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Nonadiabatic couplings from the Kohn-Sham derivative matrix: Formulation by time-dependent
density-functional theory and evaluation in the pseudopotential framework
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We study the time-dependent density-functional theory formulation of nonadiabatic couplings (NAC’s) to
settle problems regarding practical calculations. NAC’s have so far been rigorously formulated on the basis of the
density response scheme and expressed using the nuclear derivative of the Hamiltonian, ∂H/∂R, whereby causing
the pseudopotential problem. When rewritten using the nuclear derivative operator, ∂/∂R, or the d operator, the
formula is found free of the problem and thus provides a working numerical scheme. The d-operator-based
formulation also allows us to lay a foundation on the empirical Slater transition-state method and to show
an improved way of using the auxiliary excited-state wave-function ansatz, both of which have been utilized
in previous works. Evaluation of NAC near either the Jahn-Teller or the Renner-Teller intersection in various
molecular systems shows that the values of NAC are much improved over previous calculations when the
d-operator formula is implemented in the pseudopotential framework.

DOI: 10.1103/PhysRevA.82.062508 PACS number(s): 31.15.ee, 31.10.+z, 31.50.Gh

I. INTRODUCTION

Electronic degeneracy commonly exists in polyatomic
systems. Owing to the Jahn-Teller theorem [1,2] that the
ground state will be free of degeneracy to the greatest extent
possible, the equilibrium properties can usually be described
conveniently using the adiabatic (Born-Oppenheimer) approx-
imation to separate the nuclear and electronic degrees of
freedom. When dynamical properties are concerned, how-
ever, the system can approach the degeneracy point where
the adiabatic approximation is no longer valid [3–5]. The
nonadiabatic coupling (NAC), a driving force for nonadiabatic
transition to different potential energy surfaces (PES’s) [6,7],
is infinity at the degeneracy point and nonnegligible in
that vicinity, indicating that the NAC is as important as
the PES in determining the dynamical properties near the
degeneracy point [8–11]. Although the adiabatic-to-diabatic
transformation [3,4,12,13] may be used to partially remove
the NAC in the formulation [14,15], the residual NAC is not
necessarily negligible, which means that explicit evaluation
of the NAC is critically important for the understanding of
nonadiabatic processes.

To calculate the NAC, wave-function-based methods were
predominantly used in the past, but their computational
cost grows too rapidly with the system size. In the past
decade, on the other hand, density response methods have
been developed within the time-dependent density-functional
theory (TDDFT), showing great promise in resolving the
cost problem. The study was initiated by Chernyak and
Mukamel [16], who proposed to perturb the ground state using
a nuclear derivative of the Hamiltonian, ∂H/∂Rµ, multiplied
by a monochromatic oscillating coefficient, eiωt , whereby
the spectral function of the linear susceptibility (or dynamic
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polarizability) is proportional to the square of the NAC. Then,
one can obtain the NAC, except for the phase factor, by
calculating the susceptibility within the TDDFT and taking its
residue. This scheme was first implemented to a plane-wave
(PW) code by Baer [17] to study H3 using a real-time
approach and then to a PW-pseudopotential (PP) code by
Hu et al. [18,19] to systematically study small molecules
using a frequency domain approach from Casida [20,21].
It was revealed that NAC’s thus obtained are in reasonable
agreement with those obtained by theoretical models or
correlated wave-function methods for both Jahn-Teller [1] and
Renner-Teller [22] types of intersections in spite of using the
adiabatic local density approximation (ALDA). The modified
linear response scheme [23,24] allows successful application
of the scheme quite close to the degeneracy points. However,
good agreement was achieved only for monovalent elements;
for other elements, the results were not only unsatisfactory
but also quite sensitively dependent on PP’s [19]. This PP
problem can be traced back to inaccurate description of the
off-diagonal elements of ∂H/∂Rµ, such as that between 2s

and 2p of an atom, which is usually not guaranteed in the
PP framework. Note that such off-diagonal scattering terms,
which may also be called inelastic scattering terms, do not
appear in the ground-state calculations but do appear in the
NAC calculation. Hu et al. [25] showed that the value of
the NAC is much improved when using an all-electron linear
combination of atomic orbitals (LCAO) scheme formulated
following Tommasini et al. [26], and concluded that PP, rather
than ALDA, is indeed the major source of error. Here we
show that the PP problem can be eliminated by using the
d-matrix [or the Kohn-Sham (KS) matrix element for the
nuclear derivative operator, 〈ψiσ | ∂

∂Rµ
|ψjσ 〉] representation of

NAC instead of the h-matrix (or the KS matrix element for
the operator ∂H/∂Rµ, 〈ψiσ | ∂Ĥ

∂Rµ
|ψjσ 〉) representation which

is given in Refs. [18] and [19]. This is because the d matrix
can be safely calculated with PP in contrast to the h matrix.
In the following we provide the d-matrix-based formula of the
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NAC and show that numerical results can be much improved
over previous calculations based on the h-matrix formula.

