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87Rb D1 isoclinic point
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In the research presented here, we reconsider the problem of obtaining stable resonant features in linear
absorption spectroscopy, which has application to ultraminiature atomic physics where sub-Doppler spectroscopic
techniques are not always optimal. In particular, we consider the applicability of isoclinic points for precision
atomic spectroscopy. These are defined as “[a] wavelength, wave number, or frequency at which the first derivative
of an absorption spectrum of a sample does not change upon a chemical reaction or physical change of the sample,”
and we demonstrate the existence of isoclinic points in the D1 spectra of I = 3/2 alkali-metal isotopes, where
I is the nuclear spin. We then consider the D1 isoclinic point of 87Rb in detail, showing that a slight 85Rb
contamination in real 87Rb samples should have no significant effect on the frequency stability of the isoclinic
point and that optical pumping by a linearly polarized laser should also not affect the isoclinic point’s stability
(i.e., the isoclinic point is insensitive to laser intensity). Finally, we perform an experiment demonstrating that
the 87Rb D1 isoclinic point has a temperature shift more than an order of magnitude smaller than that of the most
isolated transition in the 87Rb D1 spectrum.
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I. INTRODUCTION

Ultraminiature atomic physics (UAP) is essentially preci-
sion spectroscopy aimed at generating and accurately probing
an atomic interaction over millimeter or smaller scales, while
at the same time severely constraining overall size and power.
Today, UAP is most readily identified with the chip-scale
atomic clock [1,2] and the chip-scale atomic magnetometer [3],
each of which is receiving considerable attention due to their
basic and applied physics applications. Though it might be
natural to assume that the underlying atomic physics of UAP
is well understood, and that miniaturization only involves the
solution of engineering (albeit nontrivial) problems, the reality
differs substantially. The constraints of UAP force the atomic
phenomena to take place under physical conditions that are
often not encountered or specifically avoided in routine labora-
tory study, and these conditions can bring new and sometimes
significant dimensions to the atomic physics. For example, in
UAP alkali-metal atom number densities are large in order
to achieve significant photon absorption over ultraminiature
path lengths. Consequently, rapid alkali-metal/alkali-metal
spin exchange [4] can often play an important role in UAP,
and at present the basic phenomenon of rapid spin exchange
has not been fully explored [5,6]. At issue in the present
work is the influence of vapor temperature on the resonant
features of Doppler-broadened optical absorption spectra, and
in particular their frequency stability. Though this would seem
a well-worn question of atomic physics, with answers decades
old, the constraints of UAP have forced its re-examination.

Routinely in UAP diode lasers are employed for spec-
troscopy and/or optical pumping [7], with the laser locked
to an atomic absorption line in order to ensure its long-term
wavelength stability [8,9]. Laser stability is critical, not only
because variations in wavelength yield variations in the spec-
troscopic signals of interest but also because variations in laser
wavelength can alter the atoms’ energy level structure through
the light-shift effect (i.e., the ac Stark shift) [10,11]. Obvi-
ously, sub-Doppler spectroscopy [12] is the foremost means
of achieving laser wavelength stability, and it is routinely

employed in many laboratories for that purpose [13]. However,
for UAP linear absorption spectroscopy (LAS) has overriding
advantages. In particular, linear spectroscopy allows for
simplicity (and thereby compactness) of design, and without
the need of overlapped, counterpropagating beams there is
much less sensitivity to microphonics. Unfortunately, the
Doppler-broadened optical absorption lines of LAS typically
overlap, and as a consequence the peaks of the absorption lines
shift slightly (but non-negligibly) with the vapor’s temperature.

In the present work, we consider the role of isoclinic
points in precision linear optical spectroscopy. According to
the IUPAC Goldbook, an isoclinic point is defined as “[a]
wavelength, wave number, or frequency at which the first
derivative of an absorption spectrum of a sample does not
change upon a chemical reaction or physical change of the
sample” [14], and to date these have been principally employed
by biochemists in electron-spin resonance spectroscopy [15].
Biochemists exploit isoclinic points as markers that strongly
suggest “the presence of a linear combination of two inter-
converting species that are spectrally distinguishable” [16].
Here, we demonstrate that optical analogs of ESR isoclinic
points exist for alkali-metal atoms with nuclear spin I equal
to 3/2 and that the frequencies of these isoclinic points are
effectively independent of vapor temperature. Moreover, for
linearly polarized light these isoclinic points are unaffected
by optical pumping, implying that their frequencies are also
insensitive to laser intensity.

II. ISOCLINIC POINTS FOR PRECISION SPECTROSCOPY

Doppler broadening is routinely problematic in linear,
vapor-phase, absorption spectroscopy, especially when it leads
to overlapped optical transitions. The issue is not always the
loss of resolution (which can often be mitigated, to a degree,
through improvements in the signal-to-noise ratio) but the fact
that overlapping transitions have peak absorption frequencies
that shift with vapor temperature. For example, as illustrated
in Fig. 1 for the D1 transition of 87Rb, the Doppler-broadened
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FIG. 1. (a) Energy level diagram for the 87Rb D1 transition at
795 nm. (b) Theoretical absorption spectrum of the Rb D1 transition
near room temperature. For illustrative purposes, we have assumed
a 85Rb fractional abundance of 10%; for naturally occurring Rb the
isotope abundances are 72% 85Rb and 28% 87Rb.

absorption lines corresponding to transitions from the 52S1/2

ground-state hyperfine levels to the 52P1/2 excited-state hyper-
fine levels overlap. Consequently, the peaks of the absorption
lines are “pulled” relative to the transitions’ true resonant
frequencies by the wings of the neighboring lines. Change
the degree of spectral overlap, and the absorption lines’ peak
frequencies will shift. Since the Doppler-broadened widths
of absorption lines change with temperature, so too does the
degree of spectral overlap among the transitions; this in turn
gives the peak frequencies of a linear vapor-phase absorption
spectrum a sensitivity to vapor temperature.

