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Convergent conductivity corrections to the Casimir force via exponential basis functions
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A closed-form finite conductivity correction factor for the ideal Casimir force is proposed, based on exponential
basis functions. Our method can facilitate experimental verifications of theories in the study of the Casimir force.
A theoretical analysis is given to explain why our method is accurate at both large and small separation gaps.
Numerical computations have been performed to confirm that our method is accurate in various experimental
configurations. Our approach is widely applicable to various Casimir force interactions between metals and
dielectrics. Our study can be extended to the study of the repulsive Casimir force as well.
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I. INTRODUCTION

The Casimir force was first predicted to exist between two
electrically neutral conductive planes placed in a vacuum [1]. It
has since attracted strong interest from both theoreticians and
experimentalists in elementary-particle physics, gravitation
and cosmology, and atomic and condensed-matter physics [2].
It has also found many applications in microelectromechanical
systems (MEMS) such as separation gap sensors [3,4]. The
Casimir force results from the reduced density of the electro-
magnetic fields between two conductive planes. In Casimir’s
work, it was calculated that the Casimir force between two par-
allel, perfectly conductive planes is attractive and its strength is
inversely proportional to the fourth power of the separation gap
between them [1]. In practice, real materials are not perfectly
conductive. To calculate the Casimir force between two real
materials, Lifshitz theory is developed and the calculation is
based on the dielectric properties of the interacting materials
[5]. In the past decade, extensive experiments have been carried
out to verify theories and hypotheses related to the Casimir
force [6]. In order to obtain precise agreement between theories
and experimental results, real experimental conditions like
finite conductivity and surface roughness must be accounted
for [7].

To facilitate the reconciliation of experimental data with
theory, it is necessary to include nonideal correction factors
due to the finite conductivity and surface roughness as
multiplication factors to the ideal Casimir force in closed
forms [8]. This is especially critical in dynamic Casimir force
measurements [3,9], as computational loads increase tremen-
dously. Compared to static force measurements, dynamic force
measurements are robust to noise and drift and are considered
to be a better choice in weak force measurements at nanometer
scale [10]. Thus, dynamic force measurements are expected to
play an important role in measuring the repulsive Casimir
force, which is much weaker than the attractive Casimir force
between metals [11]. While it is desirable to obtain correction
factors in closed forms, it is impossible to obtain explicit
expressions for the nonideal finite conductivity correction
factor from Lifshitz theory [12]. To resolve this dilemma,
polynomial-based perturbation approaches have been applied
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to approximate the implicit conductivity correction factor to
the ideal Casimir force between the same metallic surfaces
at zero temperature [13]. The results are simple and have
been extended to the conductivity correction factor when the
interacting metals are different and when the temperature is
nonzero [14,15]. This perturbation approach has also been
applied to calculate the conductivity correction factor to the
ideal Casimir force between a metallic surface and a dielectric
surface [16]. Although the perturbation approaches are highly
accurate when the separation between interacting materials is
larger than the plasma wavelength of the metals, which is in
the range of 100–150 nm for metals like Au [13], discrepancies
between the computational results from perturbation ap-
proaches and the Lifshitz theory increase dramatically when
interacting materials are at small separations (for example,
60 nm). While it is true that the accuracy at small separations
can be improved by increasing the order of polynomials [17],
the improvement is quite limited and bigger discrepancies will
result when the separation between interacting materials con-
tinues to decrease. Since many measurements are carried out at
separation gaps that are below 100 nm [18,19], there is a strong
need to propose an explicit form of the conductivity correction
factor with high accuracy for both large and small separation
gaps.

In Sec. II, we will present a detailed analysis to explain
why discrepancies are significant at small separations when
perturbation approaches based on polynomials are applied.
Then, in Sec. III, we will present a systematic method to
construct explicit conductivity corrections to the Casimir
force by using exponential basis functions when interacting
materials are of the same metals at zero temperature. In
Sec. IV, we give reasons to explain theoretically why ap-
proximations based on exponential basis functions are much
more accurate. In Sec. V, we demonstrate that our method
can be modified to calculate the conductivity factor when
the interacting materials are different at zero temperature.
As an example, we show in the numerical calculations
that our closed-form conductivity corrections to the ideal
Casimir force between metallic surfaces are simple and
precise in several configurations of experiments. Although the
temperature correction on the Casimir force is small when the
separation gap a is <1 µm, where most of the Casimir force
experiments are carried out, increasingly more interesting
Casimir phenomena are predicted at a high temperature and a
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large distance [20]. Our method can be applied to conductivity
corrections at a nonzero temperature as well. We will explain
briefly in the Sec. VI how one may apply our method
to obtain the finite conductivity corrections at a nonzero
temperature.

