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Hyperfine-mediated static polarizabilities of monovalent atoms and ions
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We apply relativistic many-body methods to compute static differential polarizabilities for transitions inside
the ground-state hyperfine manifolds of monovalent atoms and ions. Knowledge of this transition polarizability
is required in a number of high-precision experiments, such as microwave atomic clocks and searches for
CP-violating permanent electric dipole moments. While the traditional polarizability arises in the second order
of interaction with the externally applied electric field, the differential polarizability involves an additional
contribution from the hyperfine interaction of atomic electrons with nuclear moments. We derive formulas for the
scalar and tensor polarizabilities including contributions from magnetic dipole and electric quadrupole hyperfine
interactions. Numerical results are presented for Al, Rb, Cs, Yb+, Hg+, and Fr.
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I. INTRODUCTION

When an atom is placed in an external electric field, its
energy levels shift due to the Stark effect. For states of definite
parity, the effect arises in the second order in the interaction of
atomic electrons with the external E field. The energy shift δEa

is conventionally parametrized in terms of the polarizability of
the atomic state αa ,

δEa = − 1
2αaE2

0 , (1)

where E0 is the strength of the applied E field.
The polarizability depends on atomic electric dipole D-

matrix elements and energies E,

αa = 2
∑
b �=a

|〈a|Dz|b〉|2
Eb − Ea

. (2)

The sums are over a complete atomic eigenset and the z axis
has been chosen along the E field. On general grounds, we may
decompose the polarizability for a state |nFMF 〉 of the total
angular momentum F and its projection MF into the following
contributions:

αnFMF
= αS

nF + 3MF
2 − F (F + 1)

F (2F − 1)
αT

nF . (3)

Here the superscripts S and T distinguish the scalar and
tensor parts of the polarizability. The “polarizabilities”
αS

nF and αT
nF no longer depend on the magnetic quantum

number MF .
In this paper we focus on a difference of polarizabilities

between two states nF ′ and nF of the same hyperfine manifold
of states of total orbital angular momentum J = 1/2. Such
calculations require additional care. Indeed, we are considering
the Stark shift of hyperfine levels attached to the same
electronic state. To the leading order, the shift is determined
by the properties of the underlying electronic state. However,
because the electronic state for both hyperfine levels is the

same, the scalar Stark shift of both levels is the same. An
apparent difference between the two levels is caused by the
hyperfine interaction (HFI), and the rigorous analysis involves
so-called HFI-mediated polarizabilities (see, e.g., [1]). Similar
arguments hold for the tensor part of the polarizability. αT

nF ,
taken with its prefactor in Eq. (3), is an expectation value of
an irreducible tensor operator of rank 2; it simply vanishes for
J = 1/2 states due to the angular selection rules. Only the HFI
coupling of nuclear and electronic momenta (F = I + J) leads
to nonzero values of the tensor polarizability.

Early works on Stark shifts of transition frequencies within
hyperfine manifolds include Refs. [2–6]. More recent interest
in this problem was motivated by the Stark shifts of the
hyperfine transition frequency due to the ambient blackbody
radiation (BBR) [7]. The BBR shift is a major systematic
correction in microwave clocks, especially the 133Cs primary
frequency standard [8]. This motivated the most precise
measurement of the dc Stark shift in a Cs fountain [9]. The
relevant Stark shifts were a subject of many recent works
(see, e.g., state-of-the-art calculations in Refs. [10,11] and
references therein).

Perhaps the most complete earlier theoretical treatment
within the third-order (two electric dipole couplings and one
HFI) perturbation theory was given by Sandars [4] in 1967.
However, only recently (i.e., four decades later) was a sign
mistake in the expression of Ref. [4] for the tensor part of
the HFI-mediated polarizability discovered [12,13] (a correct
result for the tensor polarizability of Tl was obtained earlier in
Ref. [14]).

This sign error is directly relevant to extracting the
BBR correction from high-precision experiments. Notice that
due to the isotropic nature of the BBR, the BBR clock
shift is expressed in terms of the scalar part of the HFI-
mediated polarizability. Moreover, characteristic frequencies
of room-temperature BBR are well below excitation energies
of atomic transitions, thereby justifying replacement of the
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frequency-dependent polarizability with the dc polarizability
[7]. Accordingly, the modern value of the BBR correction for
the Cs clock is based on a measurement [9] which was carried
out in a dc E field. However, the measured Stark shift involves
a combination (3) of both scalar and tensor polarizabilities.
Therefore to arrive at the BBR shift, one needs to remove the
contribution due to the tensor polarizability. Clearly, the sign
mistake discovered in [12,13] becomes relevant.