To illustrate the problem more quantitatively, consider
two neighboring Doppler-broadened transitions, A and B, as
illustrated in Fig. 1, where wD is the Doppler-broadened full
width at half maximum (FWHM). For a laser frequency ωL

tuned near these absorption lines, the irradiance transmitted
by a vapor of length L will be given by

I (L) = Io exp{−NL[σA(�A) + σB(�B)]}, (1)

Here, σJ (�J ) is the cross section of the J th resonance and
�J is the detuning from the true resonant frequency of the

transition: �J = ωL−ωJ . Taking the derivative of Eq. (1) with
respect to laser frequency we have

dI (L)

dωL

= −NLe−NL[σA(�A)+σB (�B )]

(
dσA

dωL

+ dσB

dωL

)
, (2a)

which provides a necessary condition for local extrema in the
atoms’ absorption spectrum:(

dσA

dωL

+ dσB

dωL

)
= 0. (2b)

For the case of the maximum located near absorption line
A in Fig. 1, this procedure yields a peak frequency for the
A transition (i.e., �A � �B) given by

ωpA = ωA − �B

(
σpB

σpA

)
e−4 ln(2)(�B/wD)2

(3a)

or

ωpA
∼= ωA − (ωA − ωB)

(
σpB

σpA

)
e−4 ln(2)[(ωA−ωB )/wD]2

, (3b)

where σpJ is the peak absorption cross section of the J th
transition and where ωpA is seen to have a temperature-
dependent shift due to the temperature sensitivity of the
Doppler width. (To be clear, ωpA is the peak frequency of the
absorption line, while ωA is the transition’s intrinsic resonant
frequency: (Ee − Eg)/h̄.) In particular, for small changes
about some reference temperature To, and defining �AB as
ωA − ωB , the peak frequency of the transition will vary like

δωpA

δT
∼= −4 ln(2)

�AB

To

[
σB(�AB)

σpA

] [
�AB

wD(To)

]2

. (4)

For absorption line A in Fig. 1 at 35◦C, this yields δωaP /δT ∼=
16 kHz/◦C, or in fractional frequency, y, 4.2 × 10−11/◦C (i.e.,
y ≡ δω/ωo). This is a relatively large temperature sensitivity
for the peak frequency of a transition and demonstrates the
significant role that a vapor’s temperature variations can play
in precision spectroscopy.

In obtaining Eq. (4), it is clear that on-resonance the two
overlapped transitions do not contribute equally to the total
cross section, and it is this asymmetry that causes the spectral
feature’s temperature shift. Conversely, near the midpoint
between two overlapped resonances, both cross sections make
significant contributions to the total cross section. In particular,
if we define ωm as the frequency corresponding to a local min-
imum near the midpoint between two overlapped transitions,
then for reasonably resolved, Doppler-broadened absorption
lines (and assuming σpA

∼= σpB ) it is straightforward to
show that

ωm
∼=

(
ωA + ωB

2

)
− (σpA − σpB)

(σpA + σpB)

�ABw2
D

4 ln(2)�2
AB − 2w2

D

. (5)

[In deriving Eq. (5), we have taken ω = (ωA + ωB)/2 + δ,
and ignored terms of order (δ/wD)2 and higher.] In this case,
a temperature shift of the minimum only arises when the
absorption cross sections of the two transitions are unequal.
When σpA equals σpB the second term on the right-hand
side of Eq. (5) is identically zero, and the frequency of the
local minimum equals the intrinsic midpoint frequency of
the two transitions independent of temperature: the midpoint
frequency is an isoclinic point.
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Notwithstanding the above discussion, for precision spec-
troscopy it is important to note that isoclinic points are
idealizations: no vapor-phase atomic or molecular spectral
feature will ever be insensitive to a “physical change of
the sample” to all orders. In this regard, it is worth noting
that present-day precision spectroscopy can require long-term
stability of spectral features at the 12th significant figure
and higher [17,18]. Consequently, though one may seek to
understand the general occurrence of isoclinic points in (for
example) alkali-metal systems, an equally important question
relates to how well the ideal isoclinic point can be realized
in such systems. For example, in real systems alkali-metal
isotopes often coexist, and even in a vapor of “pure” 87Rb there
is always some fractional component of 85Rb with absorption
lines that overlap (albeit slightly) those of 87Rb as illustrated
in Fig. 1. This overlap implies that Eq. (1) must be augmented
with a third absorption cross section, complicating the simple
argument leading to Eq. (5). Given the importance of 87Rb in
UAP, one must therefore question the extent to which 85Rb
“contamination” gives the isoclinic point a non-negligible
temperature sensitivity. Moreover, since single-mode lasers
are dominated by white frequency fluctuations, producing
Lorentzian laser spectra with corresponding long tails [19],
there will be an interaction between 85Rb contamination
and laser linewidth. Finally, for linearly polarized light an
alignment among the ground-state Zeeman sublevels produced
by optical pumping [20] could destroy the equality between
the A and B cross sections, thereby giving the isoclinic point
an alternate path to temperature sensitivity. Therefore, though
isoclinic points may exist in the abstract, one is faced with the
practical question of whether it is possible to realize spectro-
scopically useful isoclinic points in real alkali-metal systems.

III. THEORETICAL CONSIDERATIONS OF THE
ALKALI-METAL D1 ISOCLINIC POINT

As discussed more fully in Appendix A, the peak cross
section for a D1 transition in the alkali metals (i.e., Je = Jg =
1
2 ) originating from the Fg = I + 1

2 ground-state hyperfine
manifold is given by

σp(FgFe) = σo[Jg]

[
1 + 2〈 �I · �S〉

(I + 1)

]

×

⎧⎪⎪⎨
⎪⎪⎩

(2I + 3)(I + 1)

6(2I + 1)2
Fe = I + 1

2

2I (I + 1)

3(2I + 1)2
Fe = I − 1

2

, (6)

where 〈 �I · �S〉 is a measure of ground-state hyperfine polariza-
tion (i.e., the population imbalance between the two ground-
state hyperfine levels) and σo is the integrated D1 absorption
cross section. (In our expressions we use the notation [J ] ≡
(2J + 1).) Employing Whiting’s second approximation [21]
for a Voigt profile we can obtain a functional relationship
between σo and the transition’s oscillator strength, f :

