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Interaction of an atom with layered dielectrics
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We determine the energy-level shift experienced by a neutral atom due the quantum electromagnetic interaction
with a layered dielectric body. We use the technique of normal-mode expansion to quantize the electromagnetic
field in the presence of a layered, nondispersive, and nonabsorptive dielectric. We explicitly calculate the
equal-time commutation relations between the electric field and vector potential operators. We show that the
commutator can be expressed in terms of a generalized transverse δ function and that this is a consequence of
using the generalized Coulomb gauge to quantize the electromagnetic field. These mathematical tools turn out
to be very helpful in the calculation of the energy-level shift of the atom, which can be in its ground state or
excited. The results for the shift are then analyzed asymptotically in various regions of the system’s parameter
space, with a view to providing quick estimates of the influence of a single dielectric layer on the Casimir-Polder
interaction between an atom and a dielectric half space. We also investigate the impact of resonances between
the wavelength of the atomic transition and the thickness of the top layer.
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I. INTRODUCTION

The question of the interaction between a neutral atom
and a macroscopic dielectric body, once of purely academic
interest, has recently been promoted to a real-life physics
problem thanks to the rapid developments in nanotechnology
and experimental techniques. It is no longer the case that this
interaction, the so-called Casimir-Polder interaction, is a tiny
effect that can be ignored in all practical situations. Instead, on
the length scales that nanotechnology nowadays operates in,
dispersion forces, as they are also called, become significant
and may appreciably influence miniaturized physical systems.
Many of the current ambitions of cold-atom physics toward
quantum computation and a variety of nanotechnological
applications involves the trapping and accurate guiding of
single atoms above dielectric substrates, so-called atom chips.
With these the nearby environment of a trapped atom usually
consists of a complicated array of inhomogeneous dielectrics.
The questions then arising are the following: What are the
magnitudes of the Casimir-Polder forces felt by the atom?
Can one possibly engineer the types and shapes of surrounding
materials either to minimize unwanted dispersion forces or to
make them optimally contribute to the trapping or guiding?
In order to investigate such possibilities one needs to go
beyond simple featureless geometries and ground-state atoms
and gain flexibility. The perhaps least sophisticated but still
interesting example to study in this context is to consider
a neutral atom, possibly excited, above a layered dielectric
half space (cf. Fig. 1). If the atom is in its ground state,
then the Casimir-Polder force is always attractive for material
surfaces with refractive indices greater than 1. In such case it is
desirable to derive simple analytical formulas that would allow
one to obtain quick estimates of the magnitudes of the forces
involved in terms of the optical properties of the layer and the
substrate [1]. On the other hand, if the atom is in its excited
state, then, as it is widely recognized [2], the potential acquires
an oscillatory contribution that can result in a repulsive force.
Additionally, the presence of the layer creates the possibility
of a resonance between the wavelength of the atomic transition
and the thickness of the layer, which could lead to a suppression
or enhancement of the interaction.

There exist a variety of theoretical approaches devised
to study the Casimir-Polder interaction (see, e.g., [3] for a
recent list of references) but perhaps the most successful ones
being the linear-response theory [4] and phenomenological
macroscopic QED [5]. By using linear-response theory [4]
and expressing the field susceptibilities in terms of Fresnel re-
flection coefficients [2,6], one can express the Casimir-Polder
interaction as an integral along the imaginary frequency axis
of the product of the atomic and field susceptibilities. Thus,
in practice the problem is reduced to the calculation of the
classical electromagnetic Green’s tensor expressed in terms of
Fresnel coefficients. Such calculations, while straightforward
in principle, tend to be quite tedious and often inevitably
lead to the use of numerical methods. However, there is a
benefit to studying problems in quantum electrodynamics by
using physically transparent methods that do not obscure the
basic underlying physics. For the kind of geometry of plane
layered dielectrics considered in this paper, the technique of
electromagnetic field quantization based on a normal-mode
expansion [7] seems to best emphasize the physics of the
problem, namely, the fact that the system supports two
kinds of modes of the electromagnetic field [8]: These are
traveling modes with a continuous spectrum and trapped
modes with a discrete spectrum, that is, occurring at only
certain allowed frequencies. The trapped modes arise because
of repeated total internal reflections within the top layer
of higher refractive index than the substrate and emerge as
evanescent waves outside the wave guide. This gives rise to
an intricate assortment of evanescent modes outside a layered
dielectric where evanescent waves with continuous spectrum,
also arising in a half-space geometry [7], are superposed with
discrete evanescent modes that arise only in the presence of the
slablike wave guide [1]. In the framework in which we apply
in this work, in the same spirit as, for example, [1,9], the use of
standard perturbation theory renders all calculations explicit
and it is possible from the outset to track down and remove, if
necessary, any ambiguities that tend to remain hidden in more
elaborate theories. For example, linear-response theory results
in an integral over the Fresnel reflection coefficients but gives
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FIG. 1. (Color online) Atomic dipole moment in the vicinity of
the layered dielectric. The dielectric function is a piecewise constant
function of the coordinate z.

no indication of whether the evanescent waves associated with
the trapped modes contribute to the Casimir-Polder interaction
or not. The question is answered at once if the normal-modes
approach is used instead (see [8,10]). Also, interpretations of
more complicated field-theoretical approaches [11] can be put
to an explicit test [1].

The purpose of this paper is twofold. First, it aims to
support current experimental efforts by providing a range of
analytical formulas useful for quick estimates of the dispersion
forces acting on an atom placed in the vicinity of the layered
dielectric, with particular emphasis on the corrections caused
by the layer as compared to the standard half-space results
reported in [9]. It also investigates the resonant interaction
between an excited atom and a layer in the search for the
possible enhancement or suppression of the Casimir-Polder
force. Second, it formulates a simple and explicit theory based
on well-understood concepts of theoretical physics such as
perturbation theory and electromagnetic field quantization in
terms of a normal-modes expansion. The theoretical aspect,
although serving only as a means to a practical end result,
turns out to be interesting in its own right. The perturbative
approach used in this work leads to the problem of the
summation over the modes of the electromagnetic field, which
is nontrivial because of the dual character of the modes of
the electromagnetic field. The task of adding the discrete and
continuous field modes is elegantly accomplished by the use
of complex-integration techniques. This allows us to explicitly
show that the canonical commutation relations between the
field operators are satisfied, which is equivalent to saying
that the completeness relation of the normal-modes holds
in the geometry considered. Although this is not a surprise
because the field modes are solutions of a Hermitian operator’s
eigenvalue problem, the explicit calculation we carry out
provides us with the mathematics necessary to complete a
typical perturbative calculation in this geometry. It also allows
us to cast the end result in a simple and elegant form that is
easy to study analytically in various asymptotic regimes. The
same technique could be applied to any similar perturbative
calculation in such a geometry.

This paper is organized as follows. First we quantize the
electromagnetic field in the presence of a layered dielectric
(Sec. II). Then, in Sec. II C, we explicitly prove the complete-
ness relation for the electromagnetic field modes. Equipped
with the necessary mathematical tools, we proceed to calculate
the energy shift in Sec. III and then study it analytically
(Sec. IV) and numerically (Sec. V).

II. FIELD QUANTIZATION IN THE PRESENCE
OF A LAYERED BOUNDARY

Our ultimate aim is to work out the energy-level shift in an
atom caused by the presence of a layered dielectric. In order to
obtain a result that fully takes into account retardation effects,
the quantization of the electromagnetic field is necessary. To
emphasize the physics of the problem we choose to quantize
the electromagnetic field using a normal-mode expansion as
described in [12]. The dielectric environment we consider
(cf. Fig. 1) consists of a substrate, a dielectric half-space
occupying the region of space z < −L/2 described by a
dielectric constant εs = n2

s , and on top of that substrate an
additional dielectric layer of thickness L, which has a dielectric
constant εl = n2

l . We assume that the dielectric constant of the
layer is higher than that of the substrate εl > εs in order to
account for modes that are trapped inside the layer. Although
we work with this assumption, the final result will turn out
to be valid even when the reflectivity of the substrate exceeds
that of the layer, but that is the physically less interesting
case. Throughout this paper we assume all dielectric constants
to be frequency independent so that the optical properties of
the system are described solely by a pair of real numbers, εl

and εs.
To solve Maxwell equations for the electromagnetic field

operators in the Heisenberg’s picture we introduce, in the usual
manner [13], the electromagnetic potentials A(r,t) and �(r,t)
and work in the generalized Coulomb gauge

∇ · [ε(r)A(r)] = 0, (1)

with the dielectric permittivity being a piecewise constant
function as shown in Fig. 1. In the absence of free charges one
can set �(r,t) = 0 and work only with the vector potential
A(r,t) which satisfies the wave equation

∇2A(r,t) − ε(z)
∂2

∂t2
A(r,t) = 0, |z| �= L/2. (2)

Note that right on the interfaces condition (1) is singular due
to discontinuities of the dielectric function and Eq. (2) does
not hold at these points. The normal modes of the field f(r)eiωt

satisfy the Helmholtz equation

∇2fkλ(r) + ε(z)ω2fkλ(r) = 0, |z| �= L/2, (3)

and we have labeled them by their wave vector k and
polarization λ = {TE,TM}. This mode decomposition allows
one to solve the field equation (2) in each distinct region
of space separately and then stitch up the solutions across
the interfaces by demanding that they are consistent with the
Maxwell boundary conditions, that is, that E‖, D⊥, and B are
all continuous.
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The Helmholtz equation (3) is, in fact, the eigenvalue
problem of a Hermitian operator [12][

1√
ε
∇ × ∇ × 1√

ε

]√
εfkλ(r) = −ω2√εfkλ(r), (4)

so that we expect the field modes
√

εfkλ(r) to form a complete
set of functions suitable for describing any field configuration.
The completeness relation takes the form∑

λ

∫
d2k‖

∑
kz

∫
f i

kλ(r) f
∗j

kλ (r′) = δε
ij (r,r′), z,z′ >

L

2
, (5)

with δε
ij (r,r′) being the unit kernel in the subspace of

functions satisfying (1); we call this the generalized transverse
δ function. From quite general considerations [14] we can
expect it to be given by

δε
ij (r,r′) = δij δ

(3)(r − r′) − ∇i∇′
j G(r,r′), (6)

with the electrostatic Green’s function of the Laplace equation
given by

G(r,r′) = 1

4π

1

|r − r′| − 1

4π

∫ ∞

0
dkJ0(kρ) e−k(z+z′)

×
n2

l −1
n2

l +1
− n2

l −n2
s

n2
s +n2

l
e−2kL

1 − n2
l −1

n2
l +1

n2
l −n2

s

n2
s +n2

l
e−2kL

, (7)

where ρ = |r‖ − r′
‖| and, for brevity, we have chosen to

confine ourselves to the case z,z′ > L/2. The function J0

in the preceding equation is a Bessel function of the first
kind [15], Eq. (9.1.1). The outline of the derivation of the
Green’s function is given in Appendix B.

