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X-ray-spectroscopy analysis of electron-cyclotron-resonance ion-source plasmas
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Analysis of x-ray spectra emitted by highly charged ions in an electron-cyclotron-resonance ion source (ECRIS)
may be used as a tool to estimate the charge-state distribution (CSD) in the source plasma. For that purpose,
knowledge of the electron energy distribution in the plasma, as well as the most important processes leading to
the creation and de-excitation of ionic excited states are needed. In this work we present a method to estimate
the ion CSD in an ECRIS through the analysis of the x-ray spectra emitted by the plasma. The method is applied
to the analysis of a sulfur ECRIS plasma.
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I. INTRODUCTION

Electron-cyclotron-resonance ion sources (ECRIS) are
widely used to provide low to medium-high charge-state ions
for heavy-ion accelerators as well as a standalone device to
provide low-energy ion beams. Their plasmas are also more
and more used as powerful sources of radiation, whether to
provide vacuum-ultraviolet radiation sources [1] or intense
sources of highly charged ion x rays [2,3]. The radiation
emitted by the ions in the plasma can be used for plasma
diagnostic [4,5], for spectrometer characterization [6], and
to provide accurate transition energies of highly charged
ions.

ECRIS are small mirror machines [7]. A magnetic bottle
is created using either permanent magnets, or normal or
superconducting coils, to confine longitudinally an electron
gas. Transverse confinement is obtained by means of a
multipole field, most frequently an hexapole, usually made
out of permanent magnets, although several devices such
as the VENUS in Berkeley [8] and SERSE in Catania
[9,10] use superconduting coils. Other devices, such as
the ECR ion trap (ECRIT) at the Paul Scherrer Institute
(PSI) [11], use a combined superconducting coils magnetic
bottle and a permanent magnet hexapole [11]. The electron
plasma is heated by a microwave field: The electrons have
a spiral motion around the field lines with the cyclotron
frequency (Larmor frequency), and are resonantly accel-
erated when they pass the resonance zone, where their
cyclotron frequency is equal to the frequency of the injected
microwaves.

In the present paper, we deal with the line spectrum
from a sulfur plasma, created at the PSI ECRIT [11].
Theoretical and experimental work on electrons of ECRIS
plasmas show that the electron velocity distribution function is
non-Maxwellian, although it can be schematically represented
by several Maxwellian distributions for the cold, warm,
and hot electrons [12], or by a Maxwellian distribution
for the cold, or thermal, electrons and a non-Maxwellian
distribution for the hot electrons [13]. These electrons may
then excite and ionize the injected atoms or molecules,

which will form a plasma. The ions may subsequently be
extracted from the plasma and/or the emitted radiation can be
detected.

Although electrons in ECRIS are energetic, ions are rather
cold. Owing to the large ratio of ion-to-electron masses
and to the large average electron energy, the electron-ion
collisional heating cannot be very efficient and the electron-ion
energy equipartition occurs on a timescale (in the range of a
few seconds) much larger than that of the ion confinement
(about three orders of magnitude) [14]. Furthermore, the
energetic ions in the space charge of the electron shallow
potential, of the order of a few eV [15], will escape from this
region.

The ion-ion collision frequency is large enough so that
the energy equipartition terms between ions rapidly be-
come negligible. Ions are therefore Maxwellian with the
same temperature, regardless of ion charge states or ion
species.

One of the main problems of ECRIS plasma diagnostics is
the determination of the ion charge-state distribution (CSD)
inside the plasma. Although one could try to deduce the
CSD from extracted ion beam currents, this is not a very
reliable method. As the extraction is optimized for a particular
charge state and the ions are extracted from the plasma edges,
the current would not exactly reflect the CSD inside the
plasma.

Alternatively, the CSD inside the plasma may be obtained
nonintrusively through the analysis of high-resolution x-ray
spectra emitted by the ECRIS [16–20]. In fact, ECRIS are char-
acterized, among other properties, by their capacity to produce
x-ray emission, including bremsstrahlung and characteristic
lines, which can thus be used for plasma diagnostics. Similar
processes for optical plasma diagnostics were reviewed in the
work of Boffard et al. [21].