σo = 2π2rof c

wV

[
1.065 + 0.447

(
wL

wV

)
+ 0.058

(
wL

wV

)2] , (7)

where ro is the classical electron radius and wL, wD , and wV

correspond to the FWHM of the Lorentzian, Doppler, and
Voigt profiles, respectively:

wV = wL

2
+

√
w2

L

4
+ w2

D. (8)

Similarly, for the D1 transition originating from the Fg = I −
1
2 hyperfine manifold,

σp(FgFe) = σo[Jg]

[
1 − 2〈 �I · �S〉

I

]

×

⎧⎪⎪⎨
⎪⎪⎩

2I (I + 1)

3(2I + 1)2
Fe = I + 1

2

I (2I − 1)

6(2I + 1)2
Fe = I − 1

2

. (9)

Then, writing Whiting’s second approximation for the Voigt
profile in detail, we have for the frequency dependence of the
absorption cross sections

σFgFe

(
�FgFe

) = σp(FgFe)G
(
�FgFe

)
, (10a)

where

G(�J ) =
[

1 − wL

wV

]
e−4ln(2)(�J /wV )2 +

[
wL

wV

]

×
[

1

1 + 4 (�J /wV )2

]
+ 1

62.5

[
1 − wL

wV

] [
wL

wV

]

×
{
e−0.4(|�J |/wV )9/4 − 10

10 + (|�J |/wV )9/4

}
,

(10b)

and the index J corresponds to one of the Fg → Fe resonances
illustrated in Fig. 1.

Considering Eq. (6), it is clear that the two cross sections
originating from the Fg = I + 1

2 ground-state hyperfine man-
ifold will be equal when I = 3/2, corresponding to the stable
alkali-metal isotopes 7Li, 23Na, 39K, 41K, and 87Rb. Thus,
Eq. (5) predicts that there will be an isoclinic point midway
between these two transitions. Of the alkali-metal isotopes
with I = 3/2 shown in Table I, 87Rb produces the largest vapor
densities at the lowest temperatures, which has implications
for UAP. Conversely, the two peak cross sections originating
from the Fg = I − 1

2 ground-state hyperfine manifold [i.e.,
Eq. (9)] are equal only for the unphysical case of I = −5/2.
Thus, for the D1 transition of the alkali-metal, excitation from
Fg = I − 1

2 will not yield an isoclinic point at an extremum of
the absorption cross section.

An important point to note regarding Eq. (6) is that it was
derived under the assumption that all Zeeman sublevels within
a hyperfine manifold are equally populated (e.g., there is no
polarization or alignment in the optically absorbing, ground-
state hyperfine level). Consequently, under such conditions
(which will be discussed further below) the absorption cross
section will be independent of laser polarization, since no laser
polarization parameters appear in Eq. (6). The corollary to this
statement, which has relevance for precision spectroscopy, is
that laser polarization can only have an effect on optical ab-
sorption to the extent that the population distribution among the
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TABLE I. D1 transition properties of various alkali-metal isotopes that would show an isoclinic point at an extremum of
the n2S1/2(Fg = 2) → n2P1/2(Fe = 1,2) transitions. The temperatures were chosen to produce a vapor density of 1010 cm−3

for a vapor in equilibrium with its condensed phase; laser cooling and trapping could produce large vapor densities at lower
temperatures and hence Doppler widths. Note that only in the case of 87Rb will the two D1 excited-state transitions be resolved
relative to the Doppler width, which is given in the last column.

�νhf s (MHz)

Alkali metal Abundance (%) 1st resonance λ D1 (nm) n2S1/2 n2P1/2 T (◦C) �νD (MHz)

7Li 93% 670.8 803.5 92 291 2872
23Na 100% 589.6 1771.6 189 114 1494
39K 93% 769.9 461.7 58 53 806
41K 7% 769.9 254.0 – 53 786
87Rb 28% 794.8 6834.7 812 25 500

absorbing Zeeman sublevels is not uniform (e.g., that optical
pumping creates a nonthermal population distribution among
the Zeeman sublevels of a particular hyperfine manifold). An
additional point to note is that since 〈 �I · �S〉 does not depend
on Fe, any hyperfine polarization in the ground state will
have no effect on the relative amplitude of the Fg → Fe =
I ± 1

2 optical transitions. Therefore, the degree of hyperfine
polarization in the vapor will have no effect on the frequency
of an alkali-metal D1 isoclinic point, though it may affect the
signal-to-noise ratio at an alkali-metal D1 isoclinic point.

A. The 87Rb D1 isoclinic point and 85Rb contamination

Though it is possible to procure isotopically enriched
samples of 87Rb, there will always be some level of 85Rb
“contamination” in the vapor. Unfortunately, as shown in Fig. 1
the wing of one of the 85Rb resonances overlaps the Fg =
2 → Fe = 2 transition of 87Rb, destroying the exact equality
between the two 87Rb cross sections. An important question
therefore concerns the extent to which this neighboring 85Rb
resonance destroys the isoclinic nature of the midpoint for
realistic values of the 85Rb isotope ratio.

Using the above equations, it is possible to calculate
the frequency of the local minimum midway between the
5 2S1/2(Fg = 2) → 5 2P1/2(Fe = 1,2) absorption lines of 87Rb
(transitions A and B in Fig. 1) as a function of the relative
85Rb concentration. Briefly, we compute the cross section for
each resonance and each isotope separately at a given laser
frequency using Eq. (10a). We then sum the cross sections
to evaluate the Beer’s law attenuation of the laser and finally
numerically determine the frequency near the midpoint where
the derivative of the transmitted laser intensity is zero. The
extent to which the frequency of this local minimum is
insensitive to vapor temperature is a measure of how well
the spectral feature approximates an ideal isoclinic point.

