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Quantum electrodynamic corrections for the valence shell in heavy many-electron atoms
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We present quantum electrodynamic (QED) calculations within the picture of bound-state QED for the
frequency-dependent Breit interaction between electrons, the vacuum polarization, and the electron self-energy
correction starting from the Dirac-Coulomb Hamiltonian for the ionization potentials of the group 1, 2, 11, 12,
13, and 18 elements of the periodic table, and down to the superheavy elements up to nuclear charge Z = 120.
The results for the s-block elements are in very good agreement with earlier studies by Labzowsky et al.
[Phys. Rev. A 59, 2707 (1999)]. We discuss the influence of the variational versus perturbative treatment of
the Breit interaction for valence-space ionization potentials. We argue that the lowest-order QED contributions
become as important as the Breit interaction for ionization potentials out of the valence s shell.
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I. INTRODUCTION

Considerable progress has been made in the past decade
in accurately describing few-electron systems in strong
Coulomb fields [1,2]. For example, calculations for Li-like ura-
nium using relativistic many-body perturbation theory gives
322.33 eV for the 2S1/2,2P1/2 level splitting [3], which corrects
to 280.56 eV on inclusion of lowest-order vacuum polarization
and electron self-energy [4,5]. This is already in excellent
agreement with the experimental value of 280.59(9) eV of
Schweppe et al. [6]. Higher-order quantum electrodynamic
(QED) corrections including mass polarization and recoil
contributions from the nucleus are not negligible but approx-
imately cancel out [1]. Even more impressive is that QED
effects regarding the electronic g factor are now that precise
that hadronic contributions need to be considered to achieve
agreement with experiments [7–9].

The situation completely changes for multielectron systems
[10,11] as accurate relativistic electronic structure calculations
including QED effects become prohibitively more demanding
in computer time with increasing number of electrons involved.
Moreover, one has to change from the simple free-particle
Feynman-Dyson picture to the bound-state picture (e.g.,
the Furry picture) which modifies the electron propagator
involving the actual one-particle functions from the Dirac-
Coulomb Hamiltonian. An accurate QED treatment is there-
fore restricted mostly to few-electron systems [1,2,12–15],
which provide the ideal testing ground for high-precision
experiments [16]. Here we mention recent work by Glazov
et al., who obtained screened QED corrections of first order
in α and 1/Z for the g factor and the hyperfine splitting of
lithium-like ions [17].

The accurate treatment of electron correlation for mul-
tielectron systems currently remains the bottleneck in all
quantum theoretical many-electron calculations. Nevertheless,
in the past decade great progress has been made in relativistic
quantum calculations of heavy atoms or molecules with high
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nuclear charge up to the superheavy elements [10,18–22],
in particular at the Dirac-Breit level applying Fock-space
coupled-cluster theory for valence shells in atoms [23,24].
These calculations now reach accuracies of approximately
10−2 eV for ionization potentials and excitation energies.
Hence, they are now in the region where one has to consider
self-energy (SE) and vacuum polarization (VP) contributions
to lowest order to correct for valence properties. Here we note
that the efficient treatment of QED effects in molecules is
still an open question, and it is highly desirable to construct
effective QED Hamiltonians which can be used variationally
in molecular calculations.

To lowest order, QED effects consist of the one-photon
Breit interaction (BI) [25–27], the Uehling form of the vacuum
polarization (VP) [28], and the one-loop self-energy (SE) con-
tribution [29,30], with BI being the dominant term, followed
by the electron SE. The VP is usually much smaller than
the SE for electrons in a Coulomb potential and of opposite
sign. While the BI and pure VP (including higher order in
the fine structure constant α) are more easily implemented
into atomic program codes, the evaluation of the SE term
requires a complete set of one-particle Dirac states within the
bound-state picture of QED, which becomes rather tedious,
and even in the lowest order it cannot be expressed anymore in
closed form as a simple local potential. It is therefore desirable
to have an expression for the self-energy free of an implicit
dependence on the one-particle functions but still accurate
enough to treat this term to lowest order. Such an approach
may later be extended to molecular systems.