Here we extend our earlier treatment of the HFI-mediated
polarizabilities [1,10,11] with a specific focus on the tensor
polarizabilities. Compared to Refs. [12,13] we employ a fully
relativistic formalism and evaluate tensor polarizabilities for
several atoms and ions using modern relativistic many-body
methods. We independently confirm that, indeed, Ref. [4] had a
sign mistake, requiring reinterpretation of measurements [9].
We also evaluate the tensor polarizability for the secondary
frequency standard based on Rb atoms.

Another motivation for our work comes from searches for
the so far elusive permanent electric dipole moments (EDMs).
Nonvanishing EDMs violate both time- and parity-reversal
symmetries. Planned experiments will be carried out with Fr
atoms [15]. These atoms will be placed in a strong electric field
and so-far-unknown MF -dependent tensor polarizabilities
would contribute to the error budget of the EDM search.
Our computed values for Fr isotopes will aid the design and
interpretation of these planned experiments.

The paper is organized as follows. In Sec. II we derive
fully relativistic third-order formulas for HFI-mediated tensor
polarizabilities. Section III presents details of numerical
evaluation within relativistic many-body theory. Finally, the
results are discussed and compared with literature values in
Sec. IV. Unless specified otherwise, atomic units, me = h̄ =
|e| = 1, are used throughout.

II. THEORETICAL SETUP

We are interested in transitions between two hyperfine
components of the same electronic states. Below we employ
the conventional labeling scheme for the atomic eigenstates,
|n (IJ ) FMF 〉, where I is the nuclear spin, J is the electronic
angular momentum, and F is the total angular momentum,
F = J + I. MF is the projection of F on the quantization axis
and n encompasses the remaining quantum numbers.

As discussed in the Introduction, computation of the tran-
sition polarizability for J = 1/2 hyperfine manifolds requires
third-order analysis. This involves two perturbations due to the
externally applied electric field, VE = −D · E , and hyperfine
interaction VHFI. These perturbations may be chained into three
distinct diagrams (see Fig. 1). Additionally, there is a residual
(or normalization) diagram.

We would like to stress the importance of a consistent
treatment of the HFI-mediated polarizabilities (i.e., including
all the diagrams in Fig. 1). Consider a general expression for
the scalar polarizability,

αS
nF = 2

3

∑
k=x,y,z

∑
i=|niFiMi 〉

〈nFMF |Dk|i〉〈i|Dk|nFMF 〉
EnFMF

− Ei

. (4)

Here all the involved states are the hyperfine states. While this
requires that the energies include hyperfine splittings, it also

×

(a) (b) (c) (d)

FIG. 1. Diagrams representing the complete third-order
hyperfine-mediated polarizability. Each diagram contains a hyperfine
interaction (horizontal line capped with a filled square) in addition to
two interactions with the external electric field (horizontal line capped
with an empty triangle). The diagrams correspond to the (a) top,
(b) center, (c) bottom, and (d) normalization terms discussed in the
text.

means that the wave functions incorporate HFI to all orders
of perturbation theory. Including the experimentally known
hyperfine splittings in the summations is straightforward but
limiting ourselves to this approximation would exclude the
HFI corrections to the wave functions. By expanding the
energy denominators, we observe that including HFI into
energies would recover only the residual diagram and partially
the center diagram. We find that the remaining contributions
are of the same order, and limiting computations to HFI-
induced energy shifts only is hardly justified.

Previously, we derived equations for dynamic HFI-
mediated polarizabilities of hyperfine states in Ref. [1].
Clearly, static polarizabilities can be obtained by setting the
laser frequency to zero in the derived formulas. There is,
however, one important addition to the formulas presented
in Ref. [1]: the HFI operator in that paper was truncated at
the magnetic dipole interaction. Here we additionally include
the HFI coupling due to the electric quadrupole nuclear
moment. This contribution to tensor polarizabilities becomes
increasingly important for heavier atoms. Note that the electric
quadrupole contribution to scalar polarizabilities and thermal
shift of states with total momentum j = 1/2 is zero. This can
be explained in the following way. The scalar polarizability
can be separated from the total energy shift by averaging over
directions of the electric field. One cannot make a nonzero
scalar (energy shift is a scalar) from the remaining electron
angular momentum 1/2 and nuclear quadrupole, jajbQab =
σaσbQab = 0 (the squared Pauli matrix σ is reduced to a δ

symbol and antisymmetric linear tensor with σ , and Qab is
symmetric with zero trace, so that

∑
a Qaa = 0).