Defining η as the fractional abundance of 85Rb in the vapor:
η ≡ N (85Rb)/[N (85Rb) + N (87Rb)], the fractional frequency
change per degree Celsius of the midpoint minimum, δy/δT ,
is shown in Fig. 2 as a function of vapor temperature for η =
0.01, 0.03, and 0.1. For comparative purposes, we have also
computed δy/δT for the local maximum corresponding to the
peak of the 5 2S1/2(Fg = 1) → 5 2P1/2(Fe = 2) absorption line
(i.e., transition D in Fig. 1). Of all the transitions in the 87Rb D1

spectrum, this is the most isolated, and therefore the resonance
that comes closest to the ideal of a single resonance between

two quantum states. Note that even for a 85Rb abundance of
10%, the temperature sensitivity of the local minimum near
the A-B transition midpoint is two orders of magnitude smaller
than that of the peak frequency associated with transition D.
Consequently, the isotope ratio in realizable samples of “pure”
87Rb would appear to have little effect on the isoclinic nature
of the midpoint minimum.

Figure 3 shows the influence of laser linewidth on δy/δT

for the A-B midpoint minimum. Laser linewidth is important,
because the slowly falling Lorentzian wings of the line shape
give the 87Rb resonance an increased overlap with the 85Rb
absorption line (relative to the Gaussian wings of Doppler
broadening). Note, however, that even for linewidths of
100 MHz, corresponding to VCSEL lasers at moderate
injection currents above threshold [22], the A-B midpoint
minimum acts very much like an ideal isoclinic point: δy/δT <

10−12/◦C. Moreover, δy/δT for this midpoint is significantly
less than the temperature sensitivity of the D transition’s peak
frequency for all laser linewidths.

FIG. 2. Theoretical temperature shift of the minimum near the
midpoint of the 87Rb A and B transitions of Fig. 1 for differing
values of the fractional abundance of 85Rb in the vapor, η. Results
are given in terms of fractional frequency, y (i.e., y ≡ δω/ωo). For
comparison, the top curve shows the temperature shift of the peak
frequency associated with transition D of Fig. 1, which is the most
isolated transition in the spectrum. For these calculations, we chose
a laser linewidth, 	F , of 100 kHz and a vapor length of 2.54 cm.
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FIG. 3. Theoretical temperature shift of the minimum near the
midpoint of the 87Rb A and B transitions of Fig. 1 for differing
values of the laser linewidth, 	F : (a) 	F = 100 MHz, (b) 	F =
0.1 MHz, (c) 	F = 100 MHz, (d) 	F = 10 MHz, (e) 	F = 1 MHz, and
(f) 	F = 0.1 MHz. Results are given in terms of fractional frequency,
y (i.e., y ≡ δω/ωo). For comparison, the top two curves show the
temperature shift of the peak frequency associated with transition D

of Fig. 1. For these calculations, we chose a 3% fractional abundance
of 85Rb, η, and a vapor length of 2.54 cm.

B. The 87Rb D1 isoclinic point and laser-generated
ground-state alignment

Another mechanism that could potentially create an asym-
metry in the two 52S1/2 (Fg = 2) → 52P1/2 (Fe = 1,2)
absorption lines is optical pumping. Though generation of a
population imbalance between the two ground-state hyperfine
manifolds (i.e., hyperfine polarization) will not produce an
asymmetry as noted above, transfer of angular momentum
from the photons of the light field to the ensemble of atoms
could create a nonthermal population distribution among the
|Fg = 2〉 Zeeman sublevels. Nonthermal population distribu-
tions couple differently to |Fe = 1〉 and |Fe = 2〉 and thereby
can give rise to an asymmetry in the overlapped absorption
doublet.

For linearly polarized light, as discussed more fully
in Appendix B, the generation of a nonthermal popula-
tion distribution among the ground-state Zeeman sublevels
is dependent on a quadrupole moment of the excitation
rate: R2(FeFg). The expression for this rate is derived in
Appendix B and given by

R2(FeFg) = 3(−)Fg−Fe

2
√

6
[3 cos(2θ ) + 1]�oσp(FeFg)

×G
(
�FeFg

)√
2Fg + 1

{
1 1 2
Fg Fg Fe

}
, (11)

where �o is the photon flux, σp(FeFg) and G(�FeFg
) are

given by Eqs. (6) and (10b), respectively, and θ is the
angle between the atoms’ quantization axis (along ẑ) and the
laser’s polarization direction in the x̂ẑ plane. For θ = π/2,
which corresponds to the most typical spectroscopic situation,
Fig. 4(a) shows a normalized value of R2(FeFg) near the A-B
midpoint minimum. In the figure we have normalized R2 to

FIG. 4. (a) The quadrupole moment of the laser excitation rate,
R2, for an angle of π /2 between the atoms’ quantization axis and
the laser’s (linear) polarization direction. Additionally, we assumed
a temperature T = 30◦C and a laser linewidth 	F = 50 MHz. R2 is
responsible for creating a nonthermal population distribution among
the ground-state Zeeman sublevels of |Fg〉, and in this figure we have
normalized R2 to the peak photon absorption rate for transition A

of Fig. 1. (b) The normalized magnitude of R2 near the D1 isoclinic
point.

the peak photon absorption rate for transition A in the absence
of optical pumping: �oσp(FeFg). Note that R2 changes sign
between the two excited-state hyperfine manifolds, indicative
of the fact that excitation to one hyperfine level produces a
positive alignment (via depopulation optical pumping) while
excitation to the other creates a negative alignment. Figure 4(b)
shows the magnitude of the normalized quadrupole excitation
rate as a function of laser detuning on an expanded scale. As is
readily apparent, when the laser is tuned within 10 MHz of the
A-B midpoint minimum R2 is reduced by more than two orders
of magnitude relative to the nominal photon absorption rate.
Consequently, without too drastic a reduction in light intensity,
it should be possible to effectively eliminate optical pumping
as a perturbation on the frequency of the midpoint minimum,
again ensuring that it acts very much like an ideal isoclinic
point.
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FIG. 5. Block diagram of the experimental arrangement. The
injection current (and hence the laser frequency) was modulated at
40 kHz. The amplitude of this injection-current modulation corre-
sponded to an optical-frequency modulation amplitude of 106 MHz.
The intensity of the laser could be adjusted using a crossed polarizer.

