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Nonrelativistic, relativistic, quantum electrodynamic, and finite nuclear mass corrections to the energy levels are
obtained for the nS1/2,n = 3, . . . ,9 states of the lithium atom. Computational approach is based on the explicitly
correlated Hylleraas functions with the analytic integration and recursion relations. Theoretical predictions for the
ionization potential of nS1/2 states and transition energies nS1/2 → 2S1/2 are compared to known experimental
values for 6,7Li isotopes.
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I. INTRODUCTION

The high accuracy for transition frequencies in light
few-electron atoms is the long-standing goal of theoretical
methods for evaluation of energy levels. Matching the exper-
imental accuracy requires precise treatment of the electron
correlations, relativistic, and quantum electrodynamic (QED)
effects. The only approach which consistently accounts for
all corrections beyond the nonrelativistic approximation is the
one based on the expansion of the energy in the fine structure
constant α. Each expansion coefficient can be expressed
in terms of the expectation value with the nonrelativistic
wave function of some effective Hamiltonian [1] derived in
the framework of the nonrelativistic QED (NRQED). This
method has been advanced significantly in the past few years
by the calculation of m α6 corrections to helium energy
levels [2,3], m α7 to helium fine structure [4,5], and leading
relativistic and QED corrections in three- and four-electron
systems [6–8].

We have recently performed accurate Hylleraas-type cal-
culations for the ionization potential (Vion) of the ground
state 22S1/2 and the transition frequency 3S → 2S [9]. These
results are in good agreement with the other Hylleraas-type
calculations by Yan and Drake [10] and in the approximate
agreement with calculations using fully correlated Gaussian
functions by Stanke et al. [11]. Our theoretical predictions
are consistent with measurements of the transition energy
3S → 2S for 6,7Li by Radziemski et al. [12], Bushaw et al.
[13], and Reinhardt et al. [14] but are in any case much less
accurate than the most recent one by Sanchez et al. [15].

In this work, we present comprehensive high-precision
calculations of energy levels of low-lying excited nS states
with n = 3, . . . ,9 of lithium, leading to Vion and transition
frequencies nS → 2S (the result for 3S → 2S was previously
obtained in Ref. [9]). The calculation including complete
relativistic m α4 and QED m α5, estimate of m α6,7 QED terms
and dominating recoil effects are performed for states the with
principal number n � 9. This work is motivated by existing
and planned precise measurements. Lorenzen and Niemax
[16], Radziemski et al. [12], and recently DeGraffenreid
and Sansonetti [17] have measured the two-photon transition
4S → 2S in 6Li and 7Li, providing precise benchmark data.
Radziemski et al. [12] performed measurements for transition
frequencies including n = 5,6, but no precise theoretical

predictions with relativistic and QED effects have been
published so far for these states.

The ground of accurate calculations of (light) atomic energy
levels in the NRQED approach is the precise representation
of the nonrelativistic wave function. The frequently used
explicitly correlated Gaussian (ECG) functions give accurate
nonrelativistic energies, but the obtained wave function does
not have the proper asymptotic behavior at short (the cusp
condition) and long distances. It limits this representation only
to the calculation of leading relativistic and QED corrections.
The important advantage of ECG functions are applications to
the multielectron systems, which is very difficult to achieve
with the other explicitly correlated methods.

The most accurate wave function in three-electron atoms are
obtained in the Hylleraas basis set [18–20]. The calculations
of matrix elements of a nonrelativistic Hamiltonian, as well as
relativistic and QED operators, involve combination Hylleraas
integrals, which are obtained analytically using recursion
relations [20,21]. We have recently obtained high-precision
results for the ground state of lithium using other types of
exponentially correlated basis functions [22], which have good
analytical properties. Although precision of the energies is not
comparable with Hylleraas results, this basis is particularly
convenient for evaluation of expectation values of the operators
at higher orders of NRQED [23].

Using variational method for the nonrelativistic energies
for excited S states, the results obtained here are the most
precise that have been ever published. They improve the
precision of the former variational Hylleraas results by
Luchow and Kleindiens [24] and King [25] and the Hylleraas-
configuration-interaction method by Sims and Hagstrom [26]
by several orders of magnitude.