In a recent article Labzowsky and coworkers presented
estimates for the Lamb shift of the valence ns electron levels in
the alkali (Li-Fr) and coinage metal atoms (Cu-Au) [31]. In a
subsequent article they confirmed these estimates by using the
local potential method of Salvat et al. [32] for SE calculations
within a Dirac-Fock and Dirac-Slater approach [33]. In this
article we use a Dirac-Hartree-Fock approach within the
bound-state QED picture [34,35] to evaluate QED corrections
to valence-shell ionization potentials for the groups 1, 2, 11, 12,
13, and 18 elements of the periodic table down to the heaviest
atoms with nuclear charge Z = 120 and compare them with
the results of Labzowsky and coworkers [33].
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FIG. 1. Feynman diagram of the lowest-order Breit interaction.

II. COMPUTATIONAL DETAILS

Dirac-Hartree-Fock (DHF) calculations are carried out
using the Dirac-Coulomb (DC) Hamiltonian (in relativistic
units),

H0 =
∑

i

(�αi �pi + mβi + Vnuc) +
∑
i<j

1

rij

, (1)

where �α and β are the Dirac matrices in the standard Dirac
representation. The equations are solved numerically using
a modified code of the program system GRASP [36,37]. For
the heavy elements the 1s-shell radius becomes very small
(〈r〉1s ≈ 520 fm for Cn), and as a consequence the influence
of the finite nuclear size becomes an important contribution to
the total energy. The electrostatic potential of the nucleus Vnuc

was therefore modeled by a two-parameter Fermi-type charge
distribution [38,39]

�(r) = �0

1 + exp[(r − R0)/t]
, (2)

where the nuclear radius R0 and the diffuseness parameter t are
obtained from the nuclear mass (for details see Refs. [38,39].
Here we note that our results are not sensitive to the nuclear
model chosen, and a Gaussian nuclear charge distribution leads
virtually to the same results reported here.

Because of the small size of the quantum electrodynamic
(QED) corrections they are treated as a perturbation [40],
although a fully self-consistent implementation of these effects
within the GRASP code is currently in progress. The major
correction to the nonrelativistic Coulomb term comes from
the Breit operator, which can be rigorously derived from
QED [41]. We treat the Breit interaction in the Coulomb
gauge [25–27]

gω,C(1,2) = − �α1 �α2

r12
exp(iω12r12) (3)

−(�α1 �∇1) (�α2 �∇2)
exp(iω12r12) − 1

ω2
12r12

, (4)

where ω12 is the energy of the virtual (transversal) exchange
photon. The first term is the retarded Gaunt term (GI) and
the second term arises from the choice of the Coulomb gauge

FIG. 2. Feynman diagrams for vacuum polarization of order
α(Zα) Uehling (left) and of order α(Zα)3 Wichmann and Kroll
(right).

FIG. 3. Vacuum polarization of order α2(Zα) (Källen-Sabry).

instead of the Feynman gauge, which we call the retarded
gauge term. This correction to the electron-electron interaction
accounts for magnetic interaction and retardation to the order
α2, and only includes the exchange of a single (left-right),
virtual photon as shown in Fig. 1. In the following we
adopt the low frequency limit for the Breit interaction, i.e.,
ω12 = 0, if not otherwise stated. We mention that the frequency
dependence of the Breit term has been explored in the past and
refer to Gorceix and Indelicato for details [42].

The (other) radiative corrections are calculated by a
nonlocal radiative potential, which is split into an self-energy
and a vacuum polarization part and the energy shift can
calculated perturbatively as an expectation value of a radiative
one-electron potential using the eigenfunctions of the DHF
operator. The vacuum polarization can be split into the
following contributions:

�EVP = 〈�|�VP(r)|�〉
� 〈�|�U(r) + �WK(r) + �KS(r)|�〉, (5)

where �U is the Uehling potential [28], �WK the Wichmann-
Kroll correction [43], and �KS the Källen-Sabry term [44].