In 2000, Douysset et al. [4] estimated the ionic density
of each charge state in an ECRIS plasma through the
measurement of the intensity of the emitted Kα lines. In the
same year, Küchler et al. [20] proposed a method to predict
the x-ray spectrum, taking into account the main atomic
processes, in which they solve numerically the balance

1050-2947/2010/82(6)/062516(10) 062516-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.062516


J. P. SANTOS et al. PHYSICAL REVIEW A 82, 062516 (2010)

equations for the ion densities and the electron energy
distribution. The modeled spectrum is fitted by adjusting
the parameters of the simulation, namely the ion CSD. This
method considers a single Maxwellian distribution for the
electrons, uses an expression derived for neutral atoms to
calculate the electron impact excitation of ions, and assumes
that the fluorescence yield is independent of the charge state,
which is a crude approximation for the highest ion charge
states.

In 2001, the present authors [22] performed a detailed
analysis of K x-ray spectra emitted by Ar ions in an ECRIS
plasma as reported in Ref. [4]. This showed that a complete
analysis of these spectra calls for a careful examination of
all excitation and ionization processes that lead to the excited
states of the different ionic species whose decay will yield the
detected lines. In that work, the relevant atomic parameters
were calculated for each charge state but a single average
energy for the electrons in the plasma was used.

In the present work, we present a more precise method
to estimate the ion CSD in an ECRIS through the analysis
of the x-ray spectra emitted by the plasma, that uses a more
realistic electron energy distribution and takes into account the
electron-impact triple ionization process.

This article is organized as follows. In Sec. II, we describe
the relevant atomic processes of creation of highly excited
states in an ECRIS plasma and the methods used to compute the
corresponding cross sections. In Sec. III, the electron energy
distribution in the plasma is discussed. In Sec. IV, we present
the calculation of line intensities and, in Sec. V, we review the
results obtained for sulfur and discuss the limitations of the
method.

II. PROCESSES OF CREATION AND DECAY OF HIGHLY
EXCITED STATES IN AN ECRIS

The methodology used to estimate the ion CSD in this work
includes the following steps:

(1) The spectrum of characteristic x rays from ions inside
the plasma is measured.

(2) The excited states that produce the x-ray spectrum are
identified.

(3) The main processes leading to these excited states, from
the ground configurations, are found and the corresponding
cross sections are calculated, using a physically justified
electron distribution function.

(4) Radiative and radiationless transition energies and
probabilities are calculated for the identified excited
states.

(5) From the comparison of the peak intensities in theoreti-
cal and experimental spectra we arrive at the ion charge-state
density ratios.

In the ECRIS plasma we can assume that the ions are in
their ground configurations, since the lifetimes of the excited
configurations are orders of magnitude lower than the collision
times for K excitation or K, KL, or KLL ionization. There are,
however, a few metastable states, like the 1s22s2p 3P0 state
in Be-like ions, which could live long enough (it can only
decay by a very forbidden E1M1 two-photon transition) to be
considered as alternative ground states. For isotopes having
a nonzero nuclear magnetic moment, such states are subject

to hyperfine quenching, which can reduce their quasi-infinite
lifetime dramatically. In the case of sulfur, however, the
most abundant isotopes, 32S (94.9%) and 34S (4.3%), have
zero magnetic moments and even for the other isotopes their
lifetime remains very long (a few seconds) [23,24]. The
situation would be the same for several other charge states like
Mg-like ions [25,26]. Yet we could not find any spectroscopic
indications that such long-lived states do contribute to the
observed spectra.

X-ray line emission from ECR plasmas is related to
various atomic processes: electronic inner-shell ionization and
excitation, dielectronic recombination, charge exchange reac-
tions, radiative recombination, and radiative and radiationless
decays. For highly charged ions, dielectronic recombination,
charge exchange, and radiative recombination rates are low
compared to the dominant processes, which are inner-shell
ionizations, and radiative and radiationless decays [4].

A. Electron-impact excitation

Interpretation of plasma spectroscopic spectra requires
knowledge of many values of the electron-impact excitation
cross sections for atoms and ions. Many cross-section values
have been already calculated, or determined experimentally,
for some systems and for some intervals of incident electron
energy and, therefore, can be found in the literature and in
atomic databases [27,28]. However, published cross sections
are often insufficient for detailed simulation of experiments,
since they do not cover the entire energy range required for
calculation of excitation rates, and/or the particular ions.