The other aim of this paper is to clarify the similarity
and difference between existing d-matrix formulations for the
NAC [8,9,27,28]. The d-matrix was previously recognized as
the “NAC between KS orbitals” [29] and used for NAC simply
assuming a single-electron picture of static density-functional
theory to be valid at excited states as well [30–32]. Despite
the lack of justification, Billeter and Curioni [27] showed that
the mere d-matrix element between the particle and the hole
in the Slater transition state is particularly accurate for the
demonstrated systems. We will show that our d-matrix formula
can justify this intuitive approach when combined with the
modified linear response theory, not only for the equilibrium
geometries as demonstrated in Ref. [27] but also in the very
vicinity of either Jahn-Teller or Renner-Teller types of inter-
sections. More recently, d-matrix formulation was derived in
the work of Tavernelli et al. [8,9,28] on the basis of the Casida
ansatz with the use of the auxiliary wave function, which is
an effective wave function to reproduce the density response
of a system perturbed with a time-dependent local field. This
approach was first presented without much justification [8];
however, comparison of NAC values with complete active
space self-consistent field (CASSCF) calculations shows that it
is promising to give reasonably good results for demonstrated
systems. Later the validation of this approach was given [33]
in a way in which the d operator is used as a local field to give
the perturbation to the electrons, although such a perturbation
cannot be usually described by the d operator. Here we
will show that using our present d-matrix formula, the good
performance of the Casida ansatz in demonstrated systems can
be easily understood, although the rigorous formula shows that
the Casida ansatz in constructing auxiliary wave functions
needs to be modified for the general purpose of calculating
NAC, which might be important for future applications.

The present paper is organized as follows: In Sec. II, we
present the formulation of the NAC free of the PP problem,
starting from our established formula of the NAC. Therein
we discuss the connection of our formula to other existing
formulations. Justification of the Slater transition-state method
will be also made. In Sec. III, implementation in the PW-PP
framework and computational details are given. In Sec. IV,
practical calculations on various molecular systems possessing
Jahn-Teller or Renner-Teller intersections are performed and
compared with models or ab initio results in the literature. In
Sec. V, we conclude our work.

II. FORMULATION

The density response scheme of Hu et al. [18] begins
by relating the sum-over-state representation of the dynamic
polarizability

αµν(ω) =
∑

I

2ωI 〈�0| ∂Ĥ
∂Rµ

|�I 〉〈�I | ∂Ĥ
∂Rν

|�0〉
ω2

I − ω2
(1)

for a system perturbed by

∂Ĥ

∂Rµ

(eiωt + e−iωt ) = ∂V̂ e,n

∂Rµ

(eiωt + e−iωt ) (2)

with the Casida formalism [20] of the same quantity

αµν(ω) =
∑

I

2h†
µS−1/2FI F†

I S−1/2hν

ω2
I − ω2

(3)

to yield NAC as

〈�0| ∂

∂Rµ

|�I 〉 = ω−1
I 〈�0| ∂Ĥ

∂Rµ

|�I 〉 = ω
−3/2
I h†

µS−1/2FI . (4)

Here �0 (�I ) is the many-body electronic wave function of the
ground (I th excited) state, Rµ is the nuclear coordinate with
µ representing x, y, and z components and the atom index,
Ĥ is the many-body Hamiltonian, V̂ e,n is the potential from
the nuclear charge, and ωI is the excitation energy. Matrix
elements of S and hµ are given by

Sijσ,klτ = δσ,τ δi,kδj,l

(fkτ − flτ )(εlτ − εkτ )
(5)

and

hµ,ijσ = 〈ψiσ | ∂Ĥ

∂Rµ

|ψjσ 〉, (6)

where ψiσ , εiσ , and fiσ are, respectively, the orbital, eigen-
value, and occupation number for the ith KS state with spin σ .
FI is the eigenvector of the Casida equation [20]

�FI = ω2
I FI , (7)

where

�ijσ,klτ = δσ,τ δi,kδj,l(εlτ − εkτ )2

+ 2
√

(fiσ − fjσ ) (εjσ − εiσ )Kijσ,klτ

×
√

(fkτ − flτ )(εlτ − εkτ ), (8)

with K being the KS matrix of the Hartree and exchange-
correlation (xc) kernel (�Hxc),

Kijσ,klτ =
∫ ∫

drdr′ψiσ (r) ψjσ (r)

×�Hxc(r,r′)ψkτ (r′)ψlτ (r′). (9)

In this paper, we assume the KS orbitals to be real for
simplicity.