IV. EXPERIMENTAL DEMONSTRATION OF THE
ALKALI-METAL D1 ISOCLINIC POINT

Figure 5 shows a block diagram of our experimental
arrangement. A VCSEL diode laser with a nominal output
power of 300 µW had its wavelength modulated at 40 kHz
and was then split into two beams. Each beam was attenuated
with neutral density filters to 10 µW, and passed through two
identical, cylindrical, Pyrex absorption cells. The beam diam-
eter was approximately 0.5 cm. The commercially obtained
absorption cells (i.e., Opthos Instruments, Inc.) contained
isotopically enriched 87Rb and had cell diameters of 2.54 cm
and cell lengths equal to 2.54 cm. The light intensity transmit-
ted through each resonance cell was detected with identical
Si photodiodes and sent to two identical lock-in amplifiers
(LIAs). Figure 6 shows an optical absorption spectrum for
one of our cells at room temperature (i.e., [Rb] = 2.1 ×
1010 cm3 [23]), and from spectra like this we were able to
determine that η = (0.008 ± 0.001) for our cells.

The output of LIA-β was first passed to a PID controller
(proportional gain-integrator-differentiator) and then added to
the modulation voltage sent to the VCSEL’s injection-current
controller. The VCSEL wavelength was thereby locked to
some LAS feature of the D1 Rb absorption spectrum as
manifested in absorption cell β. In one set of experiments
we locked the laser to the isoclinic point, midway between
transitions A and B in Fig. 1, and in another set of experiments
we locked the laser to the peak of transition D.

Absorption cell α acted as our frequency discriminator.
Since the laser excited the same transition in cells α and β (e.g.,
the isoclinic point), the output of LIA-α was proportional to the
frequency difference of that transition as manifested in the two
cells. Holding the temperature of absorption cell α constant
and changing the temperature of absorption cell β, we could
then use the output of LIA-α to upper-bound the temperature
shift of any absorption feature in the D1 Rb spectrum. We
calibrated the output of LIA-α by tuning the laser frequency
and measuring the output voltage of LIA-α under open-loop
conditions.

Since the diode laser’s injection current is modulated,
we not only create an oscillating laser frequency (FM),

FIG. 6. Absorption spectrum of Rb in resonance cell β for a
laser power of 15 µW; similar spectra were observed for various
laser powers and also for resonance cell α. From the amplitude of
the 85Rb Fg = 2 → Fe = 2,3 transition’s well-isolated peak around
+1.6 GHz, and the 87Rb Fg = 1 → Fe = 2 transition’s peak around
+4.4 GHz, we were able to estimate the 85Rb isotope ratio in our
absorption cells.

we also produce amplitude modulation (AM) of the laser
intensity [7]. We therefore needed to exercise care in our
measurements, since the concomitant amplitude modulation
will produce an offset between the frequency the laser
actually locks to and the local extremum-of-interest in the
absorption spectrum. Specifically, when the lock-in amplifier
demodulates the atomic absorption signal it outputs a voltage
that is proportional to the first derivative of the LAS atomic
line shape, which derives from the frequency modulation of the
laser; this signal is dependent on the laser frequency’s detuning
from the extremum. In addition, however, regardless of atomic
absorption the lock-in’s output will contain an “offset” signal
that is largely independent of laser frequency (but that is
proportional to the laser’s AM). Since the demodulated signal
is the correction voltage that we feed back to lock the laser,
any offset in the demodulated signal will shift the “locking
point” of the laser from the line-shape extremum.

To be more specific, near the extremum of an absorption
feature we can approximate the output of LIA-β as a linear
function of the laser frequency’s offset from the extremum
(ωL−ωJ ): VLIA−β = κ(ωL−ωJ ) + δAM. The proportionality
coefficient κ is the slope of the correction signal (which is
related to the second derivative of the line shape and also
the amount of absorbed light), while the offset due to the
laser’s concomitant amplitude variations is given by δAM. If
the number density of atoms in the vapor increases, the signal
amplitude will obviously grow, implying that the slope κ is a
temperature-dependent quantity. Alternatively, we expect δAM

to be independent of vapor temperature to first order, especially
if the vapor is optically thin as it is in our experiments (see
Fig. 6). Clearly, the laser will lock to a frequency that yields
VLIA−β = 0, or ωL = ωJ – δAM/κ . Consequently, regardless
of any atomic temperature shift inherent in ωJ , the locked
laser’s frequency can suffer a systematic temperature shift that
depends on the ratio of δAM to κ .
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FIG. 7. Squares indicate the temperature shift of the peak
frequency corresponding to transition D in Fig. 1 [i.e., 5 2S1/2

(Fg = 1) → 5 2P1/2(Fe = 2)], while circles indicate the temperature
shift of the D1 isoclinic point. Not only is the temperature shift of the
isoclinic point an order of magnitude smaller than that of transition
D, but also to a 95% confidence level it cannot be distinguished from
zero.

To eliminate this systematic temperature variation in our
experiments, we removed resonance cell β from the laser beam
path and zeroed the output of lock-in amplifier β. Essentially,
we added a DC bias voltage to LIA-β that was equal and
opposite to δAM. We then placed resonance cell β back into the
beam path. Since the light-intensity loss by the cell’s surfaces
was minimal, and since δAM should be independent of laser
frequency over the 7-GHz range of interest in our experiments,
this procedure eliminated the “concomitant AM problem” to
first order in our experiments. Though the concomitant AM
problem may also be solved by third-harmonic locking, since
the AM signal should have very little third-harmonic content,
we found the simple bias-voltage subtraction method adequate
for our purposes.

Figure 7 shows the principal results of the experimental
work. We first locked the laser to the reasonably well-isolated
87Rb D1 transition shown in Fig. 1 (i.e., transition D). We
then varied the temperature of cell β and determined the
frequency change of this resonant feature by examining the
output from LIA-α. The results showed a temperature shift of
(4.1 ± 0.3) × 10−11/◦C for transition D, which is consistent
with the theoretical results shown in Fig. 3. (Note that the
slight discrepancy between theory and experiment could be
related to the limitations of Whiting’s second approximation
to the Voigt line shape.) We then locked the laser to the
87Rb D1 isoclinic point. Again, we varied the temperature
of cell β and determined the isoclinic point’s frequency
change by examining the output of LIA-α. In the case of
the isoclinic point, the results showed a temperature shift of
−(2.0 ± 1.4) × 10−12/◦C. Not only was the isoclinic point’s
temperature shift an order of magnitude lower than transition
D’s, but at the 95% confidence level we could not distinguish a
difference between the isoclinic point’s temperature shift and
zero.