Estimates of electron-impact excitation cross sections are
frequently provided by the Fisher et al. expression [29], which
is based on the van Regemorter expression for bound-bound
electron excitation [30]. Nevertheless, the use of this formula is
questionable for ions, because it was derived for neutral atoms
and also because it only takes into account electric dipole
transitions.

To overcome this limitation, the excitation cross sections
should be calculated by computer codes designed for this
purpose (see, e.g., Ref. [31] for a list of software for atomic
physics).

To compute the electron-impact excitation cross sections
we used the multiconfiguration Dirac-Fock and general matrix
elements (MDFGME) computer code of Desclaux and Indelicato
[32–34], because it calculates accurately not only the excitation
cross sections, but also the other atomic parameters needed for
modeling the x-ray spectra from an ECRIS plasma, namely
transition energies and radiative and radiationless transition
probabilities. This code calculates the excitation cross sections
by using the first Born approximation with multiconfiguration
Dirac-Fock (MCDF) wave functions for the atom and a Dirac
wave function for the free electron [35].

B. Electron-impact ionization

The quantitative quantum-mechanical description of the
ionization cross sections by electron impact of multielectron
correlated systems is a problem with a high degree of com-
plexity, even for electron-impact single ionization [36]. During
the past two decades, several powerful computer-intensive
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theoretical methods to calculate electron-impact ionization
cross sections have been developed [37–43]. Some of these
methods provide remarkable agreement with experiment for
simple systems like hydrogen, helium, and sodium. The
price to pay for this agreement is the long computing time
required even with the most powerful computers and, more
importantly, limited applicability to targets with complex
valence shell structures and heavy atoms. However, for many
applications like those in plasmas or, in particular, in ECRIS
plasmas, there is a need to obtain ionization cross sections
in a closed analytical form using relatively simple formulas.
Such formulas should be based upon a quantum-mechanical
treatment with a suitable description of the asymptotic high-
energy behavior of the cross sections so that they can be used
in high energetic electrons.

1. Electron-impact single ionization

Many researchers looked at different times for electron-
impact single ionization empirical or semiempirical expres-
sions, which would fit the experimental data. We can cite,
for example, the expressions developed by Lotz [44], Deutsch
et al. [45], Casnati et al. [46], and Quarles [47].

Kim and Rudd [48] proposed the binary-encounter-Bethe
(BEB) model, which was used to calculate total ionization
cross sections of neutral atoms and molecules with great suc-
cess [27,49,50] for nonrelativistic incident electron energies.

When the incident electron kinetic energy E exceeds about
20 keV, as in inner-shell ionization of heavy atoms by fast
electrons or stripping of fast ion projectiles used in heavy-ion
fusion, one needs to take the relativistic interaction between the
incident and target electrons into account. Recently, Kim et al.
[51], obtained an expression, referred to as RBEB, which is
an extension of the nonrelativistic BEB formula to relativistic
incident electrons. This expression requires only three orbital
constants besides E: the kinetic energy of the ejected electron
U , the orbital binding energy B, and the electron occupation
number N for the pertinent shell.

The RBEB expression has provided accurate results, even
at energies close to the ionization threshold [51,52], and reads

σRBEB = 4πa2
0α

4N(
β2

t + β2
u + β2

b

)
2b′

{
1

2

[
ln

(
β2

t

1 −,β2
t

)
− β2

t − ln(2b′)
]

×
(

1 − 1

t2

)
+ 1 − 1

t
− ln t

t + 1

1 + 2t ′

(1 + t ′/2)2

+ b′2

(1 + t ′/2)2

t − 1

2

}
, (1)

where

βt = vt/c, β2
t = 1 − 1

(1 + t ′)2
,

(2)
t = E/B, t ′ = E/mc2,

βb = vb/c, β2
b = 1 − 1

(1 + b′)2
, b′ = B/mc2, (3)

βu = vu/c, β2
u = 1 − 1

(1 + u′)2
, u′ = U/mc2. (4)