The sum over all modes in Eq. (5) is complicated because
the spectrum of the field modes has nontrivial structure. It has
been shown previously [8,16] that the system supports two
kinds of quite distinct types of modes. There are traveling
modes going from left to right or in the opposite direction,
and there are guided modes that are trapped by the dielectric
layer, which essentially acts as a wave guide. The spectrum
of the traveling modes is continuous, whereas the spectrum of
the modes trapped in the dielectric layer is discrete and only
some values of the (perpendicular) wave vector are allowed,
namely, those satisfying a certain dispersion relation. This dual
character of the spectrum of the field modes is a major obstacle
in working with these modes and calculating, for example, the
energy shift of an atom nearby, but an elegant solution to this
problem has been developed in [17], whose basic idea we
follow here.

We choose the normalization of the mode functions√
εfkλ(r) according to the convention∫

d3r ε(z)f∗
kλ(r) · fk′λ′(r)

=
{

δλλ′δ(3)(k − k′) (traveling modes),

δλλ′δ(2)(k‖ − k′
‖)δkzk′

z
(trapped modes).

(8)

Then, the electric field E(r) = −∂tA(r) expanded in terms of
the normal modes can be written as

E(r) = i
∑

λ

∫
d2k‖

∑
kz

∫ √
ωk

2ε0
akλfkλ(r)e−iωkt + H.c., (9)

where H.c. stands for Hermitian conjugate. The photon cre-
ation and annihilation operators, a

†
kλ and akλ, satisfy bosonic

commutation relation

[akλ,a
†
kλ′ ] = δλλ′

{
δ(3)(k − k′),
δ(2)(k‖ − k′

‖)δkzk′
z
,

(10)

where the top and bottom of the right-hand side corresponds to
the traveling and trapped photons, respectively. In order to be
able to write out the electromagnetic field operators explicitly
one needs to solve the eigenvalue problem (3) and determine
the spatial dependence of functions fkλ(r), so we turn our
attention to this now.

A. Traveling modes

Before we work out the traveling modes, for further
convenience, we introduce Fresnel coefficients for a single
interface. For that we assume that a plane wave is traveling
from a medium with refractive index nb to a medium with
the refractive index na and that the interface is the z = 0
plane. Then the standard Fresnel reflection and transmission
coefficients are given by [13]

rba
TE = kzb − kza

kzb + kza
, tza

TE = 2kzb

kzb + kza
,

(11)

rba
TM = kzb/n2

b − kza/n2
a

kzb/n2
b + kza/n2

a

, tza
TM = 2kzb/nanb

kzb/n2
b + kza/n2

a

,

where kzi are the components of the wave vectors perpendic-
ular to the interface in the medium i = {a,b}.

The geometry of the problem (cf. Fig. 1) naturally divides
the space into three distinct regions. Consequently, there are
three wave vectors to be distinguished. The wave vector in
vacuum (z > L/2),

k± = (kx,ky, ± kz) = (k‖, ± kz), (12)

the wave vector in the dielectric layer (|z| < L/2),

k±
l = (kx,ky, ± kzl) = (k‖, ± kzl), (13)

and the wave vector in the substrate (z < −L/2),

k±
s = (kx,ky, ± kzs) = (k‖, ± kzs). (14)

The components of the wave vector that are parallel to the
surface are the same for all three regions of space. This follows
directly from the requirement that the boundary conditions
must be satisfied at all points of a given surface; that is, the
spatial phase factors eiki ·r must be equal at z = ±L/2 for all r‖.
The different signs of the z components of the wave vectors
correspond to the waves propagating in different directions.
However, the direction of the propagation of a particular mode
needs to be consistent in all three layers so we require that on
the real axis

sgn(kz) = sgn(kzl) = sgn(kzs). (15)

Since the frequency ω of a single mode is fixed, the z

components of the wave vectors in the dielectric are related to
the vacuum wave vector kz by

kzl =
√(

n2
l − 1

)
k2

‖ + n2
l k

2
z , (16)
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kzs =
√(

n2
s − 1

)
k2

‖ + n2
s k

2
z . (17)

The mode functions fkλ(r) are transverse everywhere except
right on the interfaces z = ±L/2 [cf. (1)]. To ensure this
transversality, it is convenient to introduce orthonormal po-
larization vectors,

fkλ(r) = êλ(k)fkλ(r), (18)

defined as

êTE(∇) = (−	‖)−1/2(−i∇y,i∇x,0),
(19)

êTM(∇) = (	‖	)−1/2(−∇x∇z, − ∇y∇z,	‖),

with 	 being the Laplace operator expressed in Cartesian
coordinates and it is understood that the preceding operators
act on the factors of the type eik±

i r, that is, êλ(k±
i ) ≡ êλ(∇)eik±

i r.
Polarization vectors defined in such a way are normalized
to unity provided all three components of the wave vector
are real. However, they are not of unit length in the case
of evanescent waves which have wave vectors with pure
imaginary components. The spatial dependence of the mode
functions is worked out requiring that each mode consists of
the incoming, reflected, and transmitted parts that are joined
together by standard boundary conditions across the interfaces,
that is, that E‖, D⊥, and B are continuous. From this it is
straightforward to derive that the traveling modes of the system
incident from the left, normalized according to (8), are given by

fL
kλ(r) = êλ(∇)

(2π )
3
2 ns

⎧⎪⎨
⎪⎩

eik+
s ·r + RL

λ eik−
s ·r, z < −L/2,

IL
λ eik+

l ·r + JL
λ eik−

l ·r, |z| < L/2,

T L
λ eik+·r, z > L/2,

(20)

whereas the right-incident modes are given by

fR
kλ(r) = êλ(∇)

(2π )
3
2

⎧⎪⎨
⎪⎩

T R
λ eik−

s ·r, z < −L/2,

IR
λ eik−

l ·r + JR
λ eik+

l ·r, |z| < L/2,

eik−·r + RR
λ eik+·r, z > L/2.

(21)

For the sake of clarity the complete list of reflection and
transmission coefficients is given in Appendix A. Here we
only write the ones most relevant for the calculation at
hand:

RR
λ = rvl

λ + r ls
λ e2ikzlL

1 + rvl
λ r ls

λ e2ikzlL
e−ikzL, (22)

T L
λ = t sl

λ t lv
λ e(2ikzl−ikzs−ikz)L/2

1 + rsl
λ r lv

λ e2ikzlL
. (23)

B. Trapped modes

Trapped modes arise from repeated total internal reflections
within the layer of higher refractive index nl. This happens
when the angle of incidence of the incoming wave is
sufficiently high and exceeds the critical angle. This critical
angle is different for the two opposite wave-guide interfaces.
First consider the layer-vacuum interface. From Eq. (16) we

can obtain the reciprocal relation expressing the kz in terms of
the kzl:

kz = 1

nl

√
k2
zl − (n2

l − 1
)
k2

‖. (24)

Thus, whenever k2
zl < (n2

l − 1) k2
‖ then kz becomes pure

imaginary,

kz = + i

nl

√(
n2

l − 1
)
k2

‖ − k2
zl, (25)

and we have a mode that exhibits evanescent behavior on the
vacuum side. The sign of the square root is chosen such that
these modes decay exponentially when one goes away from
the layer in the positive z direction. This also ensures that there
truly is total internal reflection, that is, |rvl

λ |2 = 1.
However, since on the other side of the wave guide we

have a substrate rather than vacuum, not all of the modes that
get totally internally reflected at the vacuum-layer interface
necessarily get trapped. From the relation

kzs = ns

nl

√
k2
zl − k2

‖

(
n2

l

n2
s

− 1

)
, (26)

we obtain the condition of total internal reflection for the
substrate-layer interface to be k2

zl � (n2
l /n2

s − 1)k2
‖. Therefore,

modes satisfying the condition(
n2

l /n2
s − 1

)
k2

‖ � k2
zl �

(
n2

l − 1
)
k2

‖ (27)

are not trapped but appear in vacuum as a continuous
spectrum of evanescent waves that are accounted for among
the left-incident traveling modes. (They are analogous to the
evanescent modes that occur at a single-interface half space,
for which the normal-mode quantization was first presented
in [7].) On the other hand, trapped modes occur if

0 � k2
zl �

(
n2

l /n2
s − 1

)
k2

‖. (28)

The procedure for obtaining the trapped modes is largely
equivalent to that of the traveling modes. They can be written
in the form

fT
kλ(r) = Nλêλ(∇)

⎧⎪⎨
⎪⎩

T ls
λ eik−

s ·r, z < −L/2,

Vλe
ik−

l ·r + eik+
l ·r, |z| < L/2,

T lv
λ eik+·r, z > L/2.

(29)

The boundary conditions are imposed on both interfaces. From
the boundary at z = −L/2 we get

T ls
λ = (t ls

λ

/
r ls
λ

)
e−i(kzl+kzs)L/2,

(30)
Vλ = (1/r ls

λ

)
e−ikzlL,

whereas from the z = L/2 boundary

T lv
λ = t lv

λ e−i(kzl−kz)L/2,
(31)

Vλ = r lv
λ eikzlL.