II. ENERGY LEVELS IN THE NRQED APPROACH

In this section we summarize contributions to the energy
levels in the NRQED expansion as a power series in fine
structure constant α and reduced electron mass to nuclear mass
ratio η = −µ/mN = −m/(m + mN )

E = m α2 [E (2,0) + η E (2,1) + η2 E (2,2)]

+m α4 [E (4,0) + η E (4,1)] + m α5 [E (5,0) + η E (5,1)]

+m α6 E (6,0) + m α7 E (7,0), (1)
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and each dimensionless coefficient E (m,n) is calculated sepa-
rately as an expectation value of the corresponding operator.
The leading contribution E (2,0) ≡ E0 is an eigenvalue of
the nonrelativistic Hamiltonian for three-electron atom with
infinitely heavy nucleus

H0 =
∑

a

p2
a

2
−

∑
a

Z

ra

+
∑
a>b

1

rab

. (2)

The first- and second-order finite mass nonrelativistic correc-
tions are given by

E (2,1) = E (2,0) −
∑
a<b

〈 �pa · �pb〉, (3)

E (2,2) = −
∑
a<b

〈 �pa · �pb〉 + 1

2

∑
a<b

〈 �pa · �pb〉mp, (4)

where

〈· · ·〉mp = 2

〈
· · · 1

(E0 − H0)′ �pa · �pb

〉
(5)

is the mass polarization second-order term.
In order to calculate leading relativistic corrections E (4,0) =

〈H(4,0)〉 we consider the Breit-Pauli Hamiltonian [27], which
for states with vanishing angular momentum and spin the
expectation value can be simplified to the form

H(4,0) =
∑

a

[
− �p 4

a

8
+ π Z

2
δ3(ra)

]

+
∑
a>b

[
π δ3(rab) − 1

2
pi

a

(
δij

rab

+ ri
ab r

j

ab

r3
ab

)
p

j

b

]
. (6)

The finite nuclear mass correction E (4,1) to the leading
relativistic contribution has the parts resulting from Eq. (6)
due to mass scaling E (4,1)

ms and mass polarization perturbation
〈H(4,0)〉mp and additional recoil term E (4,1)

r

E (4,1) = E (4,1)
ms + 〈H(4,0)〉mp + E (4,1)

r , (7)

E (4,1)
ms = −1

2

∑
a

〈 �p 4
a

〉 + 3

{
π Z

2

∑
a

〈δ3(ra)〉+π
∑
a>b

〈δ3(rab)〉

− 1

2

∑
a>b

〈
pi

a

(
δij

rab

+ ri
ab r

j

ab

r3
ab

)
p
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b

〉}
, (8)

E (4,1)
r = −Z

2

∑
a,b

〈
pi

a

(
δij

ra

+ ri
a r

j
a

r3
a

)
p

j

b

〉
. (9)

There is also a correction of the order m α4, which is due to
the finite nuclear size

E (4,0)
nuc = 2π Z

3

r2
c

λ-2

∑
a

〈δ3(ra)〉, (10)

where r2
c is the averaged square of the charge radius and λ- is

the electron Compton wavelength divided by 2 π .

Leading QED corrections of order m α5 is given by [28]

E (5,0) = 4 Z

3

[
19

30
+ ln(α−2) − ln k0

] ∑
a

〈δ3(ra)〉

+
[

164

15
+ 14

3
ln α

] ∑
a<b

〈δ3(rab)〉

− 7

6 π

∑
a<b

〈
P

(
1

r3
ab

)〉
, (11)

where the Bethe logarithm ln k0 has the form

ln k0 ≡
〈∑

a �pa (H0 − E0) ln[2 (H0 − E0)]
∑

b �pb

〉
2 π Z

∑
c〈δ3(rc)〉 (12)

and

〈φ|P
(

1

r3

)
|ψ〉 = lim

a→0

∫
d3r φ∗(�r)

[
1

r3
�(r − a)

+ 4 π δ3(r) (γ + ln a)

]
ψ(�r). (13)

The finite nucleus mass correction to the leading QED
contribution [29]

E (5,1) = E (5,1)
ms + E (5,1)

mp + E (5,1)
r , (14)

consists of the mass scaling part

E (5,1)
ms = 3 E (5,0) − 4 Z

3

∑
a

〈δ3(ra)〉 + 14

3

∑
a<b

〈δ3(rab)〉,

(15)

and additional recoil terms from Salpeter correction at order
O(µ/M).