Here, vt is the speed of an electron with kinetic energy E,vb

is the speed of an electron with kinetic energy B,vu is the speed

FIG. 1. (Color online) K-shell ionization cross section of Ar. Solid
circles, experimental data by Tawara et al. [85]; squares, experimental
data by Hippler et al. [86]; solid upright triangles, experimental
data by Quarles and Semaan [87]; upright triangles, experimental
data by Platten et al. [88]; thick solid curve, present RBEBav
cross section Eq. (5); dot-dashed curve, nonrelativistic empirical
formula by Lotz [44,89]; dashed curve, nonrelativistic empirical
formula by Casnati et al. [46]; dotted curve, the Casnati cross section
with relativistic corrections by Quarles [47]; dot-dot-dashed curve,
relativistic semiempirical formula by Deutsch et al. [45].

of an electron with kinetic energy U ,α is the fine-structure
constant, a0 is the Bohr radius, m is the electron mass, and c

is the speed of light.
For single ionization of tightly bound inner shells, which

are subject to strong nuclear attraction, and for ions whose net
charge is +3 or higher, Kim et al. [51] proposed the averaged
RBEB expression,

σRBEBav = 1

2

(
1 + β2

t + β2
u + β2

b

β2
t

)
× [RHS of Eq. (1)], (5)

where RHS stands for the right-hand side of the equation.
In Figs. 1 and 2, we compare the RBEBav [Eq. (5)]

cross sections for K-shell ionization of Ar (Z = 18) and Se
(Z = 34) to available experimental data, the nonrelativistic
empirical cross sections from the formula of Lotz [44], the
nonrelativistic empirical cross sections from the formula of
Casnati et al. [46], the relativistic version of the formula
of Casnati et al. as modified by Quarles [47], and the
nonrelativistic semiempirical cross sections from the formula
of Deutsch et al. [45]. We observe that the RBEBav cross
sections tend to agree better with the experimental data in
general. It should be noticed that the experimental data of
Berenyi et al. [53] for the selenium atom confirm the relativistic
cross sections behavior at 200 keV < T < 800 keV, and
therefore the need to use a relativistic expression, as the
RBEBav one.

In our opinion, the RBEBav expression (5) is ideally suited
for modeling ionizing events that cover incident electron
energies from the threshold to relativistic values, such as
those in the ECRIS plasma, because it provides accurate
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FIG. 2. (Color online) K-shell ionization cross section of Ar. Solid
circles, experimental data by Scholz et al. [90]; squares, experimental
data by Berenyi et al. [53]; solid upright triangles, experimental
data by Kiss et al. [91]; thick solid curve, present RBEBav cross
section Eq. (5); dot-dashed curve, nonrelativistic empirical formula
by Lotz [44,89]; dashed curve, nonrelativistic empirical formula
by Casnati et al. [46]; dotted curve, the Casnati cross section
with relativistic corrections by Quarles [47]; dot-dot-dashed curve,
relativistic semiempirical formula by Deutsch et al. [45].

cross-section values, requires minimal input data for the target,
and does not require adjustable empirical parameters.

2. Electron-impact double and triple ionization

From the analysis of x-ray spectra emitted by ECRIS
plasmas, we found that, in order to explain their main features,
double and triple ionization processes have to be taken in
account.

Thus, in this method we include the double KL-ionization
and triple KLL-ionization processes from the ions ground
configurations. For the calculation of these cross sections we
used the semiempirical formula developed by Shevelko and
Tawara [54], with the fitting parameters proposed by Bélenger
et al. [55], which, to our knowledge, is the only analytical
expression that provides cross sections for multiple ionization
processes. This expression, in cm2 units, reads

σn = a(n)Nb(n)

(In/Ry)2

(
u

u + 1

)c ln(u + 1)

u + 1
10−18, (6)

with

u = E

In

− 1, (7)

where E is the incident electron energy in eV,In is the
ionization energy in eV required to remove the KL, or KLL,
electrons from the target, N is the total number of target
electrons, 1 Ry = 13.6 eV, and c = 1 for neutral atoms and c =
0.75 for ions. The fitting parameters a and b were evaluated
from experimental data [55], and they are a(2) = 14.0 and
b(2) = 1.08 for the removal of two electrons, and a(3) = 6.30
and b(3) = 1.20 for the removal of three electrons. It should be

noticed that this expression was developed for the ionization
of the outermost electrons.