Since both Eqs. (30) and (31) need to be simultaneously
satisfied, we obtain a dispersion relation for these modes,

1 + rvl
λ r ls

λ e2ikzlL = 0, (32)

which determines the allowed values of kzl within the layer.
Since we are dealing with an atom on the vacuum side
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it is necessary to express the dispersion relation in terms
of kz rather than kzl. It is straightforward to show that the
allowed values of the z component of the evanescent waves’
wave vector appearing on the vacuum side are given by
numbers qn

λ :

qn
TE = {kz : kz + ikzl(kz) tan[φTE(kz)] = 0},

(33)
qn

TM = {kz : kz + ikzl(kz)/n2
l tan[φTM(kz)] = 0

}
,

with

φTE(kz) = arg[(kzl + kzs)e
−ikzlL],

φTE(kz) = arg
[(

kzl/n2
l + kzs/n2

s

)
e−ikzlL

]
.

The numbers qn
λ lie on the imaginary kz axis; they satisfy [cf.

Eqs. (25) and (28)],(
1

n2
l

− 1

)
k2

‖ < (qn
λ )2 <

(
1

n2
s

− 1

)
k2

‖. (34)

The normalization constant Nλ for trapped modes is easily
obtained by direct evaluation of the integral (8). It is given by

Nλ = 1

2π

[
2n2

l L + Fλ(nl,ns) + Fλ(nl,1)
]−1/2

, (35)

with

Fλ(nl,ns) = n2
s

2
|êλ(k−

s )|2
∣∣t ls

λ

∣∣2
|kzs|

− nl

kzl
Im
(
rls
λ

)
ê∗
λ(k+

l ) · êλ(k−
l ),

and the reader is reminded that in (35) the z components of
the wave vectors k and ks are pure imaginary and because
of that the TM polarization vectors êTM(k−) and êTM(k−

s ) are
no longer normalized to unity, that is, |êTM(k−

s )|2 �= 1. The
quantity Fλ(nl,1) in Eq. (35) is obtained by taking the limit
ns → 1 of F (nl,ns), which, besides setting ns = 1 explicitly,
involves replacing r ls

λ and t ls
λ with r lv

λ and t lv
λ and ks with k.

C. Field operators and commutation relations:
Completeness of the modes

Now that we have determined the spatial dependence of
the mode functions, we are in position to write out the vector
potential field operator explicitly:

Â(r,t) =
{∫

d2k‖
∫ ∞

0
dkz

1√
2ε0ωk

fR
kλ(r)aR

kλe
−iωkt

+
∫

d2k‖
∫ ∞

0
dkzs

1√
2ε0ωk

fL
kλ(r)aL

kλe
−iωkt

+
∫

d2k‖
∑
kzl

1√
2ε0ωk

fT
kλ(r)aT

kλe
−iωkt

}
+ H.c. (36)

The sum in the last term runs over the allowed values of the
z component of the layer’s wave vector kzl, that is, the
solutions of the dispersion relation (32). For a given
type of mode, left-incident, right-incident, or trapped, photon
creation and annihilation operators appearing in (36) satisfy
the commutation relations (10). Commutators between photon
operators corresponding to different types of modes vanish as

a consequence of the orthogonality of the field modes (8), for
example,

[
aL

kλ,
(
aR

k′λ′
)†] = 0. (37)

We would like to verify explicitly the equal-time canonical
commutation relation between field operators, say, between the
electric field operator Ê(r,t) and the vector potential operator
Â(r,t),

[Âi(r,t),ε0Êj (r′,t)] = −iδε
ij (r,r′), z,z′ > L/2, (38)

with δε
ij (r,r′) given by Eqs. (6) and (7). To evaluate (38) we

need the electric field operator which is easily obtained from
Eq. (36) using the relation E = −∂tA. Plugging in the field
operators into (38) and making use of commutation relations
(10) and (37), we find that the left-hand side (LHS) of (38) is
given by

LHS = iRe
∑

λ

∫
d2k‖

[ ∫ ∞

0
dkz f R

kλ,i(r)f ∗R
kλ,j (r′)

+
∫ ∞

0
dkzs f L

kλ,i(r)f ∗L
kλ,j (r′)

+
∑
kzl

f T
kλ,i(r)f ∗T

kλ,j (r′)
]
. (39)

The quantity on the right-hand side is the sum over all modes,
just as prescribed by Eq. (5), and therefore we expect it to be
equal to the generalized transverse δ function [Eq. (6)]. This
shows that the statement of the completeness of the modes (5)
is in fact equivalent to the commutation relation (38), as has
been noted before in [18]. To prove that the relation

δε
ij (r,r′) =

∑
λ

∫
d2k‖

[ ∫ ∞

0
dkz f R

kλ,i(r)f ∗R
kλ,j (r′)

+
∫ ∞

0
dkzs f L

kλ,i(r)f ∗L
kλ,j (r′)

+
∑
kzl

f T
kλ,i(r)f ∗T

kλ,j (r′)
]

(40)

holds for z,z′ > L/2 we need to work out the sum over all
field modes. To start with, we carry out a change of variables
in (40): We convert the kzs integral and the kzl sum to run over
the values of kz. In the case of the kzs integral this is a simple
change of variables according to (17)

∫ ∞

0
dkzs = n2

s

∫ ∞

0
dkz

kz

kzs
+ n2

s

∫ 0

i�s

dkz

kz

kzs
, (41)

with �s =
√

(n2
s − 1)k2

‖/ns. Here it is seen explicitly that the
contributions from the left-incident modes split into a traveling
part and an evanescent part. The values of kz included in the
last integral correspond to the condition for evanescent modes
with continuous spectrum [Eq. (27)]. In the case of the sum we
change the summation over kzl to run over the values of kz as
defined by Eq. (33). Plugging in the mode functions (20) and
(21) into Eq. (40) and utilizing straightforward properties of
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the reflection and transmission coefficients that hold for real
kz,kzs,

R∗R
λ (−kz) = RR

λ (kz),
kz

kzs

∣∣T L
λ

∣∣2 + ∣∣RR
λ

∣∣2 = 1, (42)

we can rewrite the completeness relation as

δε
ij (r,r′) = δ⊥

ij (r − r′) +
∑

λ

êi
λ(∇)ê∗j

λ (∇′)
∫

d2k‖eik‖(r‖−r′
‖)

×
{∑

qn
λ

|Nλ|2
∣∣T lv

λ

∣∣2eikz(z+z′)

+ 1

(2π )3

∫ 0

i�s

dkz

kz

kzs

∣∣T L
λ

∣∣2eikz(z+z′)

+ 1

(2π )3

∫ ∞

−∞
dkzR

R
λ eikz(z+z′)

}
. (43)

The first term in the preceding equation is the standard
transverse δ function. Therefore, if Eq. (40) is to hold, the term
in the curly brackets needs to be proportional to the reflection
part of the electrostatic Green’s function [cf. the second term on
the RHS of Eq. (7)]. That this is indeed the case is at this stage
far from obvious, as for the proof one would need to combine
two integrals and a sum into one expression. Obviously,
the discreteness of the spectrum of the trapped modes is a
nuisance that needs to be overcome if one is to complete the
task of summing over the electromagnetic modes successfully.
A similar difficulty would arise in any perturbative calculation
in this type of geometry, which motivated a previous inves-
tigation of this problem for the symmetric case of a single
slab of dielectric material [17]. We proceed with a broadly
analogous method to [17], first noting that what we have here
can be considered as a superposition of a slab and a half-space
geometry (cf. [17] and [18]). One can utilize the branch cut
due to kzs [which runs along the imaginary kz axis between
±i�s (cf. Fig. 2)] to express the integral over |T L

λ |2 in (43) as
an integral over the reflection coefficient RR

λ that runs from 0−
along the square root cut up to the branch point at +i�s and
then back down to the origin 0+. Note that the branch cut due
to the kzl is irrelevant because of the symmetry property of the
reflection coefficient RR

λ (−kzl) = RR
λ (kzl). In this way, the first

two integrals in the curly braces in Eq. (43) can be combined
together as a single integral in the complex kz plane [18]. This
is possible because the relation

kz

kzs

∣∣T L
λ

∣∣2∣∣∣∣
kzs,kzl>0

= RR
λ

∣∣∣∣
kzs,kzl>0

− RR
λ

∣∣∣∣
kzs,kzl<0

(44)

continues to hold for coefficients (22) with a purely imaginary
z component of the vacuum wave vector, kz (cf. [19]). Thus,
the contributions from the traveling and evanescent modes can
be combined into a single contour integral along the path γs

depicted in Fig. 2 and the terms appearing in the curly brackets
on the RHS of Eq. (43) become

1

(2π )3

∫
γs

dkzR
R
λ êi

λ(k+)êj

λ(k−)eikz(z+z′)

+
∑
qn

λ

|Nλ|2
∣∣T lv

λ

∣∣2êi
λ(k+)êj

λ(k−)eikz(z+z′). (45)

Here we have now included the polarization vectors explicitly
in the integrals, which is a crucial step as they affect the

FIG. 2. (Color online) The dashed line represents the contour γs

used to evaluate the kz integral in Eq. (45). Here �s =
√

(n2
s − 1)k2

‖/ns

and �l =
√

(n2
l − 1)k2

‖/nl. The crosses represent the poles of the
reflection coefficient RR

λ , that is, the solutions to the dispersion
relation (32).

analytical structure of the integrand in the complex kz plane. In
particular, the TM polarization vector introduces a pole at the
points kz = ±i|k‖| due to the factor 1/|k|2 in its normalization
factor. We will see that it is precisely this pole that gives rise to
the reflection term in (6). We note that, according to Eq. (22),
the reflection coefficient contains the phase factor e−ikzL. Thus,
since z + z′ − L > 0, the argument of the exponential in (45)
has a negative real part in the upper half of the complex kz plane
and we can evaluate the kz integral in Eq. (45) by closing the
contour in the upper half plane. For this we need to determine
the analytical properties of RR

λ . We note that the denominator
of the reflection coefficient (22) is precisely the dispersion
relation (32). Rewriting the reflection coefficients in the form

RR
TE =

kz − kzl

(
1−r ls

TE exp(2ikzlL)
1+r ls

TE exp(2ikzlL)

)
kz + kzl

(
1−r ls

TE exp(2ikzlL)
1+r ls

TE exp(2ikzlL)