II. THEORETICAL ANALYSIS

In this section, we will explain theoretically why huge
errors are produced when computing the finite conductivity
correction to the Casimir force by using polynomial-based
perturbation approaches, especially when the separation gap
is small. As an example, we study the case in which the
interacting materials are of the same metal at zero temperature.
It can be calculated from Lifshitz theory that the following
relationships between the conductivity correction factor r and
δ0/a are valid when interacting materials are of the same metal
at zero temperature:

lim
(δ0/a)→0

r = 1, (1)

lim
(δ0/a)→+∞

r = 0, (2)

where δ0 = λp/2π is the effective penetration depth of the
metal and λp is the plasma wavelength of the metal. The
nth-order conductivity correction by using the conventional
perturbation approach is expressed as

r̂ = 1 +
n∑

i=1

bi(δ0/a)i . (3)

It is noted in Ref. [13] that the conventional perturbation
approach is very accurate when the separation gap a is
large. At large separation gap, the higher-order conductivity
correction is more accurate than the lower-order one. However,
the accuracy of this approach is degraded gradually with
increasing δ0/a. When the separation gap a between Au- or
Al-coated materials decreases further to <100 nm, the errors
suddenly become large.

The phenomena can be explained by using Taylor series
[21,22]. The implicit function r(δ0/a) can be expanded by
using Taylor series centered at δ0/a = 0:

r = 1 +
+∞∑
i=1

bi(δ0/a)i . (4)

Compared to the Taylor-series expansion in Eq. (4), higher-
order terms are truncated and only lower-order terms are
preserved in the conventional perturbation approach in
Eq. (3). When a is large and δ0/a is small, lower-order
terms in Eq. (4) dominate. Higher-order terms are negligible,
and thus the conventional perturbation approach is accurate.
The computation results will be increasingly more accurate if
more higher-order terms are included in Eq. (3). When a is
small, δ0/a is large and the contribution from higher-order
terms in Eq. (4) becomes significant. This will result in
large computation errors, because these higher-order terms
are truncated in Eq. (3). For our finite conductivity problem,
the Taylor-series expansion does not converge when δ0/a

is far away from the center δ0/a = 0. It is easy to verify
that lim(δ0/a)→+∞ r̂ = bn(δ0/a)n, which means r̂ will approach

infinity when a approaches zero. This is completely different
from the computational results based on Lifshitz theory
[Eq. (2)], and the difference increases with increased
order n. This explains why huge errors are produced
at small separations. To minimize the residue errors
from higher-order terms truncated in closed-form ap-
proximations, basis functions other than polynomials are
needed.

The rationale for choosing exponential basis functions
to replace polynomials is to mimic the true conductivity
correction factor calculated from Lifshitz theory. It is observed
in Ref. [13] that the relationship between r and δ0/a, when
interacting metals are the same at zero temperature, is similar
to an exponential function. Thus, residue errors can be
significantly reduced when the finite conductivity is computed
based on exponential basis functions.

III. PROPOSAL OF FINITE CONDUCTIVITY
CORRECTIONS BASED ON EXPONENTIAL

BASIS FUNCTIONS

In this section, we propose an nth-order closed-form
approximation for r by using a series of exponential basis
functions when the interaction surfaces are of the same metal
at zero temperature:

r̂ =
n∑

i=1

biFi(δ0/a), (5)

where Fi(x) = e−cixx2i−2. Fi(x) is chosen to mimic the im-
plicit r that satisfies the following equations: lim(δ0/a)→0 Fi =
1 and lim(δ0/a)→+∞ Fi = 0. Rather than Taylor-series expan-
sion, the true conductivity correction r can be expressed in the
following way:

r =
+∞∑
i=1

biFi(δ0/a). (6)

When δ0/a is large, Fi(δ0/a) is small and approaches zero.
Thus, the discrepancy between r and r̂ from the truncated
higher-order terms is much smaller when δ0/a is large.
Although the aim of proposing the alternative basis functions
is to reduce the discrepancy when a is either large or small, it
is expected that this discrepancy will still grow gradually with
increasing δ0/a. To achieve reduced discrepancy, b1 = 1 is set
to satisfy Eq. (1). Other parameters bn and cn are determined
sequentially to satisfy

∂ir

∂xi

∣∣∣∣∣
x=0

= ∂i r̂

∂xi

∣∣∣∣∣
x=0

(i = 1,2, . . . ,2n − 1), (7)

where x = δ0/a.