C. Transition energies and probabilities

For a correct identification of the peaks in high-resolution
x-ray spectra (∼0.3 eV), the importance of knowledge of
precise transition energy values cannot be overemphasized.
Electrons in highly charged ions, especially in inner shells,
are, in general, highly relativistic, so a relativistic calculation
is in order. The correlation contribution to transition energies
is very important in few electron ions, which calls for
the use of multiconfiguration or configuration-interaction
approaches. Finally, quantum-electrodynamics effects (QED)
must, in general, be taken into account. The details of the
contributions included in the present work are given in Sec. V
later.

For this purpose, we took the following steps:
(1) Precise calculation of the energy values for the initial

and final levels of the pertinent radiative and radiationless
transitions.

(2) Calculation of the transition probability values for all
considered transitions.

(3) Evaluation of fluorescence yield values.

III. DISTRIBUTION OF ELECTRON ENERGIES
IN THE PLASMA

Electrons in an ECRIS plasma are far from thermody-
namical equilibrium. The electron distribution function f (E)
is strongly non-Maxwellian and can be represented by two
populations [13]: a cold one (energies up to 10 keV) and
a hot one (energies of several tens of keV); the latter is
well confined inside a closed egg-shaped surface centered
around the source main axis. Barué et al. [13] and Gumberidze
et al. [5] studied experimentally the energy distribution of the
hot electrons observing bremsstrahlung and electron cyclotron
emission.

The cold electrons distribution can be considered approxi-
mately as Maxwellian, whereas the hot electrons distribution
is non-Maxwellian. Following Pras et al. [56], we write the
global electron distribution f (E) as a linear combination of
the Maxwellian, fMw(E), and the non-Maxwellian, fNMw(E),
electron distributions.

If Ne, v(E) and σ (E) are the electron density, the electron
velocity and the cross section for a given process, respectively,
at a specific electron energy E, then the quantity 〈Neσv〉 gives
the rate of the number of events related to a process (excitation
or ionization), averaged over the electron distribution energy,
and is defined by

〈Neσv〉 = Ne

∫ ∞

Emin

v(E)σ (E)f (E) dE

= Ne

∫ ∞

Emin

v(E)σ (E)

× [(1 − x)fMw(E) + xfNMw(E)] dE, (8)

where x is a mixing coefficient. In order to evaluate the inte-
grals, the cross sections for all the processes considered have
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to be calculated for several energy values from threshold, Emin,
to infinity, which is an impossible task when the cross sections
are not given by simple analytical expressions. Fortunately,
the mathematical form of the electron distributions used here
is well suited for the use of the Gauss-Laguerre integration
method. Using this method, only a small number (7 to 20) of
cross-section values needs to be calculated for each process,
each ion, and each temperature value.

In order to use the Gauss-Laguerre integration method for
the calculation of the integral,∫ ∞

Emin

fMw(E)v(E)σ (E) dE, (9)

we must transform it to the form,∫ ∞

0
g(x)e−x dx. (10)

Here,

fMw = 2√
π

E1/2

(kTcold)3/2
e−E/kTcold (11)

is the Maxwell distribution function, where E is the kinetic
energy of the incident electron, T is the thermodynamical tem-
perature, and k the Boltzmann constant. Using the relativistic
form of E, we can write the electron velocity as

v = cE1/2 (E + 2mc2)1/2

(E + mc2)
, (12)

which leads to∫ ∞

Emin

fMw(E)v(E)σ (E) dE

= 2c√
π (kTcold)3/2

∫ ∞

Emin

Ee−E/kTcold
(E + 2mc2)1/2

(E + mc2)
σ (E) dE.

(13)

By performing the transformation of variables,

z = E − Emin → E = z + Emin → dE = dz, (14)

we arrive, in a straightforward manner, at (cf. Appendix)∫ ∞

Emin

fMw(E)v(E)σ (E) dE

= 2c√
π

e−Emin/kTcold

(kTcold)1/2

∫ ∞

0
g(x)e−x dx, (15)

where

g(x) = (xkTcold + Emin)
(xkTcold + Emin + 2mc2)1/2

(xkTcold + Emin + mc2)
× σ (xkTcold + Emin). (16)

In what concerns the non-Maxwellian electron distribution
function, we follow the suggestion of Celata [57] and use
the relativistic version of the Dory-Guest-Harris (DGH)
expression [13,58],

fNMw = CnE

(
1 + E

2mc2

)(
1 + E

mc2

)
e−E/kThot , (17)

where

Cn = 1

(kThot)2

1

1 + 3α + 3α2
, (18)

with

α = (kThot)

mc2
. (19)