A. The d-matrix representation

So far NAC has been expressed using the h matrix [Eq. (6)],
as in Eq. (4). Next we show that it can also be expressed using
the d matrix,

dµ,ijσ ≡ 〈ψiσ | ∂

∂Rµ

|ψjσ 〉, (10)

which can be rewritten either by the derivative of the KS
Hamiltonian or by the derivative of the effective KS potential
as

dµ,ijσ =
〈ψiσ | ∂Ĥ KS

∂Rµ
|ψjσ 〉

εjσ − εiσ

=
〈ψiσ | ∂V̂ eff

∂Rµ
|ψjσ 〉

εjσ − εiσ

, (11)
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where V̂ eff is given as V̂ eff = V̂ e,n + V̂ Hxc and V̂ Hxc is the
Hartree exchange correlation potential. It is straightforward to
relate the h matrix to the d matrix via the formula

∂V eff (r)

∂Rµ

= ∂V e,n (r)

∂Rµ

+
∫

dr′ δV
Hxc(r)

δρ(r′)
∂ρ(r′)
∂Rµ

= ∂V e,n (r)

∂Rµ

+
∫

dr′�Hxc(r,r′)

×
∫

dr′′ δρ(r′)
δVeff (r′′)

∂V eff(r′′)
∂Rµ

= ∂V e,n (r)

∂Rµ

+
∫ ∫

dr′dr′′�Hxc(r,r′)

× χKS(r′,r′′)
∂V eff(r′′)

∂Rµ

. (12)

Herein χKS is the KS density response function [34,35]

χKS(r,r′) = δρ(r)

δVeff (r′)

= −2
fkτ >flτ∑

klτ

fkτ − flτ

εlτ − εkτ

ψkτ (r)

×ψkτ (r′)ψlτ (r)ψlτ (r′). (13)

By taking the KS matrix element of Eq. (12), we get

(εiσ − εjσ ) dµ,ijσ

= hµ,ijσ −
fkτ >flτ∑

klτ

2(fkτ − flτ )Kijσ,klτ dµ,klτ , (14)

which can be further transformed as

hµ,ijσ

=
fkτ >flτ∑

klτ

[(εjσ − εiσ )δi,kδj,lδσ,τ + 2(fkτ − flτ )Kijσ,klτ ]

× dµ,klτ . (15)

This is the central equation which relates the h matrix to the
d matrix. Using the Casida equation [Eq. (7)] we can rewrite
Eq. (4) as

〈�0| ∂

∂Rµ

|�I 〉 = ω
1/2
I d†

µS1/2FI (16)

from the relationship

F†
I S−1/2hµ =

fiσ >fjσ∑
ijσ

F
ijσ

I

√
(fiσ − fjσ ) (εjσ − εiσ )hµ,ijσ

=
fiσ >fjσ∑

ijσ

fkτ >flτ∑
klτ

F
ijσ

I �ijσ,klτ

× δσ,τ δi,kδj,l√
(fkτ − flτ ) (εlτ − εkτ )

(fkτ − flτ )dµ,klτ

= F†
I�S1/2dµ = F†

Iω
2
I S1/2dµ, (17)

where fiσ − fjσ = 1 is used. The alternative formulation of
the NAC by Eq. (16) avoids the explicit evaluation of the

h matrix and is free from the PP problem as shown in the
following.

Equation (16) can be further used to analyze the formulation
of Tavernelli et al. [8,36] using the Casida ansatz [20] that the
wave function of a system perturbed by a monochromatic os-
cillating one-body operator Ô, or a monochromatic oscillating
local field operator, is effectively described by the auxiliary
wave function

�̄I =
fiσ >fjσ∑

ijσ

√
εjσ − εiσ

ωI

Fijσ,I â
†
jσ âiσ �̄0 (18)

so that 〈�̄0|Ô|�̄I 〉 is equal to the one obtained using the
Casida formalism. Herein â

†
iσ (âiσ ) is the creation (anni-

hilation) operator and �̄0 is the Slater determinant of the
static KS eigenstates. Tavernelli et al. [8,36] used it to get
the NAC as

〈�̄0| ∂

∂Rµ

|�̄I 〉 = ω
−1/2
I d†

µS−1/2FI . (19)