On general grounds, the rotationally invariant hyperfine
interaction between atomic electrons and nuclear moments
may be written as a sum over scalar products of irreducible
tensor operators (we follow the notation of Ref. [16]):

VHFI =
∑
N

N (N) · T (N). (5)

Here the irreducible tensor operators N (N) and T (N) act in
the space of nuclear and electronic coordinates, respectively,
with N being their rank. The nuclear magnetic moment is
conventionally defined as

µ = 〈I,MI = I |N (1)
0 |I,MI = I 〉 (6)
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and the nuclear electric quadrupole moment as

Q = 2〈I,MI = I |N (2)
0 |I,MI = I 〉. (7)

In the formulas below we require the reduced matrix element
of the nuclear moment operator in the nuclear basis. For the
magnetic dipole, this is related to the nuclear magnetic g factor
as

〈I ||N (1)||I 〉 = 1
2

√
(2I )(2I + 1)(2I + 2)gµn,

µn being the nuclear magneton and µ = gIµn. For the electric
quadrupole moment,

〈I ||N (2)||I 〉 =
√

(2I − 2)!(2I + 3)!

2(2I )!
Q.

The components of the relevant electronic tensors are

T (1)
λ = − i

√
2
[
α · C(0)

1λ (r̂)
]

cr2
,

T (2)
λ = −C2λ(r̂)

r3
,

where r is the electronic coordinate, α are the Dirac matrices,
and C(0)

1λ (r̂) and C2λ (r̂) are the normalized vector spherical
harmonic and normalized spherical harmonic functions, re-
spectively [17].

A derivation similar to Ref. [1] results in the scalar and the
tensor polarizabilities given by (here [F ] = 2F + 1)

αs
nF = 1√

3

1√
[F ]

α
(0)
nF ,

αT
nF = −

[
2

3

(2F )(2F − 1)

(2F + 1)(2F + 2)(2F + 3)

]1/2

α
(2)
nF ,

with the reduced polarizabilities α
(K)
nF being sums over values

of individual diagrams of Fig. 1,

α
(K)
nF =

∑
N

[
2α

(K)
nF ;N (T ) + α

(K)
nF ;N (C) + α

(K)
nF ;N (O)

]
, (8)

where we used the equality of the top and bottom diagrams.

The angular reduction of individual diagrams leads to expressions

α
(K)
nF ;N (T ) = [F ]

√
[K]

∑
JaJb

(−1)J+Ja

{
I I N

Ja J F

} {
J 1 Jb

1 Ja K

}{
K J Ja

I F F

}
T

(K)
JaJb

(nJ,N ),

α
(K)
nF ;N (C) = [F ]

√
[K]

∑
JaJb

∑
Ji

[Ji](−1)2Ja+Jb+J+N−1

⎧⎪⎨
⎪⎩

J J Ji

I I N

F F K

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

J J Ji

Ja Jb N

1 1 K

⎫⎪⎬
⎪⎭C

(K)
JaJb

(nJ,N ),

α
(K)
nF ;N (O) = (−1)2J+1

{
N I I

F J J

}
〈nJ ||T (N)||nJ 〉〈I ||N (N)||I 〉 [F ]

√
[K]

{
J J K

F F I

} ∑
Ja

{
K J J

Ja 1 1

}
O

(K)
Ja

(nJ ).

Finally, the universal (these are independent of F , i.e., the clock level) reduced sums are

T
(K)
JaJb

(nJ,N ) = 2〈I ||N (N)||I 〉
∑

na,nb �=n

〈nJ ||T (N)||naJa〉〈naJa||D||nbJb〉〈nbJb||D||nJ 〉
(E − Ea)(E − Eb)

, (9)

C
(K)
JaJb

(nJ,N ) = 2〈I ||N (N)||I 〉
∑

na,nb �=n

〈nJ ||D||naJa〉〈naJa||T (N)||nbJb〉〈nbJb||D||nJ 〉
(E − Ea)(E − Eb)

, (10)

O
(K)
Ja

(nJ ) = 2
∑
na �=n

〈nJ ||D||naJa〉〈naJa||D||nJ 〉
(E − Ea)2

. (11)

In these sums the values of the total orbital momenta of intermediate states Ja and Jb are fixed.
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III. NUMERICAL EVALUATION

To perform the calculations we use an ab initio approach
which has been described in detail in Ref. [18]. In this approach
high accuracy is attained by including important many-body
and relativistic effects.