E (5,1)
r = −Z2

[
2

3
ln(α−1) + 62

9
− 8

3
ln k0

]∑
a

〈δ3(ra)〉

+ 7

6 π

∑
a

〈
P

(
1

r3
a

)〉
, (16)

and E (5,1)
mp due to mass polarization perturbation of E (5,0). The

mass scaling contribution apart from scaling with factor of 3
for all operators in Eq. (11) has two additional terms coming
from scaling of the Bethe logarithm and P (1/r3) operator.

Considering m α6 corrections, they are well known for
the hydrogen atom [30]. Corresponding calculations in mul-
tielectron systems have been performed only for low-lying
states of the helium atom [2] and heliumlike ions [3]. For
three-electron atom we use an approximate formula on the
basis of hydrogenic values

E (6) = Z2

[
427

96
− 2 ln(2)

]∑
a

〈δ3(ra)〉, (17)

since complete calculations are too difficult to perform
presently. This approximation includes dominating electron-
nucleus one-loop radiative correction [30]. We neglect two-
loop radiative, electron-electron radiative, and the purely
relativistic corrections. We expect them to be relatively small
compared to the dominating term being about 10% or less.
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Due to the numerical significance, one includes approx-
imately m α7 contribution which is known exactly only for
hydrogenic systems [30].

E
(7)
H (n) = m

α

π

(Z α)6

n3
[A60(n) + ln(Z α)−2 A61(n)

+ ln2(Z α)−2 A62] + m

(
α

π

)2 (Z α)5

n3
B50

+m

(
α

π

)3 (Z α)4

n3
C40. (18)

It involves one-, two-, and three-loop corrections, and values
of A,B, and C coefficients may be found in Ref. [30].
Following Ref. [31] these hydrogenic values of order m α7

are extrapolated to lithium, according to

E (7)(Z) = [2 E (7)(1S,Z) + E (7)(nX,Z − 2)]

× 〈δ3(r1) + δ3(r2) + δ3(r3)〉Li

2 〈δ3(r)〉1S,Z + 〈δ3(r)〉nX,Z−2
, (19)

for X = S, and for states with higher angular momenta
E (7)(nX,Z) is neglected. We expect this approximate formula
to be accurate to 25%. This completes QED corrections to
transition frequencies and the ionization energy in lithium
atom at the present level of accuracy.

III. THE WAVE FUNCTION AND MATRIX ELEMENTS

Here we present a short summary of the construction of the
wave function. It is based on the work of Yan and Drake [19]
and was used in our former articles [9,20]. The wave function
for the S state is expressed as a linear combination of terms ψ ,

the antisymmetrized product A of the spatial function φ, and
the spin singlet function χ ,

ψ = A[φ(�r1,�r2,�r3) χ ] , (20)

φ(�r1,�r2,�r3) = e−w1 r1−w2 r2−w3 r3 r
n1
23 r

n2
31 r

n3
12 r

n4
1 r

n5
2 r

n6
3 , (21)

χ = α(1) β(2) α(3) − β(1) α(2) α(3), (22)

with ni being non-negative integers, wi ∈ R+. The matrix
element of the nonrelativistic Hamiltonian H0 in Eq. (2) or
any spin-independent operator can be expressed after spin
variables reduction as

〈ψ |H0|ψ ′〉 = 〈2 φ(r1,r2,r3) + 2 φ(r2,r1,r3) − φ(r3,r1,r2)

−φ(r2,r3,r1) − φ(r1,r3,r2) − φ(r3,r2,r1)

× |H0|φ′(r1,r2,r3)〉. (23)

All these spatial matrix elements can be evaluated as a linear
combination of Hylleraas integrals of the form

f (n1,n2,n3,n4,n5,n6)

=
∫

d3r1

4 π

∫
d3r2

4 π

∫
d3r3

4 π
e−w1 r1−w2 r2−w3 r3

× r
n1−1
23 r

n2−1
31 r

n3−1
12 r

n4−1
1 r

n5−1
2 r

n6−1
3 , (24)

with non-negative integers ni . The recurrence relation method
for evaluation of integrals with non-negative ni was derived in
Ref. [21].

The total wave function is combined from φ terms with ni

satisfying

6∑
i=1

ni � �, (25)

TABLE I. Nonrelativistic (dimensionless) energy E0 of the ground state and excited singlet S states n = 3, . . . ,9 for the lithium atom.