) ,

RR
TM =

kz − kzl

n2
l

(
1−r ls

TM exp(2ikzlL)
1+r ls

TM exp(2ikzlL)

)
kz + kzl

n2
l

(
1−r ls

TM exp(2ikzlL)
1+r ls

TM exp(2ikzlL)

)

allows us to deduce that RR
λ has a finite number of simple poles

on the imaginary axis. When closing the contour we enclose
all of them and by Cauchy’s theorem the problem is reduced
to the evaluation of the residues at these points:∑

λ

∫
γs

dkzR
R
λ êi

λ(k+)êj

λ(k−)eikz(z+z′)

= 2πi
∑

λ

∑
Res

RR
λ êi

λ(k+)êj

λ(k−)eikz(z+z′)

= 2πi

[∑
λ

∑
qn

λ

lim
kz→qn

λ

(
kz − qn

λ

)+ lim
kz→i|k‖|

(kz − i|k‖|)
]

× êi
λ(k+)êj

λ(k−)
rvl
λ + r ls

λ e2ikzlL

1 + rvl
λ r ls

λ e2ikzlL
eikz(z+z′−L). (46)
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Here the first term represents the contributions from the poles
in the reflection coefficient and corresponds the trapped modes,
whereas the second term represents the contribution from the
pole that arises due to the TM polarization vector. When
calculating the residues explicitly, one needs to remember that
the two independent variables are kz and k‖ and that, according
to Eqs. (16) and (17), kzl and kzs are functions of those. In
addition, the denominator of the reflection coefficient is not
of the form f (kz)(kz − qn

λ ), so that multiplying it by (kz − qn
λ )

does not remove its singularity; the whole expression is still
indeterminate. Therefore, L’Hospital’s rule needs to be used
to evaluate the limit (cf. [17], Sec. V]). Doing so, we find that

1

(2π )3

∫
γs

dkzR
R
λ êi

λ(k+)êj

λ(k−)eikz(z+z′)

= −
∑
qn

λ

|Nλ|2
∣∣T lv

λ

∣∣2êi
λ(k+)êj

λ(k−)eikz(z+z′)

−∇i∇′
jGH (r,r′), (47)

where GH (r,r′) is the reflected part of the Green’s function
of the Poisson equation given in Eq. (7) and derived in
Appendix B. We see that the poles of the reflection coefficient
RR

λ yield a term that exactly cancels out the contributions of the
trapped modes to the completeness relation (43), whereas the
pole of the TM polarization vector yields the term proportional
to Green’s function. Thus, the final result can be written as∑

λ

∫
d2k‖

∑
kz

∫
f i

kλ(r)f ∗j

kλ (r′) = 1

i
[Ai(r), − ε0Ej (r′)]

= δ⊥
ij (r − r′) − ∇i∇′

jGH (r,r′) z,z′ > L/2

= δij δ
(3)(r − r′) − ∇i∇′

jG(r,r′) z,z′ > L/2,

which is precisely what we anticipated earlier. In the next
section we demonstrate how the calculation presented here
may be applied to accomplish typical perturbative QED
calculations in a layered geometry.

III. ENERGY SHIFT

To work out the energy shift we use standard perturbation
theory where the atom is treated by means of the Schrödinger
quantum mechanics and only the electromagnetic field is
second quantized. We work with a multipolar coupling where
the lowest order of the interaction Hamiltonian is

Hint = −µ · E. (48)

Then the energy shift of the atomic state i, up to the second
order, is given by

	Ei = 〈i; 0|Hint|i; 0〉 +
∑
j �=i

∑
k,λ

∫ |〈j ; 1kλ|Hint|i; 0〉|2
Ei − (Ej + ωk)

.

Here, µ is the atomic electric dipole moment, and the
composite state |j ; 1kλ〉 describes the atom in the state |j 〉
with energy Ej and the photon field containing one photon
with momentum k and polarization λ. Because the electric
field operator is linear in the photon creation and annihilation
operators, the first-order contribution vanishes and the second-
order correction is the lowest-order contribution. Since the
electric field does not vary appreciably over the size of the

atom, we use the electric dipole approximation. Then the
energy shift can be expressed as

	Ei = −
∑
j �=i

∑
k,λ

∫
ωk

2ε0

|〈i|µ|j 〉 · f∗
kλ(r0)|2

Eji + ωk
, (49)

where r0 = (0,0,z0) is the position of the atom and we have
abbreviated Eji = Ej − Ei . It is seen that the calculation
involves a summation over the modes of the electromagnetic
field as carried out in the proof of the completeness relation
(43). Equation (49) can be written out explicitly as

	Ei = − 1

2ε0

∑
λ

∑
j �=i

|µm|2
∫

dk‖

× (	vac + 	trav + 	evan + 	trap), (50)

with |µm|2 ≡ |〈i|µm|j 〉|2. There are four distinct contributions
to the energy shift. 	vac is the position-independent contribu-
tion caused by the vacuum fields and gives rise to the Lamb
shift in free space:

	vac = 1

(2π )3

∫ ∞

−∞
dkz em

λ (k−)em∗
λ (k−)

ω

Eji + ω
. (51)

The remaining three contributions come from the traveling,
evanescent, and trapped modes, respectively,

	trav = 1

(2π )3

∫ ∞

−∞
dkzR

R
λ em

λ (k+)em∗
λ (k−)e2ikzz0

ω

Eji + ω
,

	evan = 1

(2π )3

∫ 0

i�s

dkz

kz

kzs

∣∣T L
λ

∣∣2em
λ (k+)em∗

λ (k+)e2ikzz0

(52)
× ω

Eji + ω
,

	trap = −2mm
∑
qn

λ

|Nλ|2
∣∣T lv

λ

∣∣2em
λ (k+)em∗

λ (k+)e2ikzz0
ω

Eji + ω
,

with z0 being the position of the atom with respect to the
origin. Note that because of the dipole approximation the
shorthand notation for polarization vectors (19) can no longer
be applied. Normally one is interested in the energy shift
caused by the presence of the dielectric boundaries only; that
is, the correction to the shift that would appear in the free
space. Therefore, we renormalize the energy-level shift (50)
by subtracting from it its free space limit, that is,

	Eren
i = 	Ei − lim

nl,ns→1
	Ei. (53)

The renormalization procedure amounts to the removal of
the contributions 	vac [Eq. (51)], from the energy shift (50)
and takes care of any infinities that would appear otherwise,
provided we treat the remaining parts with care. As noted
elsewhere [1], the contributions (52) suffer from convergence
problems when treated separately. However, appropriate tools
for handling the problem have been developed in Sec. II C.
We aim to combine 	trav, 	evan, and 	trap into one compact
expression that is easy to handle analytically. We can use the
same trick as in the proof of the completeness relation because
the analytical structure of the integrand in the complex kz

plane is the same except for the function ω = (k2
‖ + k2

z )1/2

that comes about due to the denominator of perturbation
theory and introduces additional branch points at kz = ±i|k‖|
as compared to Fig. 2. This poses no difficulties, though, if
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FIG. 3. (Color online) The dashed line represents the final contour
γl used to evaluate the energy shift in Eq. (54).

one chooses the branch cuts to lie between ±i|k‖| and ±i∞.
Then, the contributions to the energy shift from the traveling
modes 	trav and the evanescent modes 	evan can be combined
together into a single complex integral, as explained in the
steps between Eqs. (43) and (45). This is possible because
for imaginary kz we have em∗

λ (k+) = em
λ (k−), whereas for real

kz the relation em∗
λ (k−) = em

λ (k−) holds. On the other hand,
we also know from Eq. (47) that the sum in 	trap is equal
to an integral over the reflection coefficient RR

λ taken along
any clockwise contour enclosing all of its poles. Choosing this
contour to run from kz = 0− + i�s to kz = 0− + i�l and then
back down from kz = 0+ + i�l to kz = 0+ + i�s (cf. Fig. 3),
we write the renormalized energy shift compactly as

	Eren
i = − 1

2(2π )3ε0

∑
m,λ

∑
j �=i

|µm|2
∫

dk‖

×
∫

γl

dkz

ω

Eji + ω
RR

λ em
λ (k+)em

λ (k−)e2ikzz0 , (54)

where the contour of integration γl is shown in Fig. 3. It
resembles that of Fig. 2 but now runs on the imaginary
axis up to the point kz = i�l enclosing all the poles of the
reflection coefficients RR

λ . Formula (54) is equally applicable
to ground-state atoms |0〉 as it is to atoms that are in an excited
state |i〉 provided we use the contour of integration as given in
Fig. 3 and interpret the kz integral as a Cauchy principal value.
As renormalization has now been dealt with, we from here
on omit the superscript “ren” and designate the renormalized
energy shift of Eq. (54) simply by 	Ei .

A. Ground-state atoms

In the case of a ground-state atom the energy difference
Ej0 ≡ Ej − E0 is always positive; hence, the denominator
in Eq. (54) that originates from second-order perturbation
theory, Ej0 + ω, never vanishes. Then the integrand in Eq. (54)
contains no poles in the upper half of the kz plane other
than those due to the reflection coefficient RR

λ . To evaluate
the kz integral we can deform the contour of integration in
Eq. (54) from that sketched in Fig. 3 to the one as shown
in Fig. 4, which is beneficial from the computational point

FIG. 4. (Color online) The final contour C used to evaluate the
energy shift of the ground-state atom in Eq. (55).

of view as it simplifies the analysis of Eq. (54) considerably.
Writing out explicitly the sums over the polarization vectors
(19) and then expressing the integral in the k‖ plane in polar
coordinates, kx = k‖ cos φ, ky = k‖ sin φ, where the angle
integral is computable analytically, we rewrite the energy
shift as

	E0 = 1

16π2ε0

∑
j �=0

∫ ∞

0
dk‖ k‖

∫
C
dkz

ω

Ej0 + ω
e2ikzZ

×
[
|µ‖|2

(
R̃R

TE − k2
z

ω2
R̃R

TM

)
+ 2|µ⊥|2 k2

‖
ω2

R̃R
TM

]
, (55)

with ω(kz) =
√

k2
‖ + k2

z and |µ‖|2 = |µx |2 + |µy |2 and the
contour C is that in Fig. 4. The amended reflection coefficients
R̃R

λ are given by

R̃R
λ = rvl

λ + r ls
λ e2ikzlL

1 + rvl
λ r ls

λ e2ikzlL
; (56)

that is, we have pulled out the phase factor e−ikzL in order to
define Z = z0 − L/2 as the distance between the atom and the
surface [cf. Eq. (22)].