A process similar to the one used for the Maxwellian electron
distribution leads to∫ ∞

Emin

fNMw(E)v(E)σ (E) dE

= Cnc(kThot)

2(mc2)2
e−Emin/kThot

∫ ∞

0
g(x) e−x dx, (20)

where

g(x) = [x(kThot) + Emin]3/2 [x(kThot) + Emin + 2mc2]3/2

× σ [x(kThot) + Emin]. (21)

IV. CALCULATION OF LINE INTENSITIES

We will assume that all ions in the charge state q, where q

is the degree of ionization (q = Z − m, m being the number
of bound electrons in the ion), are initially in the ground
configuration. Considering the processes leading to an ion in
the charge state q with a K hole and in the excited level i, the
balance equation can be written as

N
q

0

〈
Nevσ

K-exc,q
i

〉 + N
q−1
0

〈
Nevσ

K-ion,(q−1,q)
i

〉
+N

q−2
0

〈
Nevσ

K-double-ion,(q−2,q)
i

〉
+N

q−3
0

〈
Nevσ

K-triple-ion,(q−3,q)
i

〉 = N
K,q

i A
q

i , (22)

where A
q

i is the level i decay probability by any process

(radiative and radiationless), N
q ′
0 is the q ′ charge-state ion

density in the ground configuration. In the same equation,
σ

K-exc,q
i is the excitation cross section for the processes leading

from an ion in the charge state q in the ground configuration
to the excited level i of the same ion with a K hole,
and σ

K-ion,(q−1,q)
i , σ

K-double-ion,(q−2,q)
i , and σ

K-triple-ion,(q−3,q)
i

are the single-, double-, and triple-ionization cross sections,
respectively, leading from the ions with positive charge q ′
(q ′ = q − 3, . . . ,q), in the ground configuration, to the excited
level i of the ion with charge q and a K hole. NK,q

i is the density
of ions in the charge state q, with a K-shell hole and in the
level i. The quantities 〈Nevσ 〉 for each process are calculated
using Eq. (8).

The σ
K-exc,q
i values are obtained by summing the individual

cross sections σji for the processes leading from each level j

of the Xq+ ion ground configuration, to the excited level i of
the Xq+ ion with a K-shell hole, weighted by the statistical
weight gj of each j level of the ground configuration.

In what concerns ionization, the cross section, leading from
the X(q−n)+ (n = 1,2,3) ion in the ground configuration to the
Xq+ ion with a K hole, given by Eqs. (5) and (6), are multiplied
by the statistical weight gi of the level i, yielding the K-shell
ionization cross sections σ

K-ion,(q−n,q)
i .
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FIG. 3. (Color online) Excitation, ionization, and decay processes
considered in this model: K excitation, dashed line; single K
ionization, dot-dashed line; double KL ionization, dot-dot-dashed
line; triple KLL ionization, dot-dot-dot-dash-dashed line; radiative
decay, solid line, and radiationless decay, dotted line.

The intensity of the line corresponding to the transition of
an ion with charge q and a K-shell hole from the level i to the
level j is given by

I
q

ij = h̄ωA
q

ijN
K,q

i , (23)

where h̄ω is the transition energy, A
q

ij is the probability of the

i → j radiative transition, and N
K,q

i is obtained from Eq. (22).
All possible excitation, mono-, double-, and triple-

ionization processes leading, from the ground configuration of
ions with two to seven electrons to excited states of ions with
two to four electrons, with a K hole, as well as the de-excitation
processes of the latter ones, are illustrated schematically in
Fig. 3.

V. APPLICATION TO A SULFUR PLASMA

The method outlined earlier has been applied to the
analysis of high-resolution sulfur x-ray spectra obtained in
the PSI ECRIT [59], by the Pionic Hydrogen Collaboration
[60]. The experimental setup was composed mainly of two
parts: an ECR ion trap [11] and a Bragg spectrometer setup
in Johann geometry [61,62]. The x rays reflected by the
spectrometer crystal were recorded by a two-dimensional CCD

camera [63] placed in the proximity of the Rowland circle
of the spectrometer. Details about calibration and spectra
construction can be found in Refs. [59,64].