Calculations start from the relativistic Hartree-Fock (RHF)
method in the V N−1 approximation. This means that the initial
RHF procedure is done for a closed-shell atomic core with
the valence electron removed. After that, the states of the
external electron are calculated in the field of the frozen core.
Correlations are included by means of the correlation potential
method [19]. We use the all-order correlation potential �̂

for Rb, Cs, and Fr and second-order correlation potential
�̂(2) for Al, Yb+, and Hg+. The all-order �̂ includes two
classes of the higher-order terms: screening of the Coulomb
interaction and hole-particle interaction (see, e.g., [20] for
details).

To calculate �̂ and �̂(2) we need a complete set of
single-electron orbitals. We use the B-spline technique [21] to
construct the basis. The orbitals are built as linear combinations
of 40 B splines of order 9 in a cavity of radius 40aB . The
coefficients are chosen from the condition that the orbitals are
the eigenstates of the RHF Hamiltonian Ĥ0 of the closed-shell
core. The all-order �̂ operator is calculated with a technique
which combines solving equations for the Green functions
(for the direct diagram) with a summation over the complete
set of states (exchange diagram) [20]. The second-order

�̂(2) operator is calculated using direct summation over the
complete set of states.

The correlation potential �̂ is then used to build a new
set of single-electron states, the so-called Brueckner orbitals.
This set is to be used in the summation in Eqs. (9), (10),
and (11). Here again we use the B-spline technique to build
the basis. The procedure is very similar to the construction
of the RHF B-spline basis. The only difference is that
the new orbitals are now the eigenstates of the Ĥ0 + �̂

Hamiltonian.
Matrix elements of the HFI and electric dipole operators

are found by means of the time-dependent Hartree-Fock
(TDHF) method [19,22]. This method is equivalent to the well-
known random-phase approximation. In the TDHF method,
the single-electron wave functions are presented in the form
ψ = ψ0 + δψ , where ψ0 is the unperturbed wave function. It
is an eigenstate of the RHF Hamiltonian Ĥ0: (Ĥ0 − ε0)ψ0 = 0.
δψ is the correction due to the external field. It can be found
by solving the TDHF equation

(Ĥ0 − ε0)δψ = −δεψ0 − F̂ψ0 − δV̂ N−1ψ0, (12)

where δε is the correction to the energy due to the external field
(δε ≡ 0 for the electric dipole operator), F̂ is the operator of
the external field (VHFI or −D · E), and δV̂ N−1 is the correction
to the self-consistent potential of the core due to the external
field.

TABLE I. Third-order hyperfine static polarizabilities of single-valence atoms.

Qa [10−10 Hz/(V/m)2]

Z Atom A I µ/µN
a (b) F αS αT

A
b αT

B
c αT d αT e

13 Al 27 5/2 3.6415 0.14 3 0.0158 0.2683 0.0119 0.2563
2 −0.0222 −0.1073 0.0096 −0.1169

37 Rb 85 5/2 1.3530 0.27 3 0.4599 −0.0073 −0.0070 −0.0143 −0.0184
2 −0.6439 0.0029 −0.0056 −0.0027 −0.0035

37 Rb 87 3/2 2.7510 0.132 2 0.9332 −0.0148 −0.0034 −0.0182 −0.0234
1 −1.5554 0.0025 −0.0017 0.0007 0.0009

55 Cs 133 7/2 2.5820 −0.004 4 1.9770 −0.0262 0.0002 −0.0260 −0.0335
3 −2.5419 0.0141 0.0002 0.0143 0.0184

70 Yb+ 171 1/2 0.4940 1 1 0.0844 −0.0023 0 −0.0023
0 −0.2533 0 0 0

70 Yb+ 173 5/2 −0.6775 2.8 3 −0.1158 0.0031 −0.0390 −0.0359
2 0.1621 −0.0012 −0.0312 −0.0325

80 Hg+ 199 1/2 −0.5603 0.4 1 0.0271 −0.0018 0 −0.0018
0 −0.0814 0 0 0

80 Hg+ 201 3/2 0.5060 0.8 2 −0.0300 0.0020 −0.0014 0.0005
1 0.0501 −0.0003 −0.0007 −0.0011

87 Fr 211 9/2 4.0005 −0.19 5 6.9771 −0.1459 0.0188 −0.1271 −0.1633
4 −8.5275 0.0908 0.0175 0.1083 0.1392

87 Fr 221 5/2 1.5800 −0.98 3 2.7556 −0.0576 0.0970 0.0394 0.0506
2 −3.8579 0.0230 0.0776 0.1006 0.1294

87 Fr 223 3/2 1.1700 1.17 2 2.0406 −0.0427 −0.1158 −0.1580 −0.2040
1 −3.4010 0.0071 −0.0579 −0.0508 −0.0653

aReference [23].
bMagnetic dipole HFI contribution.
cElectric quadrupole HFI contribution.
dTotal tensor polarizability, αT = αT

A + αT
B .

eCorrected tensor polarizability (see text for discussion).
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The TDHF equations are solved self-consistently for all
states in the core. Then the matrix elements between any (core
or valence) states n and m are given by

〈ψn|F̂ + δV̂ N−1|ψm〉. (13)

Thebest results are achieved when ψn and ψm are the
Brueckner orbitals computed with the correlation potential �̂.