The radiative perturbation expansion is usually in the two
parameters α and Zα, where the powers of α describe the
order of the QED corrections and Zα describes the order of
relativistic corrections to the energy levels [40]. It is known
that the latter expansion works quite well for lighter elements,
but it is far from clear how well it works for elements with
high nuclear charge such as the superheavy elements where
Zα <∼ 1.

For the vacuum polarization the potential is well known.
By utilizing perturbation theory for the polarization operator
�(−p2), the energy contribution of lowest-order α(Zα) is

FIG. 4. Feynman diagram of the electron self-energy.
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TABLE I. Adjusted coefficients An(Z) for the electric interaction
term in Eq. (13).

n An0 An1 An2

1 0.7645 0.00230 112.930
2 0.7912 0.00629 101.636
3 0.7980 0.00738 101.611
4 0.8009 0.00779 101.047
5 0.8023 0.00799 100.632
6 0.8032 0.00813 100.607
7 0.8037 0.00824 100.591
∞ 0.8061 0.00860 100.765

given by the Uehling potential [28], where the virtual electron-
positron pair is allowed to propagate freely (Fig. 2),

�U(r) = 2α

3π
φ(r)

∫ ∞

1
dt

√
t2 − 1

t2

(
1 + 1

2t2

)
e−2trm. (6)

Here m is the electron mass and φ(r) is the nuclear Coulomb
potential because in the short range of the interaction the
difference to the DHF potential is negligible. The Uehling
term gives typically more than 90% of the VP in hydrogen-like
atoms. In presence of the nuclear Coulomb field the electron
and positron wave functions become distorted. Wichmann and
Kroll [43] have considered the vacuum polarization of order
α in a strong Coulomb field (Fig. 2) and have shown that the
polarization charge density is an analytic function of Zα for
|Zα| � 1,

�WK(r) = α(Zα)3

π

[(
−3

2
ζ (3) + π2

6
− 7

9

)
1

r
+ 2πζ (3)

− π3

4
+

(
−6ζ (3) + π4

16
− π2

6

)
r + O(r2)

]
.

(7)

The Källen-Sabry correction [44] cannot be written in such
a short analytical form so we present just the crucial Feynman
diagrams in Fig. 3. The VP terms presented here and the
frequency-dependent Breit contribution in the Coulomb gauge
are already available in GRASP [36,37].

The calculation of the self-energy operator �(r,r ′,E)
shown in Fig. 4 is more complicated and rather tedious.
The problem can be divided into two parts. In the first part
the electron interacts with a high-frequency virtual photon
where the nuclear Coulomb field needs to be included only
in first order. The second part represents the interaction
with a low-frequency photon. The calculations of the vertex

TABLE II. Adjusted coefficients ci for the coefficients Ani in
Eq. (14).

i ci0 ci1 ci2

0 0.80608 −0.0516 1.489
1 0.00860 −0.7329 1.465
2 100.76488 0.1207 3.473
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FIG. 5. (Color online) Adjusted coefficients An(Z) for different
ns orbitals for the electric interaction term in Eq. (13).

correction necessary electric f (p2) and magnetic g(p2) form
factors can be found in Ref. [35],

�SE(p) =
[
g(−p2)

2m
�γ �p + f (−p2) − 1

]
φ(p). (8)
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FIG. 6. (Color online) Self-energy and vacuum polarization
contributions to the ionization potential for different atoms.
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TABLE III. The self-energy (SE), vacuum polarization (VP), and frequency-dependent Breit contributions (BI) (in eV) and sum over all
QED contributions to the ionization potential E → E+ of each element E at the DHF level of theory. Notation: SC, self-consistent treatment;
PT, perturbative treatment; GI, gaunt term only; ω = 0, low-frequency limit.