The spectra obtained at PSI cover the 2.400–2.460-keV
energy range. The more important features in these spectra
are the He-like 1s2s 3S1 → 1s2 1S0 M1 line at 2.430 keV, and
the Li-like 1s2s2p 2PJ → 1s22s 2S1/2, J = 1/2,3/2 lines, at
2.437 and 2.438 keV, respectively.

The general relativistic MDFGME code developed by De-
sclaux and Indelicato [32–34], which includes QED correc-
tions, was used to calculate bound-state wave functions and
energies, ionization energies, and radiative and radiationless
transition probabilities. Details of the MCDF method, in-
cluding the Hamiltonian and the processes used to build the
MCDF wave functions can be found elsewhere [65,66]. In
what concerns the QED treatment, the one-electron self-energy
is evaluated using the one-electron values of Mohr and
co-workers [67–69], and the self-energy screening is treated
with the Welton method developed in Refs. [33,70–72]. The
vacuum polarization is calculated as described in Ref. [73].
The Uelhing contribution is evaluated to all orders by being
included in the self-consistent field (SCF). The Wichmann
and Kroll, and Källén and Sabry contributions are included
perturbatively. These three contributions are evaluated using
the numerical procedure from Refs. [74,75].

An enlarged basis space was used, including all possible
electron configurations built from orbitals in the n = 1,2,3,

and 4 electronic shells, corresponding to single and double
excitations from the main configuration [76].

To calculate the 〈Neσv〉 for each process, given by Eq. (8),
we considered kTcold = 1 keV, kThot = 20 keV, and the value
x = 0.1. The choice of these temperature values was guided
by a survey of temperature measurements from the electrons
in the plasma of a variety of ECRIS [5,11,56,77–80], with both
smaller and higher microwave frequency (2.45–28 GHz) and
a large variety of mirror ratios (2.4–11) for the source consid-
ered here, with conventional, permanent, or superconducting
magnets.

The quality of the agreement between the simulated and
experimental spectra was also taken into account. Furthermore,
we also performed the calculations for a hot electron energy of
kT = 30 keV and we did not found significative differences in
the spectra. The weak influence of the hot electron energy kT

is probably due to the strong decrease of the ionization cross
section with electron energy. Recent works have demonstrated
improved performances in source with higher magnetic-field
gradients (corresponding to increased magnetic mirror ratios)
[81,82] concomitant with a reduction of the hot electron
density and radiations. The good performances of the ECRIT
for production of x rays of highly charged ions, with its very
large mirror ratio seems to confirm these results. Only a direct
measurement, yet to be performed (e.g., by a study of the
bremsstrahlung spectrum), will provide a quantitative answer.

The calculated spectrum (normalized to the 2438-eV peak
intensity) obtained using the method discussed earlier and
assuming, for each line, a linear combination of a Gaussian
and a Lorentzian distribution, designed to approximate a Voigt
profile with a total width of 0.3 eV, is presented in Fig. 4 in
a semilogarithmic scale (a), and in a linear scale (b). From
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(a)

(b)

FIG. 4. Theoretical spectra of a sulfur plasma (solid curve) plotted
against experimental data (dots) in log scale (a) and linear scale (b).
Peak 1 refers to the M1 1s 2s 3S1 → 1s2 line, and peak 2 to the 1s
2s 2p 2P1/2,3/2 → 1s2 2s lines and to the 1s 2p 3P1 → 1s2 line. The
experimental data were obtained in the PSI ECRIT [11].

the comparison with experiment we note that, although the
most intense peaks are well reproduced, there are several weak
features above statistical noise, which are not reproduced.
Some of them could be due to n = 3 or 4 satellite lines of
the heliumlike and lithiumlike ions. Yet our calculations and a
search in x-ray transition energy database [83] did not reveal
lines that could explain those features.

In Table I we list the ion charge-state density ratios obtained
from the comparison of the peak intensities in theoretical and
experimental spectra.

TABLE I. Ion charge-state density ratios Sq+/S14+ obtained
from the comparison of the peak intensities in theoretical and
experimental spectra measured in the PSI ECRIT [11].

Ion density ratios

S9+/S14+ 50
S10+/S14+ 63
S11+/S14+ 63
S12+/S14+ 59
S13+/S14+ 18

VI. CONCLUSIONS

In this work, we have presented a method to estimate the
ion CSD in an ECRIS through the analysis of the x-ray spectra
emitted by the plasma. This method is an improvement of the
method described in Ref. [22], that takes into account a more
realistic electron energy distribution and the triple ionization
by electron impact.