IV. FINITE CONDUCTIVITY CORRECTIONS TO THE
IDEAL CASIMIR FORCE BETWEEN TWO SAME

METALS AT ZERO TEMPERATURE

In this section, we will compute the finite conductivity
corrections to the ideal Casimir force between two same metals

062510-2



CONVERGENT CONDUCTIVITY CORRECTIONS TO THE . . . PHYSICAL REVIEW A 82, 062510 (2010)

at zero temperature by using our proposed basis functions.
Various configurations of experiments will be considered. We
will also compare the performance of our method with the
conventional perturbation approach.

A. Plate-plate configuration

We will first calculate the finite conductivity corrections
to the ideal Casimir force between two parallel plates made
of the same metal at zero temperature. The ideal Casimir
force per unit area between two perfectly reflective metals,
when their separation is small as compared to their size, is
given as Fp ideal(a) = −(π2h̄c)/(240a4). The Casimir force
between two same materials with dielectric permittivity ε(ω)
is calculated as follows [13,23]:

Fp(a) = −h̄c

32π2a4

∫ +∞

0
x3dx

∫ +∞

1

dp

p2

×
[(

(s + pε)2

(s − pε)2
ex − 1

)−1

+
(

(s + p)2

(s − p)2
ex − 1

)−1]
,

(8)

where s =
√

ε − 1 + p2, and ε(iξ ) = ε(icx/2pa) is the di-
electric permittivity on the imaginary frequency axis ω = iξ .
The plasma model is often used to describe the dielectric
permittivity of the metal [13]:

ε(iξ ) = 1 + c2/(δ0ξ )2. (9)

Then, the true finite conductivity correction r can be calculated
as r = Fp(a)/Fp ideal(a). Our first-order finite conductivity
correction based on exponential basis functions is obtained
as

r̂1p = exp

(
−16δ0

3a

)
. (10)

In a similar way, our second-order finite conductivity correc-
tion based on exponential basis functions is given by

r̂2p = exp

(
−16δ0

3a

)

+ 88

9
exp

[
−

(
4688

693
− 24π2

539

)
δ0

a

](
δ0

a

)2

. (11)

The finite conductivity correction factors from the various
approaches are computed for the configuration of two parallel
Au plates when the separation gap a is between 60 and 400 nm.
δ0 = 137/(2π ) nm is taken for Au [24]. It can be seen in
Fig. 1 that the results from the conventional perturbation
approach and our approach are close to the true finite
conductivity correction obtained from Lifshitz theory when the
separation gap a is large. However, the conventional perturba-
tion approach becomes inaccurate when the separation gap a

is <100 nm. By contrast, our approximations, especially with
our second-order conductivity correction, are very accurate
even when a = 60 nm. More accurate results can be obtained
if higher-order correction terms based on exponential basis
functions are used.

In addition to the plasma model to describe the dielectric
permittivity of the metal, our method can also be applied when
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Results from Lifshitz theory
Results from our method with 1st order correction
Results from perturbation approach
with 4th order correction
Results from our method with 2nd order correction

FIG. 1. (Color online) Finite conductivity correction factors with
respect to a for two parallel Au plates at zero temperature. Results
from Lifshitz theory are shown by the red dashed line. Results
from fourth-order correction based on the conventional perturbation
approach (Ref. [13]) are shown by black dots. Results from our
first-order correction based on exponential basis functions are shown
by the blue dash-dotted line. Results from our second-order correction
based on exponential basis functions are shown by the green solid
line.

the dielectric permittivity of the metal is described by the
Drude model, generalized plasma-type models, or real optical
data [24]. To guarantee an accurate approximation, coefficients
bi and ci need to satisfy Eq. (7).