System PT-SE PT-VP SC-GI (ω = 0) SC-BI (ω = 0) PT-BI (ω = 0) PT-BI (ω)

Group 1
(2S1/2 → 1S0)

Li −3.374 × 10−5 1.189 × 10−6 −1.418 × 10−4 −1.279 × 10−4 −1.279 × 10−4 −1.279 × 10−4

Na −3.041 × 10−4 1.637 × 10−5 −2.735 × 10−4 −2.799 × 10−4 −2.800 × 10−4 −2.807 × 10−4

K −5.478 × 10−4 3.730 × 10−5 −2.483 × 10−4 −2.751 × 10−4 −2.753 × 10−4 −2.788 × 10−4

Rb −1.442 × 10−3 1.439 × 10−4 −2.631 × 10−4 −3.570 × 10−4 −3.575 × 10−4 −3.852 × 10−4

Cs −2.377 × 10−3 3.282 × 10−4 −2.254 × 10−4 −3.717 × 10−4 −3.730 × 10−4 −3.700 × 10−4

Fr −6.261 × 10−3 1.586 × 10−3 −4.729 × 10−4 −7.401 × 10−4 −7.400 × 10−4 −1.255 × 10−3

E119 −2.103 × 10−2 1.207 × 10−2 −4.136 × 10−3 −4.547 × 10−3 −4.580 × 10−3 −7.640 × 10−3

Group 2
(1S0 → 2S1/2)

Be −8.998 × 10−5 3.450 × 10−6 −3.763 × 10−4 −3.460 × 10−4 −3.460 × 10−4 −3.460 × 10−4

Mg −4.436 × 10−4 2.469 × 10−5 −5.320 × 10−4 −5.206 × 10−4 −5.208 × 10−4 −5.219 × 10−4

Ca −6.975 × 10−4 4.860 × 10−5 −4.603 × 10−4 −4.692 × 10−4 −4.693 × 10−4 −4.738 × 10−4

Sr −1.705 × 10−4 1.728 × 10−4 −5.633 × 10−4 −6.302 × 10−4 −6.310 × 10−4 −6.626 × 10−4

Ba −2.729 × 10−3 3.817 × 10−4 −5.669 × 10−4 −6.792 × 10−4 −6.800 × 10−4 −7.770 × 10−4

Ra −6.980 × 10−3 1.789 × 10−3 −1.049 × 10−3 −1.249 × 10−3 −1.251 × 10−3 −1.788 × 10−3

E120 −2.264 × 10−2 1.315 × 10−2 −5.210 × 10−3 −5.478 × 10−3 −5.500 × 10−3 −8.620 × 10−3

Group 11
(2S1/2 → 1S0)

Cu −3.328 × 10−3 2.765 × 10−4 −3.692 × 10−3 −3.442 × 10−3 −3.447 × 10−3 −3.452 × 10−3

Ag −7.377 × 10−3 8.930 × 10−4 −5.441 × 10−3 −5.196 × 10−3 −5.207 × 10−3 −5.253 × 10−3

Au −2.643 × 10−2 5.284 × 10−3 −1.274 × 10−2 −1.225 × 10−2 −1.228 × 10−2 −1.275 × 10−2

Rg −8.925 × 10−2 3.634 × 10−2 −3.613 × 10−2 −3.398 × 10−2 −3.414 × 10−2 −3.754 × 10−2

Rga 3.139 × 10−2 −1.215 × 10−2 2.820 × 10−2 2.647 × 10−2 2.660 × 10−2 2.603 × 10−2

Group 12
(1S0 → 2S1/2)

Zn −3.366 × 10−3 2.864 × 10−4 −3.418 × 10−3 −3.221 × 10−3 −3.225 × 10−3 −3.236 × 10−3

Cd −7.286 × 10−3 8.562 × 10−4 −5.116 × 10−3 −4.911 × 10−3 −4.921 × 10−3 −4.982 × 10−3

Hg −2.574 × 10−2 5.261 × 10−3 −1.207 × 10−2 −1.162 × 10−2 −1.165 × 10−2 −1.217 × 10−2

Cn −9.051 × 10−2 3.788 × 10−2 −3.652 × 10−2 −3.432 × 10−2 −3.449 × 10−2 −3.812 × 10−2

Cnb 3.766 × 10−2 −1.499 × 10−2 3.070 × 10−2 2.896 × 10−2 2.985 × 10−2 2.909 × 10−2

Group 13
(2P1/2 → 1S0)