� N 2S 3S 4S 51S1/2

10 4172 −7.478 060 323 864 52 −7.354 098 421 319 29 −7.318 530 845 758 2 −7.303 551 578 678 0
11 6412 −7.478 060 323 902 25 −7.354 098 421 422 84 −7.318 530 845 945 4 −7.303 551 579 120 3
12 9576 −7.478 060 323 908 48 −7.354 098 421 439 14 −7.318 530 845 967 3 −7.303 551 579 195 5
13 13 944 −7.478 060 323 909 68 −7.354 098 421 441 50 −7.318 530 845 985 3 −7.303 551 579 213 7
13.6 15 952 −7.478 060 323 910 02 −7.354 098 421 442 66 −7.318 530 845 990 3 −7.303 551 579 219 0
13.10 30 632 −7.478 060 323 910 097
∞ −7.478 060 323 910 2(2) −7.354 098 421 443 2(4) −7.318 530 845 994(2) −7.303 551 579 222(3)

King [25] −7.354 098 355 −7.318 530 816 −7.303 551 551
PP [23] −7.478 060 323 448
Sims and Hangstrom [26] −7.478 060 323 452 −7.354 098 420 933 −7.318 530 845 331 −7.303 551 578 291
Stanke et al. [11] −7.478 060 323 81 −7.354 098 421 113
Yan et al. [10] −7.478 060 323 892 4

6S 7S 8S 9S

10 4172 −7.295 859 508 912 2 −7.291 392 268 995 −7.288 569 820 050 −7.286 673 539 36
11 6412 −7.295 859 510 430 7 −7.291 392 273 172 −7.288 569 830 260 −7.286 673 578 96
12 9576 −7.295 859 510 704 4 −7.291 392 273 915 −7.288 569 832 052 −7.286 673 584 90
13 13 944 −7.295 859 510 787 2 −7.291 392 274 112 −7.288 569 832 732 −7.286 673 586 35
13.6 15 952 −7.295 859 510 808 3 −7.291 392 274 160 −7.288 569 832 747 −7.286 673 586 71
∞ −7.295 859 510 815(6) −7.291 392 274 22(5) −7.288 569 832 76(9) −7.286 673 587 1(3)

King [25] −7.295 859 384
Sims and Hangstrom [26] −7.295 859 509 943 −7.291 392 273 116
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TABLE II. Coefficients of expansion of ionization potential in powers of α and η in Li.

Energy 2S 3S 4S 5S

ν(2,0) 0.198 146 911 241 4(6) 0.074 185 008 774 5(11) 0.038 617 433 335(12) 0.023 638 166 56(3)
ν(2,1) 0.211 013 905 524(3) 0.077 249 063 623(3) 0.039 780 535 98(3) 0.024 197 632 87(5)
ν(2,2) 0.235 286 452 52(3) 0.111 626 634 4(4) 0.063 438 041(3) 0.040 673 914(5)
ν(4,0) 0.240 534 3(4) 0.061 784 2(18) 0.024 249(2) 0.011 831(3)
ν

(4,0)
fs −0.870 799 〈r2

ch〉 −0.204 103 〈r2
ch〉 −0.077 195 〈r2

ch〉 −0.037 082 〈r2
ch〉

ν(4,1) 0.013 50(3) 0.009 749(3) 0.004 63(1) 0.002 6(2)
ν(5,0) −2.858 8(6) −0.666(3) −0.252(3) −0.121(2)
ν(5,1) −1.889(3) −0.437(18) −0.15(2) −0.076(12)
ν(6,0) −12.0(1.2) −2.8(7) −1.06(10) −0.51(5)
ν(7,0) 147.(37) 32.(8) 12.(3) 5.4(14)

Energy 6S 7S 8S 9S

ν(2,0) 0.015 946 098 17(4) 0.011 478 861 62(11) 0.008 656 420 4(3) 0.006 760 174 9(8)
ν(2,1) 0.016 256 776 7(2) 0.011 668 857 5(2) 0.008 780 947 5(8) 0.006 846 157 944
ν(2,2) 0.028 239 866(4) 0.020 732 792(12) 0.015 861 5(3) 0.012 523 281 5
ν(4,0) 0.006 71(2) 0.004 25(3) 0.003 25(7) 0.002 6(3)
ν