In order to perform the kz integration in (55) we need to
analytically continue the function ω = ω(kz), which is real and
positive on the real axis, to the both sides of the branch cut
along which the integration is carried out (cf. Fig. 4). Doing
so we find that on the LHS of the cut the positive value of the
square root needs to be taken, and hence on the RHS of the cut
we must take the opposite sign. Therefore, we have∫

C

dkz

ω

Ej0 + ω
= −

∫ i∞

ik‖
dkz

2Ej0ω

(Ej0 − ω)(Ej0 + ω)
.

Now we carry out a sequence of changes of variables. First we
re-express the kz integration in terms of one over the frequency
ω by substituting ω =

√
k2
‖ + k2

z ,∫ i∞

ik‖
dkz =

∫ i∞

0
dω

ω√
ω2 − k2

‖
. (57)

Then we make the integral run along the real axis by setting
ω = iξ . After this is done, the energy shift of the ground state
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is expressed as a double integral that covers the first quadrant
of the (k‖,ξ ) plane:

	E0 = − 1

8π2ε0

∑
j �=0

Ej0

∫ ∞

0
dk‖k‖

×
∫ ∞

0
dξ

e−2
√

ξ 2+k2
‖Z√

ξ 2 + k2
‖
(
E2

j0 + ξ 2
)

× {|µ‖|2
[
(ξ 2 + k2

‖)R̃R
TM − ξ 2R̃R

TE

]+ 2k2
‖R̃

R
TM|µ⊥|2}.

It seems natural to introduce polar coordinates, k‖ =
x̄ sin φ, ξ = x̄ cos φ. We also choose to scale the radial
integration variable x̄ = Ej0x with Ej0 > 0 and set y = cos φ.
This provides us with the final form of the energy shift that
is more suitable for numerical computations and asymptotic
analysis:

	E0 = 1

8π2ε0

∑
j �=0

E3
j0

∫ ∞

0
dxx3

∫ 1

0
dy

e−2Ej0Zx

1 + x2y2

× [|µ‖|2
(
y2R̃R

TE − R̃R
TM

)+2|µ⊥|2(y2−1)R̃R
TM

]
. (58)

The reflection coefficients R̃R
λ are as expressed in (56) but with

the wave vectors given by

kzi = ixEj0

√(
n2

i − 1
)
y2 + 1, ni = {1,nl,ns}.

Note that even though the wave vector is imaginary, the final
result is a real number, as it should be, because the Fresnel
coefficients contain only ratios of wave vectors.

B. Excited atoms

As mentioned previously, the energy-level shift of an
excited atom is also given by Eq. (54). However, one needs to
take account of the fact that the quantity Eji ≡ Ej − Ei can
now become negative for Ej < Ei , so that the denominator
originating from perturbation theory contributes additional
poles lying on the path of kz integration, shown in Fig. 3
and is now to be understood as a Cauchy principal value.
These poles are located at kz = ±

√
E2

ji − k2
‖, though their

precise location depends on the value of |k‖| that is not fixed
but varies as we carry out the k‖ integrations in Eq. (54).
For |k‖| ∈ [0,|Eji |] the poles are located on the real kz axis
but as we increase the value of |k‖| to exceed |Eji | both
poles move onto the positive imaginary axis according to the
convention that Im(kz) > 0. For |k‖| belonging to the interval
[|Eji |,ns|Eji |] the poles are located on the opposite sides of
the branch cut due to the kzs and care needs to be taken when
evaluating those pole contributions. To evaluate the Cauchy
principal value of the kz integral we circumvent the poles and
close the contour in the upper half plane, as was done in the
previous section. The contribution from the large semicircle
vanishes and Eq. (54) acquires pole contributions that are
easily worked out by the residue theorem. The energy shift
splits into the a “nonresonant” ground-state-like part 	Ei and
a “resonant” oscillatory part 	Eres

i that arises only if the atom
is in an excited state. In analogy to the result of the previous

section, the nonresonant part is given by

	Ei = 1

8π2ε0

∑
j �=i

E3
ji

∫ ∞

0
dxx3

∫ 1

0
dy

e−2|Eji |Zx

1 + x2y2

× [|µ‖|2
(
y2R̃R

TE − R̃R
TM

)+2|µ⊥|2(y2−1)R̃R
TM

]
, (59)

with wave vectors expressed as

kzi = ix|Eji |
√(

n2
i − 1

)
y2 + 1, ni = {1,nl,ns}, (60)

whereas the resonant part is given by

	Eres
i = Re

i

8πε0

∑
j<i

|Eji |3
∫ ∞

0

dqq√
1 − q2

e2i|Eji |
√

1−q2Z

× {|µ‖|2
[
(1 − q2)R̃R

TM − R̃R
TE

]− 2|µ⊥|2q2R̃R
TM

}
,

(61)

with q = k‖/|Eji | and

kzi = |Eji |
√

n2
i − q2, ni = {1,nl,ns}.

The reflection coefficients are as given in (56). The integral
in Eq. (61) contains poles because the dispersion relation
present in the denominators of the reflection coefficients has
now solutions on the real axis when q ∈ [ns,nl]. This signals
contributions from surface excitations (trapped modes). This
fact has been mentioned in [2], where the interaction of
an excited atom with layered dielectric has been studied,
although using mainly numerical analysis. Here we attempt
to study the results (59) and (61) analytically. To do so it
will prove beneficial to rewrite Eq. (61) slightly. We change
variables according to

√
1 − q2 = η and split the contributions

to Eq. (61) into two parts. The first one is a contribution from
the traveling modes and given by

	E
res,trav
i = −Re

i

8πε0

∑
j<i

|Eji |3
∫ 1

0
dηe2i|Eji |Zη

× {|µ‖|2
[
R̃R

TE − η2R̃R
TM

]+2|µ⊥|2(1−η2)R̃R
TM

}
,

(62)

where the wave vectors in reflection coefficients are all real
and can be expressed as

kzi = |Eji |
√

n2
i − 1 + η2, ni = {1,nl,ns}, (63)

and the second is a contribution from the evanescent modes

	E
res,evan
i = −Re

1

8πε0

∑
j<i

|Eji |3
∫ ∞

0
dηe−2|Eji |Zη

× {|µ‖|2
[
R̃R

TE+η2R̃R
TM

]+ 2|µ⊥|2(1+η2)R̃R
TM

}
,

(64)

where the wave vectors in reflection coefficients can be
expressed as

kzi = |Eji |
√

n2
i − 1 − η2, ni = {1,nl,ns}. (65)

Finally, it is worth noting that the imaginary part of Eq. (61)
is actually proportional to the modified decay rates [9]. These
have already been studied in [16], so we focus on energy shifts
only. However, the methods of analysis that are reported in the
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next section do allow one to write down at once equivalent
analytical formulas for the decay rates.

IV. ASYMPTOTIC ANALYSIS

The interaction between the atom and the dielectric is
electromagnetic in nature and it is mediated by photons. The
atomic system in state |i〉 evolves in time with a characteristic
time scale that is proportional to E−1

ji , with Eji being the
energy-level spacing between the states |i〉 and |j 〉 which
are connected by the strongest dipole transition from state
|i〉. Since it takes a finite time for the photon to make a
round trip between the atom and the surface, the atom will
have changed by the time the photon comes back. Therefore,
the ratio of the time needed by the photon to travel to
the surface and back and the typical time scale of atomic
evolution is a fundamental quantity that plays a decisive role
in characterizing the interaction. In natural units, if 2EjiZ � 1
we can safely assume that the interaction is instantaneous and
we are in the so-called nonretarded or van der Waals regime. If
2EjiZ � 1 the interaction becomes manifestly retarded as the
atom will have changed significantly by the time the photon
comes back. However, the problem we have considered here
provides us with yet another length scale, namely, the thickness
of the top layer L. We now consider the energy shift in various
asymptotic regimes.

A. Ground-state atoms: Electrostatic limit (2E j iZ � 1)

In this limit the interaction is instantaneous (or electrostatic)
in nature and the energy shift is obtainable using the Green’s
function of the classical Laplace equation (cf., e.g., [20]). This
classical derivation is outlined in Appendix B. The end result
for the energy shift reads

	Eel = − 1

16πε0
(〈µ2

‖〉 + 2〈µ2
⊥〉t)

∫ ∞

0
dkk2e−2kZ

×
⎛
⎝ n2

l −1
n2

l +1
− n2

l −n2
s

n2
s +n2

l
e−2kL

1 − n2
l −1

n2
l +1

n2
l −n2

s

n2
s +n2

l
e−2kL

⎞
⎠ , (66)

with 〈µ2
‖〉 ≡ 〈µ2

x〉 + 〈µ2
y〉 and 〈µ2

⊥〉 ≡ 〈µ2
z〉. We now show that

one can also obtain the preceding result as a limiting case of
the results of previous section, thus providing a cross-check
for our general calculation. To start with we note that Eq. (58)
cannot be used to take the electrostatic limit in which we
mathematically let Eji → 0 because it has been scaled with
Eji . Therefore, it is best to start from Eq. (54). The result of
Eq. (66) can be derived very quickly if we observe that in
the limit Eji → 0 the branch cut due to ω =

√
k2

‖ + k2
z is no

longer present and the contour in Fig. 4 collapses to a simple
enclosure of the point kz = i|k‖|. The contribution from the
TE mode vanishes as the product of the polarization vectors
is regular at kz = i|k‖|, but for the TM mode this point is a
simple pole [cf. Eq. (19)]. Therefore, we obtain

	Eel = − 1

(2π )32ε0

∑
m

∑
j �=0

|µm|2
∫

dk‖

× 2πi lim
kz→i|k‖|

(kz − i|k‖|)RR
TMem

TM(k+)em
TM(k−)e2ikzz0 .