B 2.381 × 10−4 −9.695 × 10−6 −8.682 × 10−4 −6.848 × 10−4 −6.848 × 10−4 −6.847 × 10−4

Al 5.776 × 10−4 −3.212 × 10−5 −1.291 × 10−3 −1.071 × 10−3 −1.071 × 10−3 −1.071 × 10−3

Ga 2.018 × 10−3 −1.707 × 10−4 −4.163 × 10−3 −3.486 × 10−3 −3.491 × 10−3 −3.483 × 10−3

In 3.466 × 10−3 −4.010 × 10−4 −7.269 × 10−3 −6.201 × 10−3 −6.215 × 10−3 −6.208 × 10−3

Tl 6.223 × 10−3 −1.226 × 10−3 −1.681 × 10−2 −1.496 × 10−2 −1.502 × 10−2 −1.524 × 10−2

E113 −3.184 × 10−3 2.860 × 10−3 −4.896 × 10−2 −4.634 × 10−2 −4.668 × 10−2 −4.988 × 10−2

Group 18
(1S0 → 2P3/2)

He −1.781 × 10−4 5.871 × 10−6 −1.735 × 10−3 −1.735 × 10−3 −1.735 × 10−3 −1.735 × 10−3

Ne 1.075 × 10−3 −6.326 × 10−5 −2.152 × 10−3 −1.473 × 10−3 −1.682 × 10−3 −1.668 × 10−3

Ar 1.260 × 10−3 −9.803 × 10−5 −1.489 × 10−3 −7.243 × 10−3 −9.264 × 10−4 −8.849 × 10−4

Kr 2.354 × 10−3 −3.042 × 10−4 −3.060 × 10−3 −1.675 × 10−3 −2.055 × 10−3 −1.751 × 10−3

Xe 3.084 × 10−3 −6.147 × 10−4 −4.162 × 10−3 −2.374 × 10−3 −2.824 × 10−3 −1.959 × 10−3

Rn 5.663 × 10−3 −2.338 × 10−3 −4.886 × 10−3 −2.365 × 10−3 −2.993 × 10−3 −2.960 × 10−3

E118 9.769 × 10−3 −9.154 × 10−3 −1.779 × 10−3 8.490 × 10−4 3.200 × 10−4 7.080 × 10−3

aThe 2D5/2(6d97s2) → 3F4(6d87s2) transition is taken.
bThe 1S0(6d107s2) → 2D5/2(6d97s2) transition is taken.
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After a lengthy but straightforward calculation [34,35] one
obtains

�SE(r) = 1

4π2r
Im

∫
�SE(p)eirppdp

= �mag(r) + �el(r) + �low(r). (9)

The contribution from the magnetic form factor is given by

�mag(r) = α

4πm
i �γ · �∇

[
φ(r)

(∫ ∞

1
dt

e2trm

t2
√

t2 − 1
− 1

)]

(10)

where φ(r) is the electric potential of the nucleus. The last two
terms are contributions from the electric form factor split into
a high and a low-frequency part

�el(r) = A(Z)
α

π
φ(r)

∫ ∞

1
dt

e−2trm

√
t2 − 1

[(
1 − 1

2t2

)

×
(

ln(t2 − 1) + 4 ln

(
1

Zα
+ 1

2

))
− 3

2
+ 1

t2

]

(11)

where the function A(Z) is obtained by fitting the total
self-energy values to precise data of Mohr for one-electron
systems. The (long-range) low-frequency contribution is
given by

�low(r) = −B(Z)Z4α5me−Zr/aB , (12)

where B(Z) = 0.074 + 0.35Zα is a coefficient adjusted to
reproduce the radiative shifts for the high Coulomb p levels
[34] and aB is the Bohr radius.

We choose the function A(Z) to be dependent on the
principal quantum number n, and An(Z) in the electric
interaction term (11) is obtained by adjusting our values to
accurate calculations of self-energy contributions in hydrogen-
like atoms for ns electrons by Mohr [45–48]. Mohr’s SE
corrections lead to excellent results for the K- and L-shell
ionization potentials for the neutral elements up to high nuclear
charge [49]. A suitable choice for An(Z) is

An(Z) = An0 + An1
Z

1 + exp[(Z/An2)5]
. (13)

The adjusted coefficients Ani for the different main quantum
numbers are given in Table I and depicted in Fig. 5.

