2 that appear in the Hamiltonian for J �= 0.
We can also see several avoided crossings between the 1−
potential curves.

Figure 5 shows two-dimensional contour plots of the
potential surface V (R,θ,ϕ) and the ν = 0 and 1 channel
functions for 4He23

2 Na(J� = 0+) at fixed hyperradii R = 20.0,
26.4, 60, and 120 a.u., as functions of the hyperangles θ

and ϕ. The first R value, R = 20.0 a.u., corresponds to the
minimum of the lowest potential curve (ν = 0), and the second
one, R = 26.4 a.u., to the maximum of the ν = 0 radial
function of the ground state. These channel functions are
plotted as sin 2θ |φ0ν |2. As was seen for 4He6

2Li, the maximum
of the probability distribution sin 2θ |φ0ν |2 correlates with the
minimum of the potential surface at a given value of R, so that
their behavior follows largely that described for 4He2Li too.
At R = 20.0 a.u., for instance, the ν = 0 channel function
maximizes around (θ,ϕ) ≈ (0.35π,π ), where the triatomic
system is a tall isosceles triangle with its top being 23Na. When
R becomes larger than 60 a.u., the maximum settles around
(θ,ϕ) ≈ (0.5π,0.45π ), displaying a 4He23Na molecule with
a 4He atom far away. The ν = 1 channel function behaves
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FIG. 4. (Color online) Adiabatic hyperspherical potential curves
Uν(R) as functions of the hyperradius R for 4He23

2 Na in the (a) J � =
0+ and (b) J � = 1− symmetries. The seven lowest potential curves
(ν = 0–6) are shown, while the bound-state energies are indicated as
horizontal lines.

differently. At R = 26.4 a.u., the system becomes a scalene
triangle, but at larger R, it shows a 4He dimer and a 23Na atom.

The ν = 0 and 1 channel functions for 4He23
2 Na (J� = 1−)

are found to behave in a similar manner. For the 1− symmetry,
there are two components, K = −1 and K = +1, in the
expansion of the channel function on Wigner rotation matrices
in Eq. (5), but because of the permutation symmetry we
have |φ−1,ν |2 = |φ+1,ν |2. Hence, we only need to consider
one of them. At small hyperradii R, the ν = 0 channel
function maximizes around θ = 0.25π ∼ 0.4π and ϕ = π ,
for which the system is again an isosceles triangle. As R

increases, the maximum of the channel function approaches
(θ,ϕ) ≈ (0.5π,0.45π ), corresponding to a 4He23Na molecule
and a 4He atom far away. The ν = 1 channel function for
R = 20.0 a.u. maximizes around (θ,ϕ) ≈ (0.16π,0), in a
scalene triangle configuration, but as R increases its maximum
approaches (θ,ϕ) ≈ (0.5π,π ), a 4He dimer lying far away
from a 23Na atom.

For both of the 4He23
2 Na bound states, the ν = 0 radial

wave function dominates over the other radial components.
The occupation probabilities of these bound states calculated
by including six channels (or νmax = 5) are presented in
Table V. For each state, the lowest channel contributes about
98%, the second-lowest channel just over 1%, and the other
channels account for less than 1% all together. Combining
these results, we conclude that the triatomic bound states for
0+ and 1− symmetries of 4He23

2 Na are, like 4He6
2Li, primarily

a 4He dimer, with the 23Na atom relatively loosely attached.
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FIG. 5. (Color online) Two-dimensional contour plots of the
potential surface V (R,θ,ϕ) (left column) and the ν = 0 (middle
column) and ν = 1 (right column) channel functions plotted as
sin 2θ |φ0ν |2 for 4He23

2 Na(J � = 0+) at four R values, as functions of
the hyperangles θ and ϕ. The first row corresponds to R = 20.0 a.u.;
the second row, to R = 26.4 a.u.; the third row, to R = 60 a.u.; and
the fourth row, to R = 120 a.u.. The contour line of the potential
surface with the lowest energy and that of the channel functions with
the highest density are indicated by a dotted line. The 4He-23Na and
4He-4He coalescence points, located at (θ,ϕ) = (0.5π,0.45π ) and
(0.5π,π ), respectively, are shown as filled circles.

We have also carried out calculations for the other 4He2–
alkali-metal systems: 4He39

2 K, 4He40
2 K, 4He41

2 K, 4He87
2 Rb,

4He89
2 Rb, and 4He133

2 Cs. The adiabatic potential curves, chan-
nel functions, and radial functions are all qualitatively similar
to those for 4He23

2 Na just discussed.

IV. SUMMARY

In this work, we have studied the bound states for all
4He2–alkali-metal systems using the adiabatic hyperspherical
representation. We have found two J� = 0+ bound states for
4He6,7

2 Li molecules, while one 0+ and one 1− bound state
are found to exist for the other 4He2–alkali-metal molecules.
We have also analyzed the adiabatic potential curves, channel
functions, and radial wave functions to gain insight into the
geometry of the molecules. We found that 4He6,7

2 Li molecules
in their excited states have a remarkably large spatial extent,
among other things. It is important to note that the interaction
potentials used in this work do not include retardation. To
our knowledge, retardation corrections for HeX systems are
not available. Retardation may have a significant effect and
reduce the binding energies, as we found for the helium trimer
and its isotopes [9].

In this work, we have not considered systems including the
helium isotope 3He, but it would be interesting to study 3He2X
and 3He4HeX. Although 3He cannot bind with an alkali-metal
atom except for 23Na, one can probably find three-body bound
states for such systems, which would be Borromean states.
The fermionic symmetry of 3He will no doubt be important.
Finally, we want to note that this paper is the second in a
sequence of three studying the system of 4He2 + alkali-metal
atom. The first paper treated three-body recombination [37]
and the third will treat atom-diatom processes [38]. All
studies use the same pairwise potentials—in fact, they are all
based on exactly the same adiabatic hyperspherical potentials
and couplings.
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