V. SUMMARY

Ultraminiature atomic physics, as exemplified by chip-
scale atomic clocks and chip-scale atomic magnetometers, is
motivating the investigation of atomic physics under physical
conditions not routinely encountered in the laboratory (e.g.,
high alkali-metal densities or atomic systems probed with
stochastic fields) and also forcing a re-examination of prob-
lems that (to a large extent) have been considered “solved.”
An example of this latter situation concerns the problem
of overlapped atomic absorption lines arising from Doppler
broadening, where spectral features exhibit a temperature
sensitivity due to the Doppler width’s temperature dependence.
Since the shift of an optical absorption line depends on
the extent to which overlapping transitions pull its peak
frequency, Doppler-broadened transitions routinely exhibit
temperature-dependent shifts in their resonant frequencies.
Though sub-Doppler spectroscopic techniques can mitigate
the spectral pulling, such techniques are often at odds with
the constraints of UAP: increasing the power-budget of UAP
systems and creating potential sensitivities to microphonics.

In the present work, we have reconsidered the spectroscopic
problem of obtaining stable resonant features in linear absorp-
tion spectroscopy (LAS), and in particular have introduced
the concept of spectroscopic isoclinic points for this purpose
(i.e., “[a] wavelength, wave number, or frequency at which
the first derivative of an absorption spectrum of a sample does
not change upon a chemical reaction or physical change of
the sample” [14]). More specifically, we have demonstrated
that isoclinic points can be found in the D1 optical spectra of
the alkali metals with I = 3/2, and we investigated the first
resonance D1 isoclinic point of 87Rb in detail.

Even considering the contamination of isotopically en-
riched samples of 87Rb (I = 3/2) with 85Rb (I = 5/2) and the
(potentially) long Lorentzian wings of laser line shapes, theory
shows that the alkali-metal isoclinic point remains orders of
magnitude less sensitive to temperature variations than any
other resonant feature in the atoms’ absorption spectrum.
Additionally, theory shows that the creation of a ground-state
alignment by optical pumping cannot take place with a laser
tuned to the isoclinic point, so the isoclinic point’s frequency
should also be independent of laser intensity.

To demonstrate the existence of a D1 isoclinic point in
the alkali metals, we performed an experiment to measure
the temperature shift of the extremum midway between the
5 2S1/2(Fg = 2) → 5 2P1/2(Fe = 1,2) transitions of 87Rb
(i.e., the presumed D1 isoclinic point) and compared this to the
temperature shift of the 5 2S1/2(Fg = 1) → 5 2P1/2(Fe = 2)
transition. The latter atomic transition is the most isolated
transition in the Rb atom’s first resonance spectrum, and
therefore the least sensitive to spectral overlap issues. Not
only did we find that the isoclinic point had a temperature
shift more than an order of magnitude smaller than that
of the 5 2S1/2(Fg = 1) → 5 2P1/2(Fe = 2) transition, but to a
95% confidence level we could not differentiate the isoclinic
point’s temperature shift from zero. These results support the
theoretical claims for an isoclinic point in the D1 optical
spectra of I = 3/2 alkali metals and suggest the potential
benefits of such isoclinic points in ultraminiature atomic
physics.
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APPENDIX A: D1 ABSORPTION CROSS SECTIONS

In this appendix we focus attention on the four Fg = I ±
1
2 → Fe = I ± 1

2 transitions in the alkali-metal D1 spectrum
(i.e., n2S1/2 → m2P1/2), where I is the nuclear spin. Though
we will mostly be interested in first resonance transitions
(i.e., m = n), the analysis will be valid for other transitions
(e.g., the second resonance transitions with m = n + 1). Our
purpose is to derive the optical absorption cross section for
an arbitrary n2S1/2(Fg) → m2P1/2(Fe) transition as a function
of laser linewidth and ground-state hyperfine polarization. For
notational convenience, we will follow Happer [4] and define
the total angular-momentum quantities a and b as a = I + 1

2
and b = I − 1

2 .
Since the optical absorption cross section is related to the

expectation value of the induced dipole moment in the vapor
(actually its squared magnitude), we write the peak absorption
cross section for an Fg → Fe transition, σp(FgFe), as

σp(FgFe) ∼ Tr[ρ(ξ̂ · �r)(ξ̂ · �r)∗], (A1)

where Tr[· · ·] corresponds to the trace operation, ρ is the
density matrix operator for the atomic system, and ξ̂ corre-
sponds to the unit vector describing the field’s polarization
state. Writing Eq. (A1) in full detail, we have

σp(FgFe) ∼
∑

mg,f,M,

f ′,M ′

〈Fgmg|ρ|f M〉〈f M|(ξ̂ · �r)|f ′M ′〉

× 〈f ′M ′|(ξ̂ · �r)∗|Fgmg〉. (A2)

If we now assume that there is no atomic population in the
excited state, and that there are no coherences between atomic
eigenstates (both of which are valid approximations given the
weak fields of interest in the present work), then

〈Fgmg|ρ|f M〉 = ρ(Fgmg)δFg,f δmg,M, (A3)

where ρ(Fgmg) is simply the fractional atomic population in
the |Fgmg〉 eigenstate. Further, given the electric dipole nature
of the second and third matrix elements in Eq. (A2), we must
have f ′ = Fe and f = Fg . With these constraints, Eq. (A2)
becomes

σp(FgFe) ∼
∑

mg,me

ρ(Fgmg)|〈Fgmg|(ξ̂ · �r)|Feme〉|2. (A4)

To proceed, we now consider an arbitrarily polarized light
beam, so working in spherical coordinates

ξ̂ · �r =
∑

µ

(−1)µξ−µrµ, (A5)

where ξµ corresponds to the degree of left-circularly polarized
(ξ−1), right-circularly polarized (ξ1), or π -polarized (ξ0) light
in the field. Employing Eq. (A5) in Eq. (A4) then yields