B. Sphere-plate configuration

To avoid the difficulty of the plate alignment in the plate-
plate configuration, many experiments were carried out in the
sphere-plate configuration [25–27]. Thus, it is also of interest
and importance to study the finite conductivity correction
in this scenario. The ideal Casimir force between a sphere
and a plate made of the same material when their separation
is small compared to the sphere radius and the plate size
is given as Fs ideal(a) = −(π3h̄cR)/(360a3), where R is the
sphere radius. The Casimir force acting between two same
real materials with dielectric permittivity ε(ω) is calculated
as [13]

Fs(a)= h̄cR

16πa3

∫ +∞

0
x2dx

∫ +∞

1

dp

p2

×
[

ln

(
1 − (s − pε)2

(s + pε)2
e−x

)
+ ln

(
1 − (s − p)2

(s + p)2
e−x

)]
.

(12)

The same plasma model is used for the dielectric permittivity
of the metals. λp = 137/(2π ) nm is taken for Au as well. Our
first- and second-order finite conductivity corrections based on
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Results from Lifshitz theory
Results from our method with 1st order correction
Results from perturbation approach
with 4th order correction
Results from our method with 2nd order correction

FIG. 2. (Color online) Finite conductivity correction factors with
respect to a to the ideal Casimir force between a sphere and a plate
made of Au at zero temperature. Results from Lifshitz theory are
shown by the red dashed line. Results from fourth-order correction
based on the conventional perturbation approach are shown by black
dots. Results from our first-order correction based on exponential
basis functions are shown by the blue dash-dotted line. Results from
our second-order correction based on exponential basis functions are
shown by the green solid line.

exponential basis functions are

r̂1s = exp

(
−4δ0

a

)
, (13)

r̂2s = exp

(
−4δ0

a

)
+ 32

5
exp

[
−

(
115

21
− 5π2

147

)
δ0

a

](
δ0

a

)2

.

(14)

For comparison, we computed the finite conductivity
correction factors for the ideal Casimir force between a sphere
and a plate made of Au from the various approaches when the
separation gap a is between 60 and 400 nm (Fig. 2). Similarly
to the previous configuration, results from the conventional
perturbation approach and our approach are near to the true
finite conductivity correction obtained from Lifshitz theory
when the separation gap a is large. The discrepancies increase
with decreasing a. The fourth-order conductivity correction
with the conventional perturbation approach becomes highly
inaccurate when the separation gap a is below 100 nm.
Our approximations, especially our second-order conductivity
correction, still maintain high accuracy even when a = 60 nm.

V. FINITE CONDUCTIVITY CORRECTIONS TO THE
IDEAL CASIMIR FORCE BETWEEN DIFFERENT

METALS AT ZERO TEMPERATURE

Recently, there has been an increased interest in studying
and measuring the Casimir force between two different
materials [28–30]. This is important when studying the
repulsive Casimir force, as the repulsive Casimir force can only

be generated between different materials in a carefully chosen
medium [31–33]. Thus, we shall also extend our method to
calculate the finite conductivity corrections at zero temperature
to the ideal Casimir force between different materials. Our
method can also be applied to study the Casimir force interac-
tion between a metal surface and a dielectric surface as well.

A. Plate-plate configuration

Here, we will extend our method to calculate the finite
conductivity correction by using exponential basis functions
between two parallel plates made of different metals at
zero temperature. The Casimir force in this scenario is
calculated as

Fdp(a) = −h̄c

32π2a4

∫ +∞

0
x3dx

∫ +∞

1

dp

p2

×{X1(p,x) + X2(p,x)}, (15)

where X1(p,x) = ( (s1+pε1)(s2+pε2)
(s1−pε1)(s2−pε2)e

x − 1)−1 and X2(p,x) =
( (s1+p)(s2+p)

(s1−p)(s2−p)e
x − 1)−1. sk (k = 1,2) are computed by sk =√

εk − 1 + p2, and εk are the dielectric permittivities of the
two metals that can be described by the plasma model in
Eq. (9). In general, the effective penetration depths of the
two metals δ0 are different. Thus, it is not appropriate to apply
our formula in Eq. (5) directly. Instead, our nth-order finite
conductivity correction to the ideal Casimir force between
two different metals is given as

r̂ =
n∑

i=1

biFi(δ/a), (16)

where δ = (δ1 + δ2)/2, with δ1 and δ2 the effective penetration
depths of the two different interacting metals. Then, our
first- and second-order corrections, when calculated to satisfy
Eq. (7), are given as follows:

r̂1dp = exp

(
−16δ

3a

)
, (17)

r̂2dp = exp

(
−16δ

3a

)