The proposed method has been applied to the analysis of an
ECRIS sulfur plasma x-ray spectrum to obtain ion densities.
The calculated spectrum reproduces quite well the most intense
peaks.
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“Unité Mixte de Recherche du CNRS, de l’ENS et de l’UPMC
No. 8552.” The LKB member acknowledges the support of
the Allianz Program of the Helmholtz Association, Contract
No. EMMI HA-216, “Extremes of Density and Temperature:
Cosmic Matter in the Laboratory.”

APPENDIX: GAUSS-LAGUERRE INTEGRATION

We will use the Gauss-Laguerre integral form [84],∫ ∞

0
e−xf (x) dx ≈

n∑
i=1

wif (xi), (A1)

where xi is the i th root of the Laguerre polynomial Ln(x), and
the weight wi is given by

wi = xi

(n + 1)2[Ln+1(xi)]2
. (A2)

1. Maxwell distribution

We want to write the integral,∫ ∞

Emin

fMw(E)v(E)σ (E) dE, (A3)

in the form, ∫ ∞

0
g(x)e−x dx, (A4)

in order to apply the Gauss-Laguerre integration method.
Replacing the Maxwell distribution function,

fMw = 2√
π

E1/2

(kTcold)3/2
e−E/kTcold , (A5)

in Eq. (A3), we get∫ ∞

Emin

fMw(E)v(E)σ (E) dE

= 2c√
π(KTcold)3/2

∫ ∞

Emin

Ee−E/kTcold
(E + 2mc2)1/2

(E + mc2)
σ (E) dE.

(A6)
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Considering that

z = E − Emin → E = z + Emin, (A7)

Eq. (A6) reads∫ ∞

Emin

fMw(E)v(E)σ (E) dE

= 2ce−Emin/kTcold

√
π (kTcold)3/2

∫ ∞

0
(z + Emin)e−z/kTcold

× (z + Emin + 2mc2)1/2

(z + Emin + mc2)
σ (z + Emin) dz. (A8)

Performing the variable change,

x = z

kTcold
→ z = xkTcold → dz = kTcold dx, (A9)

Eq. (A8) assumes the form,∫ ∞

Emin

fMw(E)v(E)σ (E) dE

= 2c√
π

e−Emin/kTcold

(kTcold)1/2

∫ ∞

0
g(x)e−x dx, (A10)

where

g(x) = (xkTcold + Emin)
(xkTcold + Emin + 2mc2)1/2

(xkTcold + Emin + mc2)
×σ (xkTcold + Emin). (A11)

2. Non-Maxwell distribution

Following the same reasoning for the non-Maxwellian
distribution fNMw, the integral,∫ ∞

Emin

fNMw(E)v(E)σ (E) dE, (A12)

with

fNMw = CnE

(
1 + E

2mc2

)(
1 + E

mc2

)
e−E/kThot , (A13)

where

Cn = 1

(kThot)2

1

1 + 3α + 3α2
and α = (kThot)

mc2
, (A14)

is given by∫ ∞

Emin

fNMw(E)v(E)σ (E) dE

= Cnc

2(mc2)2

∫ ∞

Emin

E3/2(E + 2mc2)3/2e−E/kThotσ (E) dE.

(A15)

Considering that

z = E − Emin → E = z + Emin → dE = dz, (A16)

Eq. (A15) assumes the form,∫ ∞

Emin

fNMw(E)v(E)σ (E) dE

= Cnce
−Emin/kThot

2(mc2)2

∫ ∞

Emin

(z + Emin)3/2

× (z + Emin + 2mc2)3/2e−z/kThotσ (z + Emin) dz.

(A17)

Performing the variable change,

x = z

(kThot)
→ z = x(kThot) → dz = (kThot) dx, (A18)

we transform Eq. (A17) in the form,∫ ∞

Emin

fNMw(E)v(E)σ (E) dE

= Cnc(kThot)e−Emin/kThot

2(mc2)2

∫ ∞

Emin

g(x)e−x dx, (A19)

with

g(x) = [x(kThot) + Emin]3/2[x(kThot) + Emin + 2mc2]3/2

× cσ [x(kThot) + Emin]. (A20)
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