(4,0)
fs −0.020 577 〈r2

ch〉 −0.012 579 〈r2
ch〉 −0.008 238 〈r2

ch〉 −0.005 681 〈r2
ch〉

ν(4,1) 0.001 8(2) 0.011(3) 0.008(3) 0.005(3)
ν(5,0) −0.067(2) −0.042 0(11) −0.027 9(11) −0.018 9(11)
ν(5,1) −0.042(12) −0.027(10) −0.018(6) −0.013(4)
ν(6,0) −0.28(3) −0.17(2) −0.114(11) −0.078(8)
ν(7,0) 2.9(3) 1.8(5) 1.1(3) 0.8(2)

for � up to 13. For each � we minimize energy with respect
to the free parameters wi and divide the whole basis set into
five sectors, each one with its own set of wi’s [19,20]. To
avoid numerical instabilities, within each sector we drop the
terms with n4 > n5 (or n4 < n5) and for n4 = n5 drop terms
with n1 > n2 (or n1 < n2). For further improvement, the basis
with � = 13 was extended by completing each sectors using
functions with � = 6. Such a basis is denoted by � = 13.6.
And, finally, for the ground state, the largest basis with � =
13.10 has been used.

IV. NUMERICAL RESULTS

Numerical results for nonrelativistic energies of the ground
state and excited states nS, n = 3, . . . ,9 with different size
N of basis sets are presented in Table I. Extrapolated values
� = ∞ are obtained by fitting the function X(�) = X0 +
X1/�n with some integer n. All numerical values are the
most accurate among known in the literature. We improve the
accuracy of the excited n = 4, . . . ,7 states approximately by
three orders compared to the recent results by Sims et al. [26]
with Hylleraas-CI method and King’s with Hylleraas functions
[25]. The quality of the wave function is getting worse for
higher n and the energy for the 9S is about three orders less
accurate compared to the one of the ground state. It means that
this sector division is getting nonoptimal for highly excited
states. This is a reason why we used � = 13.10 only in the
case of the ground state. For excited states the better progress
could be achieved by finding better sector division rather than
increasing the basis size.

The benchmark results for different methods are those for
the ground state. Hylleraas functions seem to be the most
optimal ones due to good analytical properties. Relatively

small number of variational parameters (i.e., 15) allows one an
efficient optimization of the wave function even with very big
set of trial functions (�10 000). The problem is the slowness
of the sextuple precision arithmetics, which has to be used
in optimization based on the analytical gradient. Gaussian
functions do not require such high-precision arithmetics [11],
but improper analytical properties limit their high-precision
applications to leading relativistic and QED effects. The right
analytic properties are critical for the evaluation of higher-
order QED effects. Anyway, Gauss-correlated functions can
be easily extended to few-electron atomic and molecular
systems. This extension has not been possible until now
with Hylleraas due to very complicated integrals in matrix
elements calculations. The problem is even more severe for
exponentially correlated functions. In spite of this, we have
recently been able to obtain accurate matrix elements with this
basis [22], which is promising at high-order QED calculations
as a complementary tool for the Hylleraas method [23].

In the next step of this work, we calculate various matrix
elements to obtain corrections to the energy levels of the
lithium states. The exception is the Bethe logarithm and
its recoil correction for nS state of lithium with n = 2,3.
We use values calculated by Yan and Drake and collected
in the article [10]. For lithium states with n = 4, . . . ,9 we
assume interpolated values using the formula ln k0(n2S1/2) =
ln k0(11S0)Li+ + a/n3, where the constant a reproduces the nu-
merical value for ln k0(32S1/2) = 2.982 36(6) + 2 ln(Z) with
ln k0(11S0)Li+ = 2.982 624 6 + 2 ln(Z). The error bar of the
interpolated value can be assumed conservatively for 4S as
150% of the one for the 3S state. For higher n uncertainties
can be reduced significantly since the Bethe logarithm value
quickly approaches the asymptotic result. A similar analysis
and approach can be applied to recoil corrections to the Bethe
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TABLE III. Coefficients of expansion of transition energy in powers of α and η in Li.