+ 99

8
exp

{
−

[
4688

693
− 24π2

539
(4 − 12κ)

]
δ

a

}(
δ

a

)2

,

(18)

where κ = δ1δ2/(δ1 + δ2)2. Numerical simulations are carried
out to calculate the finite conductivity correction at zero
temperature to the Casimir force between Au and Al parallel
plates. δ1 = 137/(2π ) nm is still assumed for Au and δ2 =
100/(2π ) nm is assumed for Al. The finite conductivity
correction factors, computed from the various approaches
when the separation gap a is between 60 and 400 nm, are
plotted in Fig. 3. Similarly to the previous simulation results,
our first- and second-order conductivity corrections give very
accurate approximations over the whole range, while the
fourth-order perturbation approach based on polynomials is
accurate only when the separation gap is larger than 100 nm.
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Results from Lifshitz theory
Results from our method with 1st order correction
Results from perturbation approach
with 4th order correction
Results from our method with 2nd order correction

FIG. 3. (Color online) Finite conductivity correction factors with
respect to a to the ideal Casimir force between an Au plate and an
Al plate at zero temperature. Results from Lifshitz theory are shown
by the red dashed line. Results from fourth-order correction based
on the conventional perturbation approach are shown by black dots.
Results from our first-order correction based on exponential basis
functions are shown by the blue dash-dotted line. Results from our
second-order correction based on exponential basis functions are
shown by the green solid line.

B. Sphere-plate configuration

The Casimir force between a sphere and a plate made of
different materials is calculated as

Fds(a) = h̄cR

16πa3

∫ +∞

0
x2dx

∫ +∞

1

dp

p2

×{ln [Y1(p,x)] + ln [Y2(p,x)]}, (19)

where Y1(p,x) = 1 − (s1−pε1)(s2−pε2)
(s1+pε1)(s2+pε2)e

−x and Y2(p,x) = 1 −
(s1−p)(s2−p)
(s1+p)(s2+p)e

−x . sk (k = 1,2) are computed by sk =√
εk − 1 + p2, and εk are the dielectric permittivities of the

two metals that can be described by the plasma model in
Eq. (9). Our nth-order finite conductivity correction to the
ideal Casimir force between two different metals is still in the
form of Eq. (16). Our first- and second-order corrections are
calculated as

r̂1ds = exp

(
−4δ

a

)
, (20)

r̂2ds = exp

(
−4δ

a

)

+ 32

5
exp

{
−

[
115

21
− 5π2

147
(4 − 12κ)

]
δ

a

}(
δ

a

)2

.

(21)

Numerical simulations are carried out to calculate the finite
conductivity correction at zero temperature to the Casimir
force between an Au sphere and an Al plate. δ1 = 137/

(2π ) nm is assumed for Au and δ2 = 100/(2π ) nm is assumed
for Al. The finite conductivity correction factors, computed
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Results from Lifshitz theory
Results from our method with 1st order correction
Results from perturbation approach
with 4th order correction
Results from our method with 2nd order correction

FIG. 4. (Color online) Finite conductivity correction factors with
respect to a to the ideal Casimir force between an Au sphere and an
Al plate at zero temperature. Results from Lifshitz theory are shown
by the red dashed line. Results from fourth-order correction based on
conventional perturbation approach are shown by black dots. Results
from our first-order correction based on exponential basis functions
are shown by the blue dash-dotted line. Results from our second-order
correction based on exponential basis functions are shown by the
green solid line.

from various approaches when the separation gap a is between
60 and 400 nm, are plotted in Fig. 4. As expected, our first- and
second-order conductivity corrections based on exponential
basis functions give very accurate approximations over the
whole range. The fourth-order perturbation approach based
on polynomials gives unreliable approximations when the
separation gap is smaller than 100 nm.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we only considered the finite conductiv-
ity corrections at zero temperature. The finite conductivity
corrections at a nonzero temperature deviate from the ones
at zero temperature, but the deviation is very small when
the separation gap a is below 1 µm [34]. This makes the
measurement of this deviation difficult [35,36]. However, we
have noticed strong research interest in the temperature effect
recently [37], and our method can be adapted successfully
to calculate the finite conductivity at a nonzero temperature
as well. In this case, the coefficients bi and ci need to be
redetermined, and b1 �= 1 in general. This is because the finite
conductivity factor at a nonzero temperature is >1 when a is
large enough. Other coefficients can be determined in the same
way to satisfy Eq. (7).