Taking the limit and expressing the remaining integrals in
polar coordinates, where the angle integral is elementary,
yields Eq. (66) with 〈µ2

m〉 ≡∑j �=i |〈i|µm|j 〉|2 = 〈i|µ2
m|i〉.

Equation (66) can be further analyzed depending on the relative
values of L and Z .

1. Thin layer (Z/L � 1)

In this case the distance of the atom from the surface is
much greater than the thickness of the layer of refractive index
nl (but still small enough for the retardation to be neglected).
Then, rescaling the integral in Eq. (66) with k = x/L allows
us to use Watson’s lemma1 to derive

	Eel ≈ 	Eel
ns

− 1

64πε0Z3
(〈µ2

‖〉 + 2〈µ2
⊥〉)

×
[
a1

L

Z + a2
L2

Z2
+ O

(
L3

Z3

)]
, (67)

with the coefficients ai given by

a1 = 3

n2
l

n4
l − n4

s(
n2

s + 1
)2 ,

a2 = − 6

n4
l

(
n4

l − n4
s

)(
n2

s + n4
l

)
(
n2

s + 1
)3 ,

where 	Eel
ns

is the well-known electrostatic interaction energy
between an atom and a dielectric half space of refractive index
ns that can be obtained by the method of images:

	Eel
ns

= − 1

64πε0Z3

n2
s − 1

n2
s + 1

(〈µ2
‖〉 + 2〈µ2

⊥〉). (68)

The corrections to this result are represented by the remaining
elements of the asymptotic series. Note that if nl > ns, then
a1 > 0 and, not surprisingly, the interaction, as compared to
a half-space alone, is enhanced by the presence of the thin
dielectric layer of higher refractive index nl.

2. Thick layer (Z/L � 1)

In this case the thickness of the layer is much greater than
the distance between the atom and the surface. The top layer
now appears from the point of view of the atom almost as a
half-space of refractive index nl only that it is in fact of finite
thickness. To analyze the result (66) in this limit we cast it in
a somewhat different form. Note that, especially when kL is
large but not only then,

n2
l − 1

n2
l + 1

n2
l − n2

s

n2
s + n2

l

e−2kL < 1 (69)

and the denominator of the integrand in Eq. (66) can be written
as geometrical series. Since the series is absolutely convergent

1The essential idea is to spot that, since the integrand is strongly
damped by the exponential, most of the contributions to the integral
will come from small values of k. Thus, it is permissible to Taylor
expand the remaining part of the integrand about k = 0. For a more
rigorous treatment, see [21].
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we can integrate it term by term and obtain the following
representation of the electrostatic result:

	Eel = 	Eel
nl

+ 1

16πε0
(〈µ2

‖〉 + 2〈µ2
⊥〉) n2

l

n4
l − 1

×
∞∑

ν=1

(
n2

l − 1

n2
l + 1

n2
l − n2

s

n2
s + n2

l

)ν
1

(Z + νL)3
, (70)

where 	Eel
nl

is the electrostatic energy shift due to a single half
space of refractive index nl, that is, Eq. (68) with ns replaced
with nl. The sum in Eq. (70) represents the correction to 	Eel

nl

due to the finite thickness of the layer. For fixed Z and L, it
can be easily computed numerically to any desired degree of
accuracy. We note, however, that to the leading order in Z/L

the interaction is weakened by the same amount independently
of the distance of the atom from the surface and therefore is
not measurable. The next-to-leading order correction is the
first to be distance dependent and is proportional to Z/L4,
which can be easily seen by expanding the factor in series
around Z/νL = 0:

1

(Z + νL)3
≈ 1

ν3L3
− 3Z

ν4L4
+ O

(
Z2

L5

)
. (71)

B. Ground-state atoms: Retarded limit (2Z E j i � 1)

1. Thin layer (Z/L � 1)

In this case we study the situation when the top layer is much
thinner than the distance between the atom and the surface. To
obtain the asymptotic series we use Watson’s lemma in much
the same way as in the electrostatic case [21]. Series expansion
of the integrand in Eq. (58) about x = 0 decouples the integrals
and the resulting integrals can be calculated analytically. Thus,
to first approximation, for an atom located sufficiently far from
the interface, the impact of the thin dielectric layer on the
standard Casimir-Polder interaction can be described by

	Eret = 	Eret
ns

− 1

16π2ε0Z4

∑
j �=0

[
a‖|µ‖|2 + 2a⊥|µ⊥|2

Ej0

]
L

Z

+O

(
L2

Z2

)
, (72)

where 	Eret
ns

is the retarded limit of energy shift as caused
by a single dielectric half space of refractive index ns, which
was calculated in [9]. We give this result in Appendix C. The
coefficients a‖ and a⊥ in (72) can be expressed in terms of
elementary functions as

a‖ = 1

n2
l

n2
l − n2

s(
n2

s − 1
)2(

n2
s + 1

) [n5
s (6ns − 3)

(
n2

l − 1
)

+ 3n2
s

(
n2

l + 1
)− n2

l

(
2n4

s + 3n3
s + 3ns − 8

)]
− n2

l − n2
s

n2
l

(
n2

s − 1
)5/2

ln
(√

n2
s − 1 + ns

)[
2n2

s n
2
l

(
n2

s − 1
)2

−2n4
s

(
n2

s − 1
)+ n2

l

]− n4
s

2n2
l

n2
l − n2

s(
n2

s − 1
)2(

n2
s + 1

)3/2

× ln

(√
n2

s + 1 + 1√
n2

s + 1 − 1

√
n2

s + 1 − ns√
n2

s + 1 + ns

)

× [2n4
s

(
n2

l − 1
)− 2n2

s − 3n2
l + 1

]
a⊥ = 1

n2
l

n2
l − n2

s(
n2

s − 1
)2(

n2
s + 1

) [n4
s

(
4n2

s − 3ns − 3
)− n2

s

(
12n6

s

− 6n5
s + 2

)(
n2

l − 1
)+ n2

l

(
2n6

s + 7n4
s − 3n3

s + 2
)]

+ n2
s

n2
l

n2
l − n2

s(
n2

s − 1
)5/2

ln
(√

n2
s − 1 + ns

)[
n2

l

(
4n6

s − 6n4
s

+ 3n2
s −1

)−n2
s

(
2n2

s −1
)2]+ n6

s

2n2
l

n2
l −n2

s(
n2

s −1
)2(

n2
s +1

)3/2

× ln

(√
n2

s + 1 + 1√
n2

s + 1 − 1

√
n2

s + 1 − ns√
n2

s + 1 + ns

)

× [4n4
s

(
n2

l − 1
)+ 2n2

s

(
n2

l − 2
)− 3n2

l + 1
]
.

Both a‖ and a⊥ are positive for nl > ns so that, as one would
expect, the interaction, as compared to a half space alone, is
enhanced by the thin dielectric layer of the higher refractive
index nl. The preceding result simplifies significantly in the
case when ns approaches unity, that is, when the situation
resembles that of an atom interacting with a dielectric slab of
refractive index nl. The coefficients a‖ and a⊥ reduce then to
those recently calculated in [1] and are given by

a‖ =
(
n2

l − 1
)(

9n2
l + 5

)
10n2

l

,

a⊥ =
(
n2

l − 1
)(

5n2
l + 4

)
10n2

l

.

2. Thick layer (Z/L � 1)

Here we assume that the thickness of the top layer is much
greater than the distance between the atom and the surface,
but is still large enough for retardation to occur. Note that
the reflection coefficient R̃R

λ (22) can be separated into L-
dependent and L-independent parts in the following manner:

R̃R
λ = rvl

λ +
[
1 − (rvl

λ

)2]
r ls
λ e2ikzlL

1 + rvl
λ r ls

λ e2iLkzlL
. (73)

This way of writing the reflection coefficient splits the energy
shift (58) into a shift due to the single interface of refractive
index nl and corrections due to the finite thickness and
the underlying material. It can be shown numerically (see
Sec. V) that for large values of L the correction term is
vanishingly small and can be safely discarded. Brute-force
asymptotic analysis allows us to draw similar conclusions as
in the electrostatic case, Sec. IV A 2. To leading order the
interaction gets altered by the same amount regardless of
the position of the atom with respect to the interface. The
next-to-leading-order correction is proportional to Z/L5.
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C. Excited atoms: Nonretarded limit (2Z|E j i | � 1)

The energy shift of an excited atom is given by Eqs. (59)
and (61). The nonresonant part, that is, Eq. (59), has the same
form as the energy shift of the ground-state atom and has been
analyzed in the previous section. Therefore, we now focus on
the resonant part of the interaction that is given by Eq. (61).
In order to conveniently obtain the nonretarded limit of (61)
we work with its slightly modified form given in Eqs. (62)
and (64).

We start by noting that close to the interface we expect
asymptotic series to be in the inverse powers of Z . Eq. (62),
where the η integration runs over η ∈ [0,1], contributes only
positive powers of Z . This is most easily seen by expanding
the exponential exp(2i|Eji |Zη) about origin as we may do
in the limit 2Z|Eji | → 0. Therefore, to leading-order in the
electrostatic limit, only (64) contributes. Further we analyze
(64) by setting η = β/(|Eji |Z). Then, according to (65), in
the limit |Eji |Z → 0 the wave vectors can effectively be
approximated as

kz ≈ kzl ≈ kzs ≈ i
β

Z . (74)

Then the result for the energy shift, after substituting β = kZ ,
reduces to

	Eres,el = − 1

8πε0

∑
j<i

(|µ‖|2 + 2|µ⊥|2)
∫ ∞

0
dkk2e−2kZ

×
n2

l −1
n2

l +1
− n2

l −n2
s

n2
s +n2

l
e−2kL

1 − n2
l −1

n2
l +1

n2
l −n2

s

n2
s +n2

l
e−2kL

. (75)

This result turns out to have the same dependence on Z and
L as the Coulomb interaction of the ground-state atom [cf.
Eq. (66)]; therefore, we do not analyze Eq. (75) any further.
Note, however, that the dependence on the atomic states is
different in Eqs. (66) and (75). We also point out that in the
electrostatic limit, to the order we are considering, the quantity
	Eres,el turns out to be real, which would imply that the
corrections to the decay rates vanish. However, this conclusion
is incorrect as it is known that the change of spontaneous
emission in the nonretarded limit is in fact constant for a
nondispersive dielectric half space [9]. However, any serious
analysis of the changes of the decay rates induced by a surface
needs to take into account the absorption of the material, which
in the nonretarded limit plays a crucial role and cannot be
neglected. Furthermore, we note that we have started from
Eq. (61), which, as explained before, contains poles on the real
axis signaling the trapped modes. However, the denominator
of (75) never vanishes, which reflects the fact that in the
electrostatic limit the trapped modes cease to exist and do not
contribute toward the energy shifts, as first mentioned in [2].