This formulation is based on general linear response theory,
where the one-body operator directly couples with the electron
density as a local field V (r). However, the d operator (∂/∂Rµ)
is not such a one-body operator like the h operator (∂Ĥ/∂Rµ)
because it cannot be represented as the local field, and therefore
the linear response theory cannot be straightforwardly applied.
This means that the Casida ansatz cannot be straightforwardly
applied when the d operator is concerned and the d-matrix
formulation needs to be derived in a distinct way (we have done
it via the h-matrix formulation). The difference between two
d-matrix formulations, that is, Eqs. (19) and (16) (the rigorous
one), however, is seen only in the power of S and ωI , so the
reasonably good performance of the auxiliary wave-function
approach for demonstrated systems can be easily understood,
as reported in a series of publications of Tavernelli et al. On the
other hand, for future applications to more general systems,
it is necessary to construct the auxiliary wave function in an
improved way as

�̄I =
fiσ >fjσ∑

ijσ

√
ωI

εjσ − εiσ

Fijσ,I â
†
jσ âiσ �̄0. (20)

With such a “subtle” modification, the auxiliary approach
would be equivalent to our formula of Eq. (16). It is noted
that the applicability of the adapted ansatz in Eq. (20) also
depends on which operator Ô is used: It is suitable for the d

operator, but not for the h operator or the dipole operator. For
the latter cases, the Casida ansatz in Eq. (18) should be used,
as proven by Tavernelli et al [36].

B. Good performance of the Slater transition-state method:
Justification by TDDFT modified linear response theory

Different from the previously mentioned TDDFT formu-
lation, a simple procedure in which single d-matrix elements
are just assumed as NAC, has been seen in previous studies
and the results on nonadiabatic dynamics are promising for
the demonstrated system [30–32]. This can be understood
from a simple analysis of the relationship between the NAC
and the d matrix, as shown by Eq. (16): When there is
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a dominant transition and the excitation energy is close to
the eigenenergy difference of the orbitals responsible for the
transition, the single d-matrix element corresponding to the
dominant transition will be a good representation of NAC.
A particular example is the case of the Slater transition-state
method for doublet systems. Billeter and Curioni [27] have
used the following expression of NAC:

〈�0|d̂µ|�I 〉 = 〈
ψm

iσ

∣∣d̂µ

∣∣ψm
jσ

〉
, (21)

where the (i,j ) pair are the particle-hole orbitals responsible
for the I th transition, and m denotes the mid-excited state
(Slater transition state) in which the particle-hole orbitals are
each filled with a half-electron. They have found that this
expression can give accurate results of NAC between doublet
states of molecules at equilibrium geometries.

Next we will show that the extension of TDDFT formula-
tion of the NAC from the d matrix within modified linear
response theory [23,24], which has been demonstrated to
be a better way to decode excitation energies by TDDFT
from local density approximation, can give justification of the
good performance of the Slater transition-state method. Within
modified linear response, the excitation energy is calculated
from the response of the mid-excited state, while other terms
in the NAC formula are calculated from that of the pure-state
configuration. Corresponding to the mid-excited state of a
doublet system, the Casida equation,

�mFm
I = ωm

I Fm
I , (22)

with the matrix element

�m
ijσ,klτ = δi,kδj,lδσ,τ

(
εm
jσ − εm

iσ

)2

+ 2
(
f m

iσ − f m
jσ

)(
εm
jσ − εm

iσ

)
Km

ijσ,klτ , (23)

gives

ωm
I = εm

jσ − εm
iσ , (24)

since f m
iσ = f m

jσ = 0.5 in the mid-excited state of a doublet sys-
tem, which renders the corresponding off-diagonal elements of
� to be zero. On the other hand, the pure-state configuration in
the mid-excited state, which uses the occupation number of the

ground state while keeping other quantities of the mid-excited
state, gives

d†
µ,pS1/2

p Fp

I = dm
ijσ

(
εm
jσ − εm

iσ

)−1/2
, (25)

due to the fact that F
p

ijσ,I is practically equivalent to 1 and
other components of FI are zero. Therefore,

〈�0|d̂µ|�I 〉 = (
ωm

I

)1/2
d†

µ,pS1/2
p Fp

I = dm
ijσ , (26)

which is just the expression used by Billeter and Curioni [27].
The good performance of this expression in the computation
of the NAC between the ground and excited states of doublet
systems can thus be understood from the fact that it is the
reduced form of the TDDFT formulation.