Energy 3S-2S 4S-2S 5S-2S 6S-2S

ν(2,0) 0.123 961 902 467(2) 0.159 529 477 90(2) 0.174 508 744 66(4) 0.182 200 813 03(5)
ν(2,1) 0.133 764 841 901(4) 0.171 233 369 56(3) 0.186 816 272 64(6) 0.194 757 128 90(8)
ν(2,2) 0.123 659 818 1(4) 0.171 848 410(3) 0.194 612 536(8) 0.207 046 585(4)
ν(4,0) 0.178 751(2) 0.216 286(3) 0.228 704(3) 0.233 815(3)
ν

(4,0)
fs −0.666 696 〈r2

ch〉 −0.793 605 〈r2
ch〉 −0.833 717 〈r2

ch〉 −0.850 221(1) 〈r2
ch〉

ν(4,1) 0.003 782(10) 0.008 88(3) 0.010 9(2) 0.012 0(4)
ν(5,0) −2.193(3) −2.607(3) −2.738(3) −2.792(2)
ν(5,1) −1.46(2) −1.74(2) −1.82(2) −1.85(2)
ν(6,0) −9.2(9) −10.9(11) −11.5(12) −11.7(12)
ν(7,0) 115.(29) 135.(34) 141.(35) 144.(36)

Energy 7S-2S 8S-2S 9S-2S

ν(2,0) 0.186 668 049 5(2) 0.189 490 490 6(4) 0.191 386 735 9(9)
ν(2,1) 0.199 345 047 9(3) 0.202 232 958 0(6) 0.204 167 747 6(12)
ν(2,2) 0.214 553 658(9) 0.219 425 02(8) 0.222 762 9(2))
ν(4,0) 0.236 279(4) 0.237 285(8) 0.236 62(9)
ν

(4,0)
fs −0.858 220(2) 〈r2

ch〉 −0.862 560(4) 〈r2
ch〉 −0.865 118(8) 〈r2

ch〉
ν(4,1) 0.012 6(3) 0.012 9(3) 0.013 1(2)
ν(5,0) −2.818(2) −2.831(1) −2.840(1)
ν(5,1) −1.87(1) −1.87(1) −1.87(1)
ν(6,0) −11.8(12) −11.9(12) −11.9(12)
ν(7,0) 145.(36) 146.(37) 146.(37)

logarithm. Other numerical mean values for Li+ are taken
from the recent work by Yerokhin and Pachucki [3]. These
results for two-electron ions are obtained with much higher
precision and their uncertainties can be neglected in the further
analysis.

In Tables II and III we present numerical coefficients of the
expansion for ionization potential and transition energies. For
the states A and B we use

ν
(m,n)
A,B = E (m,n)

A − E (m,n)
B . (26)

All nonrelativistic and leading relativistic contributions are
extrapolated results and their uncertainties are purely
numerical. Coefficients ν(4,1) are difficult to calculate precisely
because of significant cancellation among involved states.
Additionally, numerical instabilities become observable for
states with higher n. Thus, in Tables II and III we have
applied for n � 7 the interpolation rule analogously to
the one for Bethe logarithm with 1/n3 dependence and
asymptotics corresponding to Li+(1 1S0). Resulting predic-
tions for leading QED effects are limited by numerical
uncertainties of the Bethe logarithm and its recoil correc-
tion. Recoil corrections give very small contributions to
the final results of the ionization potential and transition
frequencies. They should be considered at the level of the
systematic uncertainties. The most significant uncertainties
originate from estimations of higher-order QED corrections
of 10% for ν(6,0) and 25% for ν(7,0) and are presented in
Tables II and III.

We are now at a position to present theoretical predictions
of ionization potentials and transition frequencies for different
isotopes of lithium. We consider the stable 6Li and 7Li
with masses in atomic units 6.015 122 794(16) [32] and

7.016 003 425 6(45) [33] and nuclear charge radii in fermii,
2.540(28) [34] and 2.390(30) [35], respectively. Final results
are presented in Table IV. The uncertainties of the ionization
potentials for the states with low n come from estimations
of higher QED effects and numerical uncertainty of leading
QED from the Bethe logarithm. For higher n, only the second
uncertainty is important. It differs for transition frequencies,
where the unknown higher QED corrections dominate; never-
theless, the Bethe logarithm uncertainty is at the moment the
bottleneck of theoretical predictions.