σp(FgFe) ∼
∑

mg,me
µ,ν

(−)µ−νρ(Fgmg)ξ−µξν〈Fgmg|rµ|Feme〉

× 〈Feme|r−ν |Fgmg〉. (A6)

Taking advantage of the Wigner-Eckart theorem to evaluate
the matrix elements [24,25], and assuming that the atomic
population is uniform among the Zeeman sublevels of a
particular ground-state hyperfine manifold (e.g., that optical
pumping does not lead to a ground-state polarization or
alignment [26]), we have

σp(FgFe) ∼ (−)Fg+Fe |〈Fg||r||Fe〉|2 ρ(Fg)

[Fg]

∑
µν

(−)µξ−µξν

×
∑

mg,me

(
Fe Fg 1
me −mg µ

) (
Fe Fg 1
me −mg ν

)
, (A7)

where ρ(Fg) is defined as
∑

mg
ρ(Fg,mg) and [Fg] ≡ (2Fg +

1). Of course, from the orthogonality of the 3j symbols, the
second sum in Eq. (A7) just equals δµν/3, so that Eq. (A7)
becomes

σp(FgFe) ∼ (−)Fg+Fe |〈Fg||r||Fe〉|2 ρ(Fg)

3[Fg]

∑
ν

(−)νξ−νξν.

(A8)

By definition the sum over the laser polarization components
ξν is unity. Consequently, after writing the reduced matrix
element in terms of the uncoupled angular momenta (i.e., Jg ,
Je, and I ), where J is the electronic angular momentum (spin
plus orbital), we arrive at

σp(FgFe) ∼ (−)Je+Jg+2I [Fe]ρ(Fg)

3

{
Je Fe I

Fg Jg 1

}2

|〈Jg||r||Je〉|2

(A9)

or

σp(FgFe) ∼ (−)Je+Jg+2I [Fe][Fg]

6[I ]

(
1 + 8(Fg − I )

[Fg]
〈 �I · �S〉

)

×
{

Je Fe I

Fg Jg 1

}2

|〈Jg||r||Je〉|2. (A10)

Here, 〈 �I · �S〉 is a measure of ground-state hyperfine polariza-
tion: for 〈 �I · �S〉 equal to +I/2, the nuclear and electronic spin
orientations are maximally aligned, while for 〈 �I · �S〉 equal to
−(I + 1)/2 the nuclear and electronic spin orientations are
maximally antialigned.
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Evaluating the 6j symbols for the case of interest: Je =
Jg = 1

2 , and Fg = a = I + 1
2 , we obtain

σp(FgFe) ∼ |〈Jg||r||Je〉|2
3

(
1 + 2〈 �I · �S〉

(I + 1)

)

×

⎧⎪⎪⎨
⎪⎪⎩

(2I + 3)(I + 1)

6(2I + 1)2
Fe = a

2I (I + 1)

3(2I + 1)2
Fe = b

, (A11)

and performing the same analysis for Fg = b = I − 1
2 , we

obtain

σp(FgFe) ∼ |〈Jg||r||Je〉|2
3

(
1 − 2〈 �I · �S〉

I

)

×

⎧⎪⎪⎨
⎪⎪⎩

2I (I + 1)

3(2I + 1)2
Fe = a

I (2I − 1)

6(2I + 1)2
Fe = b

. (A12)

Note that these expressions are valid for any of the D1

transitions of an alkali-metal atom. For example, in the case of
Rb these expressions are valid for the first resonance transition
at 794.8 nm as well as the second resonance transition at
421.5 nm. The differences among the various n → m tran-
sitions reside in the reduced matrix elements of Eqs. (A11)
and (A12).

To proceed, we express the reduced matrix element in terms
of the D1 transition’s oscillator strength. To this end, we first
sum Eq. (A10) over Fe and Fg in the case that 〈 �I · �S〉 is zero,
obtaining

∑
Fg,Fe

σp(FgFe) ≡ σo = K
|〈Jg||r||Je〉|2

6[I ][Jg]

×
∑
Fg

[Fg]
∑
Fe

[Fe][Jg]

{
Je Fe I

Fg Jg 1

}2

,

(A13a)

or

σo = K
|〈Jg||r||Je〉|2

3[Jg]
, (A13b)

where K is a proportionality constant. Identifying σo with the
peak absorption cross section of a Voigt profile for unresolved
hyperfine structure, we can take advantage of the area theorem
for an absorption line [27]:∫ ∞

0
σ (ωL) dωL = 2π2rof c. (A14)

Here, ro is the classical electron radius, f is the oscillator
strength of the transition, and c is the speed of light. (For the
first resonance D1 transition of Rb at 794.8 nm f = 0.33, while
f = 0.0037 for the second resonance D1 transition at 421.5 nm
[28].) Then, employing Whiting’s second approximation [21]

for a Voigt line shape, we relate the peak cross section, σo, to
the total cross section:

σo = 2π2rof c

wV

[
1.065 + 0.447

(
wL

wV

)
+ 0.058

(
wL

wV

)2] , (A15)

which allows us to relate the reduced matrix element to the
oscillator strength. In Eq. (A15), wL, wD , and wV equal the
FWHM of the Lorentzian profile, the Doppler profile, and the
Voigt profile, respectively:

wV = wL

2
+

√
w2

L

4
+ w2

D, (A16a)

wD = 2ωo

√
2kT ln(2)

Mc2
, (A16b)

and

wL = A + 	F . (A16c)

In these expressions, A is the Einstein A coefficient of the
transition [29] and 	F is the FWHM of the laser field. To
include laser linewidth into the theory, we have simply added
its width to the atom’s natural dephasing rate, which is valid
for a single-mode field suffering phase diffusion [30–32].