III. IMPLEMENTATION AND COMPUTATIONAL DETAILS

The implementation of the present TDDFT method of
computing the NAC from the d matrix is based on the ABINIT

code [37], which is a PW-PP approach. All calculations are per-
formed within ALDA or local spin density approximation us-
ing the Teter Pade parametrization [38]. The Troullier-Martins
PP’s [39] with nonlinear core correction [40], generated by
Khein and Allan, as well as Hartwigsen-Goedecker-Hutter
(HGH) PP’s [41], are used for various atomic species. Only
the � point (k = 0) is taken into consideration in the k point
sampling, which corresponds to the use of real wave functions.
Convergence parameters, such as the supercell size, number of
unoccupied orbitals, and kinetic energy cutoff, are examined
to ensure reasonably accurate results. On the basis of the
previous implementation of modified linear response theory in
ABINIT [24], its extension for calculating NAC requires almost
no additional labor, since it is only necessary to construct
the pure-state configuration from the mid-excited state, and
to apply the same calculation procedures as ordinary linear
response theory. To check the performance of our method, we
concentrate on NAC between the ground and first excited state
in Jahn-Teller and Renner-Teller systems.

A. Finite difference method of calculating d-matrix elements

The calculation of the d matrix is implemented in a straight-
forward finite difference scheme, with the consideration of
aligning the phases of KS orbitals [27], as shown by

〈ψiσ |d̂µ|ψjσ 〉 = 〈ψiσ (R)|ψjσ

(
R + 1

2�R eµ

)
sgn(ξ+) − ψjσ

(
R − 1

2�R eµ

)
sgn(ξ−)〉

�R
, (27)

where eµ is the unit vector along the µ axis, sgn(ξ ) is the sign
function, that is,

sgn(ξ ) =
{−1 if ξ < 0

1 if ξ > 0,
(28)

and

ξ+ = 〈
ψjσ (R)|ψjσ

(
R + 1

2�R eµ

)〉
, (29)

ξ− = 〈
ψjσ (R)|ψjσ

(
R − 1

2�R eµ

)〉
. (30)

In practical calculations we choose �R = 0.001 bohr. Note
that the finite difference method might be cumbersome for
large systems and analytical schemes such as the one presented
by Billeter and Curioni [27] are desired in the implementation;
however, due to the simplicity of the finite difference method
it is adopted here for the test calculation of small molecular
systems.
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IV. RESULTS AND DISCUSSION

In this section, we present calculation results on various
molecular systems possessing Jahn-Teller or Renner-Teller
intersections, for which the NAC between the ground and the
first excited state is significant in the vicinity of intersection
points.

A. Performance of TDDFT linear response theory
on the computation of NAC from d-matrix elements

To examine the performance of TDDFT linear response
theory, we choose molecular geometries in the reasonable
vicinity of intersection points, where the values of NAC
are significant and ordinary linear response theory is also
applicable, as demonstrated in our previous work [18].

1. Jahn-Teller systems

For the computation of NAC, the H3 system is most widely
studied by various theoretical approaches [17,42–45]. We first
focus on this prototype Jahn-Teller system to evaluate the
performance of our present TDDFT scheme by comparing it
with the multiconfiguration self-consistent-field configuration-
interaction (MCSCF CI) data [46], as well as the one based
on the Casida ansatz. The calculation geometry of H3 is
represented in the hyperspherical coordinate (ρ,θ ,φ) while
fixing ρ = 2.5 bohr and φ = 120◦. According to the fact that
the smaller the hyperspherical angle θ is, the closer the system
is to the conical intersection (θ = 0◦), we decrease θ from 10◦
to 1◦ in the calculations. In such a range of θ , the TDDFT LDA
results of our previous PP calculation [18] using the h matrix
are shown to be in reasonable agreement with the reference
data. In Fig. 1, it is seen that the present TDDFT method
which rigorously formulates the NAC from the d matrix
gives similar but obviously improved results in comparison
to the TDDFT scheme based on the Casida ansatz. Compared
with the reference data of MCSCF CI calculations [46], our
result shows reasonable agreement for θ > 1◦, but rapidly
deteriorates as θ approaches 1◦. This behavior is anticipated
since the performance of the TDDFT LDA degrades when
approaching the very vicinity of the intersection point. In our
previous TDDFT calculation using the h matrix, a similar
trend is seen except for θ = 1◦, where the previous calculation
shows better agreement. We infer that this difference might
be attributed to the pseudization of the ĥµ operator as the
nuclear derivative of PP’s, which might suppress the diverging
behavior of the NAC when approaching intersection points.