In comparison to other theoretical values, including rela-
tivistic and QED effects, especially with those by Yan et al.
[10] obtained in the Hylleraas basis set, we observe good
agreement for Vion(2S) and ν(3S-2S). However, there are no
published analogous results for the higher excited states. In
comparison to recent experimental values we observe that
theoretical predictions are about two orders of magnitude
less accurate than measurements of Vion(2S) by Bushaw
et al. [13], ν(3S-2S) by Sanchez et al. [15,36], and ν(4S-2S)
by DeGraffenreid and Sansonetti [17]. This indicates the
necessity for further development in theoretical methods to
improve the numerical accuracy of Bethe logarithms and
to complete evaluation of QED effects at m α6 order. For
higher excited states the measurements are not as precise
as those mentioned above. For transition energies with n =
5,6 we observe discrepancies of our theoretical predictions
with experimental values by Radziemski et al. [12]. We
guess that these experimental values are not so accurate as
claimed. This situation is probably similar to that in the
transition ν(4S-2S), where DeGraffenreid and Sansonetti [17]
have already corrected the former experimental value in
Ref. [12].
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TABLE IV. The ionization and the transition energies for 6Li and 7Li in units cm−1. The results for Vion(2S) and the transition
frequency ν(3S-2S) for 7Li were obtained previously in Ref. [9]. The third column refers to the type of the work (experimental versus
theoretical).

6Li 7Li

n e or t ν(nS-2S) Vion(nS) ν(nS-2S) Vion(nS)

2 t 43 486.556 4(8) 43 487.159 0(8)
Yan et al. [10] t 43 487.158 3(10)
Bushaw et al. [37] e 43 487.159 40(18)

3 t 27 205.711 7(7) 16 280.844 8(4) 27 206.093 7(7) 16 281.065 4(4)
Stanke et al. [11] t 27 205.710 45 27 206.092 41
Yan et al. [10] t 27 205.711 5(10) 27 206.093 6(10)
Radziemski et al. [12] e 27 205.712 9(10) 27 206.095 2(10)
Reinhardt et al. [14] e 27 205.711 5(9) 27 206.094 04(9)
Sanchez et al. [15] e 27 205.712 014(8) 27 206.094 082(6)
Sanchez et al. [36] e 27 205.712 013(6)

4 t 35 011.544 5(8) 8 475.011 9(4) 35 012.033 6(8) 8 475.125 5(4)
Lorenzen and Niemax [16] e 35 012.033 7(7)
Radziemski et al. [12] e 35 011.543 2(10) 35 012.032 6(10)
DeGraffenreid and Sansonetti [17] e 35 011.544 497(30) 35 012.033 582(26)

5 t 38 298.935 3(8) 5 187.621 2(4) 38 299.468 8(8) 5 187.690 0(4)
Radziemski et al. [12] e 38 298.928 3(10) 38 299.462 7(10)

6 t 39 987.045 2(8) 3 499.511 2(3) 39 987.601 5(8) 3 499.557 6(3)
Radziemski et al. [12] e 39 987.027(4) 39 987.586(3)

7 t 40 967.425 0(8) 2 519.131 2(2) 40 967.994 4(8) 2 519.164 7(2)
8 t 41 586.832 2(8) 1 899.724 4(2) 41 587.409 8(8) 1 899.749 5(2)
9 t 42 002.963 1(8) 1 483.593 3(1) 42 003.546 2(8) 1 483.612 7(1)

V. SUMMARY

We have performed precise calculation of the nonrelativis-
tic, leading relativistic, and QED contributions to ionization
energies of low-lying S states in the Li atom. Higher-order
relativistic and QED corrections are calculated approximately
using the known formulas for the hydrogen atom. Obtained
results are much more accurate than any previously published
calculations and, in general, are in good agreement with
experimental values. The discrepancies with Radziemski et al.

[12] for higher excited states of Li suggests the need for
experimental verification.
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[13] B. A. Bushaw, W. Nörtershäuser, G. Ewald, A. Dax, and G. W.
F. Drake, Phys. Rev. Lett. 91, 043004 (2003).

[14] S. Reinhardt et al., Opt. Commun. 274, 354 (2007).
[15] R. Sanchez et al., New J. Phys. 11, 073016 (2009).
[16] C.-J. Lorenzen and K. Niemax, Phys. Scr. 27, 300 (1983).
[17] W. DeGraffenreid and C. J. Sansonetti, Phys. Rev. A 67, 012509

(2003).
[18] F. W. King, J. Mol. Struct., Theochem 400, 7 (1997).
[19] Z.-C. Yan and G. W. F. Drake, Phys. Rev. A 52, 3711

(1995).
[20] M. Puchalski and K. Pachucki, Phys. Rev. A 73, 022503

(2006).
[21] K. Pachucki, M. Puchalski, and E. Remiddi, Phys. Rev. A 70,

032502 (2004); K. Pachucki and M. Puchalski, ibid. 71, 032514
(2005); 77, 032511 (2008).