We use Eq. (13) for all HFI and electric dipole matrix
elements in evaluating the top, bottom, and center diagrams
[Eqs. (9)–(11)] except for the ground state HFI matrix element
in the normalization diagram where we use experimental data.
The results are presented in Sec. IV.

IV. RESULTS AND DISCUSSION

Table I shows the results of calculation of scalar and tensor
hyperfine−mediated polarizabilities for the two hyperfine
components of the ground state of some isotopes of Al,
Rb, Cs, Yb+, Hg+, and Fr. Magnetic dipole and electric
quadrupole HFI contributions to the tensor polarizabilities
(αT ) are shown separately. Notice that there is no electric
quadrupole contribution to the scalar polarizabilities (αS),
as discussed previously. Another interesting thing to note
is that the electric quadrupole does not contribute to the
frequency shift of the hyperfine transition. Although the tensor
polarizabilities are different for states with F = I + 1/2 and
F = I − 1/2, the energy shifts, which includes F -dependent
factors [see Eq. (3)] are the same. This is only true for states
with MF = 0, where MF is the projection of F .

The accuracy of the calculations is different for scalar
and tensor polarizabilities, being a few percent for scalar
polarizabilities and about 30% for tensor polarizabilities.
This is because we include only Brueckner-type correlations,
or correlations which can be reduced to a redefinition of
single-electron orbitals. Such an approximation works very
well for s1/2 and p1/2 states which dominate in the scalar
polarizabilities. For tensor polarizabilities, large contributions
come from p3/2 and d3/2 states where the Brueckner ap-
proximation is not so good, especially for the HFI matrix
elements. The assumption of 30% accuracy is consistent with
the analysis of the theoretical and experimental data on the
hyperfine structure of the p and d states. A detailed analysis
for all atoms is hampered by the lack of experimental data for
d states. To get accurate results for tensor polarizabilities one
has to include structure radiation and other non-Brueckner
higher-order correlation corrections. This goes beyond the
scope of the present work.

To illustrate the accuracy of the calculations we would like
to compare our results to previous calculations and available
experimental data. There have been numerous calculations and
measurements of the Stark frequency shift for the hyperfine
transitions of the ground state of Cs, Rb, and other atoms and

TABLE II. Stark frequency shift: comparison with previous
calculations.

k [10−10 Hz/(V/m)2]

Atom This work Ref. [18]

87Rb −1.24(1) −1.24(1)
133Cs −2.26(2) −2.26(2)
171Yb −0.167(9) −0.171(9)
199Hg −0.056(3) −0.060(3)

ions (see, e.g., Ref. [18] and references therein). The results
are usually presented in terms of the coefficient k related to
the frequency shift by

δ�E = kE2
0 , (14)

where �E is the energy interval between the two hyperfine
components of the ground state and δ�E is its change due
to the electric field E0. One can find the values of k for all
atoms and ions from Table I using the polarizabilities from
this table and expressions (1) and (3). Corresponding values
for 87Rb, 133Cs, 171Yb+, and 199Hg+ are presented in Table II
and compared to previous calculations of Ref. [18]. Since both
calculations are performed with the same method, we assume
the same uncertainty. Some differences in central values for Yb
and Hg are due to differences in the details of the calculations.
These differences are within the declared uncertainty.

As has been discussed above, the accuracy for the tensor po-
larizabilities is lower. Our value of the tensor polarizability for
the F = 4 state of cesium is −2.60 Hz/(V/cm)2. This is about
30% smaller than the experimental value −3.34(2)(25) Hz/
(V/cm)2 [24] and the semiempirical value −3.72(25) Hz/
(V/cm)2 [13]. The most likely reason for the difference is
the contribution from the non-Brueckner correlations which
are not included in the present work. Therefore, we assume
30% uncertainty for the calculated tensor polarizabilities in
the present work.

To improve the predicted values for the tensor polarizabil-
ities of Rb and Fr, which both have electron structure similar
to that of cesium, we multiply the ab initio results for these
atoms by the factor 1.28, which is the ratio of the experimental
tensor polarizability for Cs to the theoretical one. The resulting
values are presented in the last column of Table I.
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