It is known that Jahn-Teller systems show quantized
behavior of angular NAC on a contour around the intersection
point [45,47]. Usually the angular NAC will oscillate since the
ideal value (0.5) predicted by the Jahn-Teller model is limited
to an infinitely small region surrounding the intersection point.
To check this feature we set H3 in the geometry of Fig. 2 and
choose the distance RH-H = 1.044 Å and the contour radius
q = 0.3 Å as used by Halaśz et al. [44]. When the contour angle
ϕ is varied from 0◦ to 360◦, it is seen that the angular NAC of H3

is in an oscillation around 0.5, as shown in Fig. 3. Our TDDFT
results are in reasonable agreement with the reference data
calculated at the CASSCF level [44], as previously confirmed
by our calculation based on the TDDFT formulation of the

FIG. 1. (Color online) The x components of NAC on the second H
atom of H3 as a function of the hyperspherical angle θ , computed by
different methods: our TDDFT method using the d matrix (filled
squares), the TDDFT method based on the Casida ansatz (open
triangles), as well as the MCSCF CI method by Abrol et al. [46]
(filled circles).

h matrix [18]. A further look at two metal trimers, Li3 and
Na3 (Table I), which are also well-known Jahn-Teller systems,
shows that similar behavior of fluctuation around 0.5 in angular
NAC (equal to the product of the component on the rotating
atom and the contour radius q when ϕ is 0) is observed. Due
to the PP approximation in constructing h-matrix elements,
the TDDFT calculation using the d matrix gives slightly
better results in the sense that it shows better accuracy in the
satisfaction of the sum rule [26], which states that the sum of
NAC components on all atoms, either in the x, y, or z direction,
should be zero according to translational invariance.

2. Renner-Teller systems

The triatomic molecules, BH2, NH2, CH2
+, and H2O+,

which are typical Renner-Teller systems possessing glancing
intersections between ground and first excited states [47–51],
are used in the calculations. Similar to Jahn-Teller systems,

q
x

y

1 3

R

2
O

R R

FIG. 2. The geometry of the X3 system as one X atom (numbered
as 2) is moved on the contour around the intersection point (located at
O). The nuclear configuration at the intersection point is an equilateral
triangle with C3v symmetry, corresponding to the degeneracy of the
ground state and the first excited state.

062508-5



HU, SUGINO, HIRAI, AND TATEYAMA PHYSICAL REVIEW A 82, 062508 (2010)

FIG. 3. (Color online) The angular NAC of the H3 system
(RH-H = 1.044 Å and q = 0.3 Å in Fig. 2) as a function of ϕ,
calculated by the present TDDFT linear response scheme using the
d matrix (filled circles). The reference data [44] are shown by filled
squares.

Renner-Teller systems also show quantized behavior of angu-
lar NAC with the ideal value of 1. To check this behavior, we
use the calculation geometry shown in Fig. 4. The nonhydrogen
atom (X) is located on the contour around the collinear axis
with the radius q = 1.0 bohr, while the distances between
the hydrogen and nonhydrogen atoms along the collinear
axis are fixed as follows: rH-B = 2.0 bohr, rH-N = 1.95 bohr,
rH-C = 2.0 bohr, and rH-O = 1.85 bohr. In Table II, calculated
results of x components of NAC of the previously discussed
Renner-Teller systems by TDDFT using the d matrix are
listed. In comparison with the CASSCF results [25], the signs
are correctly obtained, and the magnitudes show reasonable
agreement. The angular NAC, computed as the product of the
contour radius q and the x component of NAC on the rotated
X atom in Fig. 4 when ϕ = 0, is close to 1.0. This behavior
is consistent with previous ab initio results of Renner-Teller
systems [47,51,52]. In particular, the sum rule of NAC is
shown to hold in TDDFT results of all cases, which has not
been achieved for NH2 and H2O+ in our previous TDDFT
calculations using the h-matrix formula. Therefore, the PP

TABLE I. The x components of NAC (in bohr−1) on three
atoms of Li3 and Na3 trimers, which are at the geometry of Fig. 2
with RLi-Li = 5.0 bohr and RNa-Na = 6.0 bohr. The contour radius
q = 1.0 bohr and angle ϕ = 0. Calculation results by the two TDDFT
methods, using the h matrix and the d matrix, respectively, are
compared.