062509-6

http://dx.doi.org/10.1103/PhysRevA.71.012503
http://dx.doi.org/10.1103/PhysRevA.74.022512
http://dx.doi.org/10.1103/PhysRevA.74.062510
http://dx.doi.org/10.1103/PhysRevA.74.062510
http://dx.doi.org/10.1103/PhysRevA.76.059906
http://dx.doi.org/10.1103/PhysRevA.81.022507
http://dx.doi.org/10.1139/p02-111
http://dx.doi.org/10.1103/PhysRevLett.97.013002
http://dx.doi.org/10.1103/PhysRevA.58.3597
http://dx.doi.org/10.1103/PhysRevA.58.3597
http://dx.doi.org/10.1103/PhysRevLett.91.113004
http://dx.doi.org/10.1103/PhysRevLett.91.113004
http://dx.doi.org/10.1103/PhysRevLett.92.213001
http://dx.doi.org/10.1103/PhysRevA.78.052511
http://dx.doi.org/10.1103/PhysRevLett.100.243002
http://dx.doi.org/10.1103/PhysRevLett.100.243002
http://dx.doi.org/10.1103/PhysRevLett.102.249903
http://dx.doi.org/10.1103/PhysRevA.78.052507
http://dx.doi.org/10.1103/PhysRevA.52.4462
http://dx.doi.org/10.1103/PhysRevA.52.4462
http://dx.doi.org/10.1103/PhysRevLett.91.043004
http://dx.doi.org/10.1016/j.optcom.2007.02.050
http://dx.doi.org/10.1088/1367-2630/11/7/073016
http://dx.doi.org/10.1088/0031-8949/27/4/012
http://dx.doi.org/10.1103/PhysRevA.67.012509
http://dx.doi.org/10.1103/PhysRevA.67.012509
http://dx.doi.org/10.1016/S0166-1280(97)90265-7
http://dx.doi.org/10.1103/PhysRevA.52.3711
http://dx.doi.org/10.1103/PhysRevA.52.3711
http://dx.doi.org/10.1103/PhysRevA.73.022503
http://dx.doi.org/10.1103/PhysRevA.73.022503
http://dx.doi.org/10.1103/PhysRevA.70.032502
http://dx.doi.org/10.1103/PhysRevA.70.032502
http://dx.doi.org/10.1103/PhysRevA.71.032514
http://dx.doi.org/10.1103/PhysRevA.71.032514
http://dx.doi.org/10.1103/PhysRevA.77.032511


IONIZATION POTENTIAL FOR EXCITED S STATES . . . PHYSICAL REVIEW A 82, 062509 (2010)

[22] M. Puchalski, D. Kedziera, and K. Pachucki, Phys. Rev. A 80,
032521 (2009).

[23] M. Puchalski and K. Pachucki, Phys. Rev. A 81, 052505
(2010).

[24] A. Luchow and H. Kleindienst, Chem. Phys. Lett. 197, 105
(1992).

[25] F. W. King, Phys. Rev. A 76, 042512 (2007).
[26] J. S. Sims and S. A. Hagstrom, Phys. Rev. A 80, 052507

(2009).
[27] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-

and Two-Electron Atoms (Springer, Berlin, 1957).
[28] K. Pachucki, J. Phys. B 31, 5123 (1998).
[29] K. Pachucki and J. Sapirstein, J. Phys. B 33, 455

(2000).

[30] M. I. Eides, H. Grotch, and V. A. Shelyuto, Phys. Rep. 342, 63
(2001).

[31] G. W. F. Drake, ed., Handbook of Atomic, Molecular and Optical
Physics (Springer, New York, 2006).

[32] M. Smith et al., Phys. Rev. Lett. 101, 202501 (2008).
[33] S. Nagy, T. Fritioff, M. Suhonen, R. Schuch, K. Blaum,

M. Bjorkhage, and I. Bergstrom, Phys. Rev. Lett. 96, 163004
(2006).

[34] R. Sánchez et al., Phys. Rev. Lett. 96, 033002 (2006).
[35] C. W. de Jager, H. deVries, and C. deVries, At. Data Nucl. Data

Tables 14, 479 (1974).
[36] R. Sanchez et al., Phys. Rev. Lett. 96, 033002 (2006).
[37] B. A. Bushaw, W. Nörtershäuser, G. W. F. Drake, and H.-J.
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