The idea of our basis functions can be extended to approx-
imate various kinds of repulsive Casimir forces generated by
metamaterials [38] in closed forms. As mentioned, this will
be extremely important for the weak repulsive Casimir force
measurements. Other sets of basis functions than exponential
functions may be needed to mimic the Casimir force over the
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whole measurement range, which will be our future research
interest.

In conclusion, we have presented an approach to calculating
the finite conductivity corrections to the ideal Casimir force at
zero temperature, based on exponential basis functions. A the-
oretical analysis was performed to explain why our approach
will give more accurate results, especially when the separation
gap a is small. Numerical simulations show that highly precise

and convergent finite conductivity corrections are obtained
based on our exponential basis functions in plate-plate and
sphere-plate experimental configurations between the same
and different metals. Furthermore, it is important to note
that our method can be readily applied to other experimental
configurations of the Casimir interactions between metals [39]
and the Casimir interactions between a metal and a dielectric
as well.
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[10] R. Garcı́a and R. Pérez, Surf. Sci. Rep. 47, 197 (2002).
[11] V. Yannopapas and N. V. Vitanov, Phys. Rev. Lett. 103, 120401

(2009).
[12] A. Lambrecht and S. Reynaud, Eur. Phys. L. D 8, 309 (2000).
[13] V. B. Bezerra, G. L. Klimchitskaya, and V. M. Mostepanenko,

Phys. Rev. A 62, 014102 (2000).
[14] B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys.

Rev. A 65, 062109 (2002).
[15] F. Chen, U. Mohideen, G. L. Klimchitskaya, and V. M.

Mostepanenko, Phys. Rev. A 66, 032113 (2002).
[16] B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko, Ann.

Phys. (NY) 323, 291 (2008).
[17] V. B. Bezerra, G. L. Klimchitskaya, and C. Romero, Int. J. Mod.

Phys. A 16, 3103 (2001).
[18] S. de Man, K. Heeck, R. J. Wijngaarden, and D. Iannuzzi, Phys.

Rev. Lett. 103, 040402 (2009).
[19] J. N. Munday, F. Capasso, and V. A. Parsegian, Nature (London)

457, 170 (2009).
[20] H. Haakh, F. Intravaia, and C. Henkel, Phys. Rev. A 82, 012507

(2010).

[21] S. Cui and Y. C. Soh, IEEE Trans. Electron Devices 57, 2310
(2010).

[22] S. Cui and Y. C. Soh, Appl. Phys. Lett. 96, 081102
(2010).

[23] F. Zhou and L. Spruch, Phys. Rev. A 52, 297 (1995).
[24] M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M.

Mostepanenko, Advances in the Casimir Effect (Oxford Uni-
versity Press, New York, 2009), p. 334.

[25] S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).
[26] T. Ederth, Phys. Rev. A 62, 062104 (2000).
[27] G. Torricelli, P. J. van Zwol, O. Shpak, C. Binns, G. Palasantzas,

B. J. Kooi, V. B. Svetovoy, and M. Wuttig, Phys. Rev. A 82,
010101 (2010).

[28] R. S. Decca, D. Lopez, E. Fischbach, and D. E. Krause, Phys.
Rev. Lett. 91, 050402 (2003).

[29] R. S. Decca, D. Lopez, H. B. Chan, E. Fischbach, D. E. Krause,
and C. R. Jamell, Phys. Rev. Lett. 94, 240401 (2005).

[30] A. Lambrecht and I. G. Pirozhenko, Phys. Rev. A 78, 062102
(2008).

[31] I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv.
Phys. 10, 165 (1961).

[32] O. Kenneth, I. Klich, A. Mann, and M. Revzen, Phys. Rev. Lett.
89, 033001 (2002).