TDDFT (d matrix) TDDFT (h matrix)

Li3 Atom 1 −0.267 −0.303
Atom 2 0.530 0.490
Atom 3 −0.267 −0.303

Na3 Atom 1 −0.351 −0.326
Atom 2 0.699 0.583
Atom 3 −0.351 −0.326

x

y

H(1) H(2)
r

X

r

q
ϕ

FIG. 4. Geometry of the XH2 (or XH2
+) system when the X atom

is moved on the contour around the Renner-Teller intersection point
(indicated by the open square) on the collinear axis. The contour, with
radius q and angle ϕ, is fixed in the xy plane, which is perpendicular
to the H-H axis. The two hydrogen atoms are set to be symmetric to
the plane.

problem in evaluating h-matrix elements has been avoided
when using the present d-matrix formulation.

B. Performance of the Slater transition-state method
on computation of NAC in the very vicinity

of Jahn-Teller and Renner-Teller intersections

For doublet systems, the application of the Slater transition-
state method is justified as it gives equivalent results of NAC
to TDDFT modified linear response theory. Many systems
possessing Jahn-Teller or Renner-Teller intersections in the
PES are known to be in doublet states; therefore, the Slater
method is anticipated to give accurate NAC even in the very
vicinity of intersection points. Work on this aspect has not
been reported in the literature yet, although the performance
of the Slater method on computing NAC of molecular systems
in equilibrium geometries has been evaluated [27], where the
values of NAC are quite small, compared with those very close
to the intersection points.

1. Jahn-Teller systems

In Fig. 5 we show the x components on the second atom of
H3 in the hyperspherical coordinate (same configuration as in
Fig. 1, that is, ρ = 2.5 bohr and φ = 120◦) as a function of θ .
Comparison with the reference data of MCSCF CI calculations
[46] shows that the result is very encouraging: The data points
are nearly in coincidence, not only in the region of θ larger
than 1◦ but also even when θ is decreased to as small as 0.01◦.

TABLE II. The x components of NAC (in bohr−1) on three atoms
of XH2 (X = B, N) or XH2

+ (X = C, O) molecules, which are at
the geometry of Fig. 4. The contour radius q is taken as 1.0 bohr and
angle ϕ is 0.

Method Atom BH2 NH2 CH2
+ H2O+

TDDFT H(1) −0.482 −0.495 −0.488 −0.502
X 1.014 1.067 1.033 1.087

H(2) −0.482 −0.495 −0.488 −0.502
CASSCF H(1) −0.479 −0.475 −0.486 −0.485

X 0.977 0.969 0.979 0.979
H(2) −0.479 −0.475 −0.486 −0.485
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FIG. 5. (Color online) The x components of NAC on the second
atom of H3 as a function of the hyperspherical angle θ , computed by
the Slater transition-state method (filled circles), to which modified
linear response TDDFT calculations give equivalent results. The
reference data (filled squares) are from MCSCF CI calculations by
Abrol et al. [46].

Although our previous TDDFT calculation of NAC using the h

matrix also shows that reasonable agreement can be achieved
in the region of θ < 1◦, such a good agreement had not been
achieved and it hints that there is still room in constructing
more accurate h-matrix elements from the PP’s, even in the
case of hydrogen which has no core electrons.

Further calculation examples of Jahn-Teller systems are al-
kali metal trimers (Li3 and Na3) [53–55], coinage metal trimers
(Cu3 and Ag3) [56–58], and group V trimers (N3 and P3)
[59,60]. Correlated wave-function calculations on NAC’s near
intersection points of these systems have not been carried out
yet. In order to be comparable to the values of NAC from
the Jahn-Teller model, we locate the trimers in the geometry
of Fig. 2 and choose a sufficiently small contour radius q of
0.02 bohr. In such a configuration, the angular NAC, calculated
as the product of the x component of NAC on the rotating
atom and the contour radius q when the contour angle is 0, is
expected to be equal to the quantized value of 0.5 in the Jahn-
Teller model. We use the following internuclear distances for
corresponding trimers: RLi-Li = 5.0 bohr, RNa-Na = 6.0 bohr,
RCu-Cu = 4.0 bohr, RAg-Ag = 5.0 bohr, RN-N = 2.6 bohr, and
RP-P = 4.0 bohr. For the coinage metal trimers, relativistic
HGH PP’s are used. In Table III we list the Cartesian
components of NAC on three atoms of these trimers, calculated
by the Slater transition-state method. From the x components
of the rotating atom (that is, atom 2), the angular NAC’s are
found to be very close to the quantized value of 0.5. In the more
detailed comparison with the Jahn-Teller model, it is seen that
all components are quite similar to the ideal values. This had
not been achieved in our previous TDDFT calculations using
the h matrix, where the accuracy of results of N3 and P3 are
degraded. Therefore, the present TDDFT method using the d

matrix has avoided the PP problem in constructing h-matrix
elements.