APPENDIX B: QUADRUPOLE MOMENT OF THE
OPTICAL EXCITATION RATE

In this appendix, we want to consider the generation of
multipole moments in the ground-state density matrix due to
depopulation optical-pumping [4] of a given ground-state hy-
perfine level, Fg . In particular, we want to consider the genera-
tion of ground-state alignment in Fg when a linearly polarized
laser is tuned to the D1 isoclinic point. To begin, we write the
optical excitation rate out of a particular eigenstate |Fg,mg〉 as

RFeFg
(mg) =

∑
me

RFeFg
(me,mg)

= �(ωL)
∑
me

|〈Fgmg|ξ̂ · �r|Feme〉|2, (B1)

where � is proportional to the light irradiance and is
also dependent on the laser frequency ωL through the
laser’s detuning from an atomic resonance frequency, ξ̂ is
the normalized polarization vector of the laser, and �r is the
dipole-moment operator for the atom. Note that from Eq. (A4),
RFeFg

(mg) is related to the optical absorption cross section:

σp(FgFe) ∼ 1

�(ωL)

∑
mg

ρ(Fgmg)RFeFg
(mg), (B2)

so from Eq. (A7) we have

RFeFg
(mg) = (−)Fg+Fe�(ωL)|〈Fg||r||Fe〉|2

×
∑
meµ

(−)µξ−µξµ

(
Fe Fg 1
me −mg µ

)2

. (B3)
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We now expand the excitation rate in terms of a spherical
basis set of functions. Specifically, we write

RFeFg
(mg) =

∑
KQ

RKQ(FeFg)gKQ(Fgmg), (B4)

where the gKQ are spherical basis functions [4] and the RKQ

describe the decomposition of our excitation rate in terms of
these spherical basis components. Since we do not generate co-
herences among the ground-state Zeeman sublevels of Fg , only
the Q = 0 terms are nonzero. Thus, writing the gKQ in terms
of 3j symbols dropping the superfluous Q descriptor we have

gK (Fgmg) = (−1)Fg−mg
√

2K + 1

(
Fg

mg

Fg

−mg

K

0

)
. (B5)

Taking advantage of the orthonormality of the gK , we then get

RK (FeFg)

= �(ωL)
√

2K + 1|〈Fg||r||Fe〉|2
∑

mg,me,µ

(−)Fe−meξ−µξµ

×
(

Fg Fg K

−mg mg 0

) (
Fg 1 Fe

mg µ −me

)2

. (B6)

To proceed further, we consider linear polarized light, with the
propagation direction of our laser beam, ŷ, perpendicular to
the atom’s quantization axis, ẑ; this allows us to consider mg −
me = ±1 optical transitions as well as mg − me = 0 transi-
tions in a single expression. (Note that propagation of the laser
in a direction parallel to the quantization axis is equivalent
to what we consider here when the laser’s polarization is per-
pendicular to ẑ: mg − me = ±1 transitions.) Consequently, we
write ξ−1ξ1 and ξ0ξ0 in terms of the angle between the atom’s
quantization axis and the laser’s polarization direction, θ :

ξ−1ξ1 = ξ1ξ−1 = − 1
2 sin2(θ ), (B7a)

ξ0ξ0 = cos2(θ ). (B7b)

The sum over µ in Eq. (B6) now becomes

∑
µ

ξ−µξµ

(
Fg 1 Fe

mg µ −me

)2

= − sin2(θ )

2

∑
µ

(
Fg 1 Fe

mg µ −me

)2

+
(

cos2(θ ) + sin2(θ )

2

) (
Fg 1 Fe

mg 0 −me

)2

. (B8)

Then, employing Eq. (B8) in Eq. (B6) and taking advan-
tage of the 3j symbol contraction yields, after a bit of
algebra,

R0(FeFg) = �(ωL)|〈Fg||r||Fe〉|2
3
√

2Fg + 1
, (B9a)

R1(FeFg) = 0, (B9b)

and

R2(FeFg) = (−)Fg−Fe�(ωL)

2
√

6
(3 cos(2θ ) + 1)

×
{

1 1 2
Fg Fg Fe

}
|〈Fg||r||Fe〉|2, (B9c)

with all RK (Fe,Fg) = 0 for K � 3 due to the fact that we are
dealing with single-photon dipole transitions. Finally, we write
the reduced matrix element in terms of the electronic angular
momentum J and allow �(ωL) → �(ωL)|〈Jg ‖ r ‖ Je〉|2:

R0(FeFg) = �(ωL)

3
[Fe]

√
2Fg + 1

{
Jg Fg I

Fe Je 1

}2

, (B10a)

R2(FeFg) = (−)Fg−Fe�(ωL)

2
√

6
(3 cos(2θ ) + 1)[Fe][Fg]

×
{

1 1 2
Fg Fg Fe

}{
Jg Fg I

Fe Je 1

}2

. (B10b)

Noting that R0(FeFg) must be given by �o σFeFg(�FeFg),
where �o is the photon flux and σFeFg(�FeFg) is the absorption
cross section given by Eq. (10a), the expressions for R0 and
R2 can be further simplified:

R0(FeFg) = �oσp(FeFg)G
(
�FeFg

)
, (B11a)

R2(FeFg) = 3(−)Fg−Fe

2
√

6
(3 cos(2θ ) + 1)�oσp(FeFg)

×G
(
�FeFg

)√
2Fg + 1

{
1 1 2
Fg Fg Fe

}
. (B11b)

Considering Eqs. (B11), it is clear that the laser’s polarization
contributes only to the quadrupole moment of the excitation
rate, R2; and so it is only through this term that angular
momentum can be transferred from the light field to the atoms,
thereby creating a nonthermal population distribution among
the ground-state Zeeman sublevels.

[1] S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching,
L.-A. Liew, and J. Moreland, Appl. Phys. Lett. 85, 1460 (2004).

[2] R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt,
M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake,
in Proc. 36th Annual Precise Time and Time Interval (PTTI)
Systems and Applications Meeting (US Naval Observatory,
Washington DC, 2004), pp. 339–354.

[3] P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching,
L.-A. Liew, and J. Moreland, Appl. Phys. Lett. 85, 6409 (2004).

[4] W. Happer, Rev. Mod. Phys. 44, 169 (1972).
[5] N. D. Bhaskar, J. Camparo, W. Happer, and A. Sharma, Phys.

Rev. A 23, 3048 (1981).
[6] I. M. Savukov and M. V. Romalis, Phys. Rev. A 71, 023405

(2005).
[7] J. C. Camparo, Contemp. Phys. 26, 443 (1985).
[8] H. Furuta and M. Ohtsu, Appl. Opt. 28, 3737 (1989).
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