D. Excited atoms: Retarded limit (2Z|E j i | � 1)

The leading-order behavior of Eq. (61) in the retarded
limit can be obtained by repeated integration by parts. Unlike
in the electrostatic case, now both equations Eqs. (62) and
(64) contribute. We integrate them by parts and note that
the nonoscillatory contributions that arise from the boundary
terms evaluated at η = 0 cancel out. It turns out that the

leading-order contributions to the energy shift are due to
the parallel component of the atomic dipole moment. They
dominate the retarded interaction energy and behave as Z−1.
The contributions due to the component of the atomic dipole
moment that is perpendicular to the surface contribute only
terms proportional to Z−2. We find that in the retarded limit
the interaction energy up to the leading order is given by

	E
res,ret
i = − 1

8πε0Z
∑
j<i

|Eji |2|µ‖|2

× 1

1 + 2rvlrls cos(2|Eji |τ ) + r2
vlr

2
ls

× {rvl
(
1 + r2

ls

)
cos(2|Eji |Z)

+ r2
vlrls cos[2|Eji |(Z − τ )]

+ rls cos[2|Eji |(Z + τ )]
}
, (76)

where we have defined the optical thickness of the layer as
τ = nlL and

rvl = 1 − nl

1 + nl
, rls = nl − ns

nl + ns
. (77)

The final result agrees with that derived for a half-space in [9] if
we take either L → 0 or nl → ns, which is a consistency check
of our calculation. However, the limit of perfect reflectivity of
the top layer does not make sense and one has to start from
Eq. (61) and rewrite the reflection coefficient in the form (73)
in order to study this case.

Equation (76) is valid only approximately when the distance
between the atom and the surface is much greater than the
wavelength of the strongest atomic dipole transition, but it
nevertheless allows us to draw important conclusions. We note
that the interaction is resonant; that is, it is enhanced for certain
values of LEji . The most convenient way to understand the
essence of these resonance effects is to take the slab limit of
Eq. (76), that is, set ns = 1. In this limit we have

	E
res,ret
i = − 1

8πε0Z
∑
j<i

|Eji |2|µ‖|2

× 1

1 − 2r2
vl cos(2|Eji |τ ) + r4

vl

× {rvl
(
1 + r2

vl

)
cos(2|Eji |Z)

− r3
vl cos[2|Eji |(Z − τ )]

− rvl cos[2|Eji |(Z + τ )]
}
. (78)

It is easily seen that whenever cos(2|Eji |τ ) = 1 then
	E

res,ret
i = 0; that is, the leading-order interaction vanishes.

Conversely, the amplitude of oscillations in Eq. (78) is
maximized when cos(2|Eji |τ ) = −1. Therefore, we have a
condition for resonance in terms of the wavelength of the
strongest atomic dipole transition λji ,

τ = nlL = λji

2

(
κ + 1

2

)
, κ = 0,1,2 . . . . (79)

Equation (79) holds for Z|Eji | � 1 but if the value of
Z|Eji | approaches unity, the relation loses its validity, because
complications arise from the fact that when the atom is close
to the surface the evanescent waves come into play, whereas
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the condition (79) refers to the interaction of an atom with
traveling modes only. In the nonretarded limit Z|Eji | � 1 the
notion of resonance loses its meaning altogether [cf. Eq. (75)].
Exploring the extreme case in the retarded limit we note that
at antiresonance, that is, when

τ = nlL = λji

2
κ, κ = 0,1,2 . . . , (80)

Eq. (76) becomes

	E
res,ret
i = 1

8πε0Z
ns − 1

ns + 1

∑
j<i

|Eji |2|µ‖|2 cos(2|Eji |Z);

(81)

that is, the atom does not feel the presence of the layer and the
interaction assumes the form of that between an atom and a
single half space of refractive index ns (cf. [9]). This means that
in the retarded regime the leading-order interaction between an
excited atom and a slab of thickness L vanishes whenever the
optical thickness of the slab τ = nlL is equal to a half-integer
multiple of the wavelength of the dominant atomic transition
λji (cf. also Fig. 11 later on). Conversely, at resonance the shift
becomes

	E
res,ret
i = 1

8πε0Z
n2

l − ns

n2
l + ns

∑
j<i

|Eji |2|µ‖|2 cos(2|Eji |Z),

(82)

so that the amplitude of oscillations exceeds the amplitude that
would have been caused by a single half space of refractive
index nl. It also reaches the perfect reflector limit nl → ∞
more rapidly. Finally, we also remark that the meaning of the
conditions (79) and (80) is interchanged if the refractive index
of the substrate ns exceeds that of the layer nl, that is, when
ns > nl.

V. NUMERICAL EXAMPLES

In this section we present a few numerical results designed
to illustrate the influence of the dielectric layer on the Casimir-
Polder interaction between an atom and a dielectric half space.
In practice, the sum over intermediate states j in Eq. (58)
and in Eq. (61) is restricted to one or a few states to which
there are strong dipole transitions. Hence, we assume a two-
level system in which Eji is a single number, namely, the
energy spacing of the levels with the strongest dipole transition.
Additionally, we focus just on the contributions to the energy
shift due to the component of the atomic dipole that is parallel
to the interface of the dielectrics. The contributions due to the
perpendicular components of the atomic dipole moment can
be easily generated from Eq. (58) using standard computer
algebra packages like MATHEMATICA or MAPLE. We start by
simple checks on the asymptotic expansions derived in the
previous section.

A. Ground-state atoms

We choose to plot the energy-level shift 	E multiplied
by Z4 so that the asymptotic behavior of it as a function
of distance is more apparent, because Z4	E for a dielectric
half space approaches constant [9]. Then one can easily track

FIG. 5. (Color online) Plot of the exact energy-level shift contri-
butions 	E‖ (solid line) [Eq. (58)] multiplied by Z4. Dashed lines
represent the energy shifts due to the single dielectric half-spaces of
refractive indices nl (top) and ns (bottom), whereas the dotted-dashed
line represents the asymptotic approximation (72).

the variation of the energy shift caused by the top layer as
compared to the half space shifts (Figs. 5 and 6). We remark
that even though the derivation of the energy shift in this paper
was based on the assumption nl > ns, the results are also valid
in the case when the top layer has a smaller reflectivity than the
substrate. In such a case the result can be used, for example, to
model a thin layer of oxide or any kind of dirt on the substrate
which is often present under realistic conditions.

The asymptotic expansion (72) works well for large Z/L

and not-too-high values of the refractive index nl. This is
demonstrated in Fig. 7. The increase of the refractive index
nl has an impact on the accuracy of the approximation, which
is valid provided

Z � λji + τl, (83)

FIG. 6. (Color online) Plot of the exact energy-level shift 	E‖

(solid line) [Eq. (58)] multiplied by Z4. Dashed lines represent
the energy shifts due to the single dielectric half spaces of refractive
indices nl (bottom) and ns (top), whereas the dotted-dashed line
represents the asymptotic approximation (72).
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FIG. 7. (Color online) Plot of the exact energy shift 	E‖, [solid
lines, Eq. (58)], multiplied by Z4 together with the asymptotic
approximations [dashed lines, Eq. (72)].

with λji being the wavelength of the dominant atomic
transition and τl = nlL is the optical thickness of the top layer.

In Fig. 8 we demonstrate the behavior of the energy
shift depending on the various values of the parameter Eji

measured in units of the layer’s thickness. For small Eji we
clearly observe linear behavior that corresponds to the Z−3

dependence of the shift in the electrostatic regime.
We also find it instructive to plot the energy-level shift as a

function of the thickness of the top layer L for different values
of the refractive index nl while keeping the distance of the
atom from the surface fixed (Figs. 9 and 10).

B. Excited atoms

The energy shift of an excited atom splits into two distinct
parts [cf. Eqs. (59) and (61)]. The nonoscillatory part displays
the same behavior as the energy shift of the ground-state atoms,
which we have already analyzed numerically in the previous
section. Here we focus on the oscillatory contributions to the

FIG. 8. (Color online) Plot of the exact energy shift 	E‖

[Eq. (58)] multiplied by Z4 as a function of Z/L for various values
of the retardation parameter EjiL.

FIG. 9. (Color online) Plot of the exact energy shift 	E‖

[Eq. (58)] multiplied by Z4 as a function of a layer’s thickness L

measured in units of fixed atom-wall separation Z for various values
of the layer’s refractive index nl > ns.

level shifts that are given by Eq. (61). We choose to plot the
dimensionless integrals contained in Eqs. (62) and (64) as
this is numerically more efficient than plotting the integral
in Eq. (61). It should be borne in mind that the reflection
coefficients contain the dispersion relation in denominators
that now has solutions on the real axis. For the purpose of
the present demonstration it is sufficient to simply displace
the poles off the real axis by adding a small imaginary
part to the denominator of the reflection coefficients, which
amounts to taking the Cauchy principal value during numerical
integration.