TABLE III. The calculated x, y and z components of NAC (in
bohr−1) on three atoms of Li3, Na3, Cu3, Ag3, N3, and P3 trimers,
which are at the geometry of Fig. 2. The contour radius q is 0.02 bohr
and angle ϕ is 0. The ideal values from the Jahn-Teller model are
also listed for comparison.

x y z

Li3 Atom 1 −12.50 −21.57 0.00
Atom 2 24.99 0.00 0.00
Atom 3 −12.50 21.57 0.00

Na3 Atom 1 −12.96 −22.39 0.00
Atom 2 25.91 0.00 0.00
Atom 3 −13.96 22.39 0.00

Cu3 Atom 1 −12.60 −21.72 0.00
Atom 2 25.19 0.00 0.00
Atom 3 −12.60 21.72 0.00

Ag3 Atom 1 −12.74 −21.98 0.00
Atom 2 25.45 0.00 0.00
Atom 3 −12.74 21.98 0.00

N3 Atom 1 −12.36 −21.42 0.00
Atom 2 24.71 0.00 0.00
Atom 3 −12.36 21.42 0.00

P3 Atom 1 −12.43 −21.50 0.00
Atom 2 24.86 0.00 0.00
Atom 3 −12.44 21.50 0.00

Model Atom 1 −12.50 −21.65 0.00
Atom 2 25.00 0.00 0.00
Atom 3 −12.50 21.65 0.00

2. Renner-Teller systems

Four typical Renner-Teller systems, BH2, NH2, CH2
+, and

H2O+ molecules, are re-examined. In order to be comparable
to the values of NAC from the Renner-Teller model, we use
the geometry shown in Fig. 4 and choose a sufficiently small
q of 0.1 bohr. In Table IV, we list the x components of NAC’s
on three atoms of these molecules, calculated by the Slater
transition-state method. All the y and z components of NAC’s
are zero, consistent with the ideal values, while the nonzero,
x, components of NAC’s are in good agreement with those
from the Renner-Teller model: The calculated angular NAC,
that is, the product of the NAC component on atom X and
the contour radius q, is equivalent to the quantized value of 1.
The same level of accuracy is seen for either hydrogen or
nonhydrogen atoms. Again, such an accuracy has not been
achieved in previous TDDFT calculations using the h matrix,

TABLE IV. The x components of NAC (in bohr−1), calculated
by the Slater transition-state method, on three atoms of XH2 (X =
B,N) or XH2

+ (X = C,O) molecules, which are at the geometry of
Fig. 4. The contour radius q is taken as 0.1 bohr and angle ϕ is 0.
The ideal values from the Renner-Teller model are also listed for
comparison.

BH2 NH2 CH2
+ H2O+ Model

Atom H(1) −4.995 −5.000 −4.997 −5.001 −5.0
Atom X 9.994 10.001 10.000 10.001 10.0
Atom H(2) −4.995 −5.000 −4.997 −5.001 −5.0
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showing that the present TDDFT scheme using the d matrix
has avoided the PP problem.

V. CONCLUSION

We have studied the TDDFT density response scheme for
computing NAC. Starting from the previous formulation where
NAC is described using h-matrix elements, that is, matrix
elements of ∂H/∂Rµ, an alternative description was provided
using d-matrix elements, that is, matrix elements of ∂/∂Rµ.
The new formulation has been shown to have an important
advantage of eliminating the pseudopotential problem in the
computation of NAC. The reason is that the new formulation
avoids using the off-diagonal scattering terms, which is prob-
lematic within pseudopotential schemes. Evaluation of NAC
near either the Jahn-Teller or the Renner-Teller intersection
in various molecular systems validates this point and shows
that the values of NAC are much improved over previous cal-
culations when the d-operator formula is implemented in the
pseudopotential framework. The new formulation has another
advantage of allowing us to examine the previously proposed
d-matrix-based formulation for NAC. When combined with

modified linear response theory it can justify the intuitive Slater
transition-state method for doublet systems. This is important
as many systems possessing Jahn-Teller or Renner-Teller
intersections are known to be in doublet states. The new
formulation also explains reasonably good performance of
the Casida ansatz (the auxiliary wave-function ansatz) on the
demonstrated systems in the literature, and shows an improved
way of using the Casida ansatz for the general purpose of
computing NAC. Finally, we would like to comment that the
d-matrix formulation is sometimes numerically more time-
consuming than the h-matrix formulation and that developing
a pseudopotential to reproduce also the off-diagonal element
will be the next target since the pseudopotential approach has
shown promise in providing accurate data of NAC for the
quantum simulation of nonadiabatic dynamics.
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