For higher principal quantum numbers n the coefficients
Ani can be derived from a least-squares fit to the data in
Table I,

Ani = ci0(1 + ci1n
ci2 ) (14)

with the coefficients as listed in Table II.
Due to the poles and the indefinite integration the calcu-

lation of the expectation values of Eqs. (6), (10), and (11)
exhibit some numerical difficulties. The domain of integration
is divided into three parts, the singularity around t = 1, the
middle part, and the integration to infinity. The singularity
part then integrated analytically by a series expansion of the
potential. The middle part can then be integrated without
any complications. For the integration to infinity we use the
substitution u = (1 + t)1/2 to reduce the integration domain to

TABLE IV. Adjusted parameters a and b from a linear fit of the
loglog plot in Eq. (15).

Group CSE (eV) γSE CVP (eV) γVP

1 5.169 × 10−6 1.621 5.867 × 10−8 2.311
2 9.249 × 10−6 1.504 9.073 × 10−8 2.236

11 7.881 × 10−7 2.427 1.216 × 10−9 3.575
12 6.339 × 10−7 2.468 8.843 × 10−10 3.647
13 3.137 × 10−5 1.202 4.723 × 10−7 1.745
18 1.021 × 10−5 1.453 4.187 × 10−7 1.942

a finite interval which can again be integrated by a Runge-Kutta
scheme.

III. RESULTS AND DISCUSSION

The calculated contributions from the VP, the SE, and the
BI to the ionization potential for groups 1, 2, 11, 12, 13, and
18 elements of the periodic table are given in Table III. For
ionizations out of a valence s shell, the SE contribution is
approximately an order of magnitude larger than the VP for
the lighter elements and in general has the opposite sign as one
expects. Moreover, the SE is as important in size as the Breit
interaction, and for the ionization out of the valence s shell
has same sign compared to the Breit contribution. However,
the total VP contribution increases over several orders of
magnitude for the heavier elements and becomes closer to
the SE term with increasing nuclear charge Z. This originates
from the strong Coulomb field the inner tail of the valence
electrons experience with increasing nuclear charge, which is
most important for the short-range Uehling potential. In fact,
the VP and SE contributions for the valence-shell ionization
potentials approximately fit a simple power law,

E(Z) = CZγ , (15)

as shown in Fig. 6. The coefficients C and γ are obtained
from a linear regression and given in Table IV. It is worth
mentioning that the exponent γ of the vacuum polarization
is roughly 40 to 50% larger than the one of the self-energy.
Further, the γ values in Eq. (15) show strong Z scaling for

TABLE V. A comparison between our calculated SE contributions
with those of Labzowsky et al. [33] for the ionization energies
(2S1/2 → 1S0) of the alkali and coinage metal atoms (in eV).

System Our work Ref. [33]

Li −3.374 × 10−5 −3.84 × 10−5

Na −3.041 × 10−4 −2.83 × 10−4

K −5.478 × 10−4 −4.93 × 10−4

Rb −1.442 × 10−3 −1.23 × 10−3

Cs −2.377 × 10−3 −2.15 × 10−3

Fr −6.261 × 10−3 −6.03 × 10−3

E119 −2.103 × 10−2 −2.74 × 10−2

Cu −3.328 × 10−3 −2.66 × 10−3

Ag −7.377 × 10−3 −6.14 × 10−3

Au −2.643 × 10−2 −2.21 × 10−2

Rg −8.925 × 10−2 −8.66 × 10−2
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TABLE VI. A comparison between our calculated SE and VP contributions with those of Blundell [57] for the 2S1/2 → 2P1/2,
2P3/2

transitions for Li-like (N = 3), Na-like (N = 11), and Cu-like (N = 29) ions (in eV). Z is the nuclear charge, N the number of electrons,
SE+VP is the total QED contribution, and SE+VP+FOSCR includes first-order screening effects (for the corresponding Feynman diagrams;
see Fig. 2 in Blundell’s work [57].