[33] U. Leonhardt and T. G. Philbin, New J. Phys. 9, 254 (2007).
[34] K. A. Milton, J. Phys. A 37, R209 (2004).
[35] S. K. Lamoreaux, Rep. Prog. Phys. 68, 201 (2005).
[36] A. W. Rodriguez, D. Woolf, A. P. McCauley, F. Capasso, J. D.

Joannopoulos, and S. G. Johnson, Phys. Rev. Lett. 105, 060401
(2010).

[37] M. Antezza, L. P. Pitaevskii, S. Stringari, and V. B. Svetovoy,
Phys. Rev. A 77, 022901 (2008).

[38] R. Zhao, Th. Koschny, E. N. Economou, and C. M. Soukoulis,
Phys. Rev. B 81, 235126 (2010).

[39] K. Tatur and L. M. Woods, Phys. Rev. A 80, 050101 (2009).

062510-6

http://dx.doi.org/10.1080/00107510600693683
http://dx.doi.org/10.1080/00107510600693683
http://dx.doi.org/10.1103/PhysRevLett.87.211801
http://dx.doi.org/10.1109/JMEMS.2010.2067433
http://dx.doi.org/10.1109/JSTQE.2007.893082
http://dx.doi.org/10.1109/JSTQE.2007.893082
http://dx.doi.org/10.1126/science.1057984
http://dx.doi.org/10.1103/PhysRevA.60.3487
http://dx.doi.org/10.1016/S0167-5729(02)00077-8
http://dx.doi.org/10.1103/PhysRevLett.103.120401
http://dx.doi.org/10.1103/PhysRevLett.103.120401
http://dx.doi.org/10.1007/s100530050041
http://dx.doi.org/10.1103/PhysRevA.62.014102
http://dx.doi.org/10.1103/PhysRevA.65.062109
http://dx.doi.org/10.1103/PhysRevA.65.062109
http://dx.doi.org/10.1103/PhysRevA.66.032113
http://dx.doi.org/10.1016/j.aop.2007.04.005
http://dx.doi.org/10.1016/j.aop.2007.04.005
http://dx.doi.org/10.1142/S0217751X01004426
http://dx.doi.org/10.1142/S0217751X01004426
http://dx.doi.org/10.1103/PhysRevLett.103.040402
http://dx.doi.org/10.1103/PhysRevLett.103.040402
http://dx.doi.org/10.1038/nature07610
http://dx.doi.org/10.1038/nature07610
http://dx.doi.org/10.1103/PhysRevA.82.012507
http://dx.doi.org/10.1103/PhysRevA.82.012507
http://dx.doi.org/10.1109/TED.2010.2051862
http://dx.doi.org/10.1109/TED.2010.2051862
http://dx.doi.org/10.1063/1.3326078
http://dx.doi.org/10.1063/1.3326078
http://dx.doi.org/10.1103/PhysRevA.52.297
http://dx.doi.org/10.1103/PhysRevLett.78.5
http://dx.doi.org/10.1103/PhysRevA.62.062104
http://dx.doi.org/10.1103/PhysRevA.82.010101
http://dx.doi.org/10.1103/PhysRevA.82.010101
http://dx.doi.org/10.1103/PhysRevLett.91.050402
http://dx.doi.org/10.1103/PhysRevLett.91.050402
http://dx.doi.org/10.1103/PhysRevLett.94.240401
http://dx.doi.org/10.1103/PhysRevA.78.062102
http://dx.doi.org/10.1103/PhysRevA.78.062102
http://dx.doi.org/10.1080/00018736100101281
http://dx.doi.org/10.1080/00018736100101281
http://dx.doi.org/10.1103/PhysRevLett.89.033001
http://dx.doi.org/10.1103/PhysRevLett.89.033001
http://dx.doi.org/10.1088/1367-2630/9/8/254
http://dx.doi.org/10.1088/0305-4470/37/38/R01
http://dx.doi.org/10.1088/0034-4885/68/1/R04
http://dx.doi.org/10.1103/PhysRevLett.105.060401
http://dx.doi.org/10.1103/PhysRevLett.105.060401
http://dx.doi.org/10.1103/PhysRevA.77.022901
http://dx.doi.org/10.1103/PhysRevB.81.235126
http://dx.doi.org/10.1103/PhysRevA.80.050101