In Fig. 11 we demonstrate that, indeed, if the antiresonance
condition (80) is satisfied, the interaction energy between the
excited atom and the slab is strongly suppressed forZEji � 1.
In general, for the layered dielectric rather than the slab, the
effect of resonance is shown in Figs. 12 and 13. Note that
the energy-level shift in an excited atom due to the layered

FIG. 10. (Color online) Plot of the exact energy shift 	E‖

[Eq. (58)] multiplied by Z4 as a function of layer’s thickness L

measured in units of fixed atom-wall separation Z for various values
of the substrate’s refractive index ns > nl.
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FIG. 11. (Color online) Plot of the exact energy-level shift (61)
(resonant part) in an excited atom due to the parallel component of
the atomic dipole moment placed in front of a slab of thickness L and
refractive index nl = 2π . The energy spacing of the dominant atomic
transition is such that LEji = 3/4; that is, it satisfies the resonance
condition (80). As is seen, when LEji = 1/2, the energy shift in the
retarded regime is strongly suppressed [cf. Eq. (76)].

dielectric can be significantly enhanced. Unlike in the case of
the ground-state atom, where the energy shift caused by the
layered structure of refractive indices nl and ns is bounded
by the single half-space shifts (compare Fig. 5), the excited
atom can experience shifts greater than those caused by the
unlayered half space of the refractive index n = max(nl,ns)
(Fig. 12), which is due to resonance effects. Conversely, it

FIG. 12. (Color online) Plot of the exact energy-level shift (61)
(resonant part) in an excited atom due to the parallel component of
the atomic dipole moment placed in front of the layered dielectric
with parameters as shown on the graph (solid line). The resonant
condition (79) is satisfied so that the interaction is enhanced. The
amplitude of oscillations exceeds the one that would have been
caused by an unlayered half space of the refractive index n = 2π

[cf. Eq. (81)]. Compare also Fig. 5. The dashed lines represent the
interaction between an atom and single half space of refractive index
n as indicated.

FIG. 13. (Color online) Plot of the exact energy-level shift (61)
(resonant part) in an excited atom due to the parallel component of
the atomic dipole moment placed in front of the layered dielectric
with parameters as shown on the graph (solid line). The antiresonant
condition (80) is satisfied so that the presence of the layer is almost
unnoticeable[cf. Eq. (81)]. The dashed lines represent the interaction
between an atom and single half space of refractive index n as
indicated.

is also possible that the interaction with the layer will be
unnoticeable if the antiresonance condition (80) is satisfied
(Fig. 13). Next, in Fig. 14, we show that the approximation
of Eq. (61) derived in (76) turns out to be quite accurate and
can be safely used to quickly estimate the energy shift in
an excited atom caused by the layered dielectric, provided the
conditionZEji � 1 is satisfied. It is also interesting to plot the
resonant part of the energy shift as a function of LEji while
keeping ZEji fixed. This is done in Fig. 15. It is seen that
the energy shift indeed experiences the oscillatory resonant
behavior. The subsequent minima and maxima are less and

FIG. 14. (Color online) Plot of the exact energy-level shift (61)
(resonant part) in an excited atom due to the parallel component of
the atomic dipole moment placed in front of the layered dielectric
with parameters as shown on the graph (solid line). The dashed line
represents the approximation in the retarded regime, Eq. (76).
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FIG. 15. (Color online) Plot of the exact energy-level shift (61)
(resonant part) in an excited atom due to the parallel component of
the atomic dipole moment placed in front of the layered dielectric
with parameters as shown on the graph (solid line). The dashed lines
represent energy shifts caused by the single half spaces of refractive
index nl = 2π (top) and ns = 2 (bottom).

less pronounced as the value of LEji increases. This is because
as we increase LEji the resonances and antiresonances move
closer and closer together so that their effects cancel out. It
is interesting to note that this behavior could not have been
inferred from Eq. (76), which indicates that the approximation
(76) can be useful only for LEji � 1, which can also be easily
verified numerically.

VI. SUMMARY

Using perturbation theory we have calculated the energy-
level shift in a neutral atom placed in front of a layered
dielectric half-space, as shown in Fig. 1. The major difficulty
in working out the energy shift is the sum over all modes
that appears in this type of calculation [Eq. (50)], especially
when the spectrum of the modes consists of the continuous
and discrete parts (Secs. II A and II B). This obstacle can be
circumvented by using complex-variable techniques to express
the sum over all modes as a single contour integral in the
complex kz plane [Eq. (54) and Fig. 4]. Then the energy shift
(58) is easily analyzed asymptotically as well as numerically.
For a ground-state atom, regardless of whether in retarded or
nonretarded regimes, we find that the leading-order correction
to the interaction of an atom with an unlayered interface is
proportional to L/Z . The asymptotic series are given by (67)
and (72) and provide reasonable estimate of the influence of
the single dielectric layer on the standard half-space result
(Fig. 7). In the opposite case of a very thick layer, that is,
Z/L � 1, we find that the result is well approximated by a
dielectric half space [9]. For excited atoms we find that the
interaction between an atom and the layered dielectric (61) is
subject to resonances that occur between the wavelength of
the dominant atomic transition λji and the thickness of the
layer L (Sec. IV D). In particular, the interaction between an
atom and the slab can be strongly suppressed in the retarded
regime (cf. Fig. 11) whenever the optical thickness of the slab
τ is equal to the half-integer multiple of the wavelength of the

dominant atomic transition λji . The existence of resonance
effects suggests a physical picture of the excited atom as a
radiating dipole. The resonance and antiresonance correspond
to constructive and destructive interference. We have also
provided reasonable approximations in the nonretarded (75)
and retarded (76) regimes that can be used to quickly estimate
the magnitude of the resonant interaction between an atom and
a layered dielectric.

APPENDIX A: FRESNEL COEFFICIENTS
FOR LAYERED DIELECTRIC

Here we list the reflection and transmission coefficients
appearing in the normal modes of the system as discussed in
the Sec. II A. For the left-incident modes we find

RL
λ = rsl

λ + r lv
λ e2ikzlL

1 + rsl
λ r lv

λ e2ikzlL
e−ikzsL,

IL
λ = t sl

λ ei(kzl−kzs)L/2

1 + rsl
λ r lv

λ e2ikzlL
,

JL
λ = t sl

λ r lv
λ e(3ikzl−ikzs)L/2

1 + rsl
λ r lv

λ e2ikzlL
,

T L
λ = t sl

λ t lv
λ e(2ikzl−ikzs−ikz)L/2

1 + rsl
λ r lv

λ e2ikzlL
,

and for the right-incident modes we get

RR
λ = rvl

λ + r ls
λ e2ikzlL

1 + rvl
λ r ls

λ e2ikzlL
e−ikzL,

IR
λ = tvl

λ ei(kzl−kz)L/2

1 + rvl
λ r ls

λ e2ikzlL
,

JR
λ = tvl

λ r ls
λ e(3ikzl−ikz)L/2

1 + rvl
λ r ls

λ e2ikzlL
,

T R
λ = tvl

λ t ls
λ e(2ikzl−ikzs−ikz)L/2

1 + rvl
λ r ls

λ e2ikzlL
.

The Fresnel reflection coefficients rab
λ for a single interface are

given by (11).

APPENDIX B: ELECTROSTATIC CALCULATION OF THE
ENERGY-LEVEL SHIFT IN A GROUND-STATE ATOM IN A

LAYERED GEOMETRY

To provide an additional check on the consistency of our
calculations we derive Eq. (66) by means of electrostatics. We
start from the general formula derived in [20] that expresses
the electrostatic interaction energy of a electric dipole in the
presence of a dielectric in terms of Green’s function of the
Laplace equation

	E = 1

2

∑
i

〈
µ2

i

〉∇i∇′
i GH (r,r′)

∣∣∣∣
r=r0,r′=r0

. (B1)

Here the sum runs over three components of the dipole
moment and the subscript H means that only the homogeneous
correction to the free-space Green’s function that is caused by
the presence of the boundary enters the formula. This ensures
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that the self-energy of the dipole is omitted and guarantees
the convergence of the final result. The harmonic function
GH (r,r′) is a solution of the Laplace equation that vanishes
for |z| → ∞. Therefore, it can be written in the form

GH (r,r′)

= − 1

4πε0

∫ ∞

0
d2k‖eik‖·r‖

×

⎧⎪⎨
⎪⎩

C1(k‖,r′)ekzz, z < L/2,

C2(k‖,r′)ekzz + C3(k‖,r′)e−kzz, |z| < L/2,

C4(k‖,r′)e−kzz, z > L/2,

(B2)

with kz =
√

k2
x + k2

y . The C coefficients are easily worked
out by applying the continuity conditions, which result from
Maxwell’s equations, across the interfaces and one finds
that

GH (r,r′) = − 1

4πε0

∫ ∞

0
dkJ0(kρ)e−k(z+z′)

×
n2

l −1
n2

l +1
− n2

l −n2
s

n2
s +n2

l
e−2kL

1 − n2
l −1

n2
l +1

n2
l −n2

s

n2
s +n2

l
e−2kL

, (B3)

with ρ =
√

(x − x ′)2 + (y − y ′)2. Application of the formula
(B1) is straightforward and we easily derive that the electro-
static interaction energy of a dipole in a vicinity of the layered
dielectric is indeed equal to (66).

APPENDIX C: RETARDED LIMIT OF THE INTERACTION
ENERGY BETWEEN AN ATOM AND A DIELECTRIC

HALF SPACE

The interaction between an atom and a nondispersive
dielectric half space has been considered in detail in [9]. It
has been shown there that, to leading-order, the energy shift in
the retarded limit can be expressed as

	Eret
ns

= − 3

64π2ε0Z4

∑
j �=i

(
c‖|µ‖|2 + c⊥|µ⊥|2

Eji

)
, (C1)

with the coefficients c‖,⊥ given by

c‖ = − 1

n2
s − 1

(
2

3
n2

s + ns − 8

3

)

+ 2n4
s(

n2
s − 1

)√
n2

s + 1
ln

( √
n2

s + 1 + 1

ns
[√

n2
s + 1 + ns

]
)

+ 2n4
s − 2n2

s − 1(
n2

s − 1
)3/2 ln

(√
n2

s + 1 + ns
)
,

c⊥ = 1

n2
s − 1

(
4n4

s − 2n3
s − 4

3
n2

s + 4

3

)

− 4n6
s(

n2
s − 1

)√
n2

s + 1
ln

( √
n2

s + 1 + 1

ns
[√

n2
s + 1 + ns

]
)

− 2n2
s

(
2n4

s − 2n2
s + 1

)
(
n2

s − 1
)3/2 ln

(√
n2

s − 1 + ns
)
.
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