Z N Transition SE VP SE + VP SE [57] VP [57] SE + VP [57] SE + VP + FOSCR [57]

Li-like (2s1)

10 3 2S1/2 → 2P1/2 −0.0150 0.0008 −0.0142 −0.0150 0.0007 −0.0143 −0.0141
10 3 2S1/2 → 2P3/2 −0.0144 0.0008 −0.0136 −0.0145 0.0007 −0.0138 −0.0135
20 3 2S1/2 → 2P1/2 −0.206 0.0146 −0.192 −0.205 0.014 −0.191 −0.191
20 3 2S1/2 → 2P3/2 −0.194 0.0149 −0.179 −0.193 0.014 −0.179 −0.178
30 3 2S1/2 → 2P1/2 −0.885 0.0761 −0.809 −0.884 0.075 −0.809 −0.810
30 3 2S1/2 → 2P3/2 −0.817 0.0767 −0.740 −0.822 0.075 −0.747 −0.743
40 3 2S1/2 → 2P1/2 −2.440 0.254 −2.186 −2.46 0.25 −2.21 −2.22
40 3 2S1/2 → 2P3/2 −2.230 0.258 −1.972 −2.27 0.25 −2.02 −2.00
50 3 2S1/2 → 2P1/2 −5.351 0.665 −4.687 −5.45 0.65 −4.80 −4.81
50 3 2S1/2 → 2P3/2 −4.875 0.685 −4.190 −5.00 0.67 −4.33 −4.31
60 3 2S1/2 → 2P1/2 −10.21 1.512 −8.720 −10.52 1.48 −9.04 −9.08
60 3 2S1/2 → 2P3/2 −9.374 1.587 −7.787 −9.68 1.56 −8.12 −8.11
70 3 2S1/2 → 2P1/2 −17.91 3.156 −14.75 −18.57 3.08 −15.49 −15.61
70 3 2S1/2 → 2P3/2 −16.69 3.400 −13.29 −17.32 3.33 −13.99 −13.99
80 3 2S1/2 → 2P1/2 −29.53 6.264 −23.26 −30.91 6.07 −24.84 −25.12
80 3 2S1/2 → 2P3/2 −28.40 6.981 −21.42 −29.56 6.81 −22.75 −22.82
90 3 2S1/2 → 2P1/2 −46.81 12.13 −34.67 −49.44 11.57 −37.99 −38.45
90 3 2S1/2 → 2P3/2 −47.31 14.15 −33.15 −49.26 13.62 −35.64 −35.87

Na-like (3s1)
20 11 2S1/2 → 2P1/2 −0.0292 0.0020 −0.0272 −0.0288 0.0019 −0.0269 −0.0279
20 11 2S1/2 → 2P3/2 −0.0275 0.0020 −0.0255 −0.0275 0.0019 −0.0256 −0.0264
30 11 2S1/2 → 2P1/2 −0.174 0.0146 −0.159 −0.167 0.014 −0.153 −0.157
30 11 2S1/2 → 2P3/2 −0.161 0.0147 −0.146 −0.156 0.014 −0.142 −0.145
40 11 2S1/2 → 2P1/2 −0.546 0.0553 −0.491 −0.538 0.054 −0.484 −0.491
40 11 2S1/2 → 2P3/2 −0.502 0.0563 −0.445 −0.497 0.055 −0.442 −0.449
50 11 2S1/2 → 2P1/2 −1.286 0.155 −1.131 −1.27 0.15 −1.12 −1.14
50 11 2S1/2 → 2P3/2 −1.177 0.160 −1.017 −1.18 0.16 −1.02 −1.03
80 11 2S1/2 → 2P1/2 −7.806 1.579 −6.227 −7.82 1.52 −6.30 −6.41
80 11 2S1/2 → 2P3/2 −7.473 1.780 −5.693 −7.56 1.73 −5.83 −5.88
90 11 2S1/2 → 2P1/2 −12.53 3.072 −9.462 −12.58 2.93 −9.65 −9.86
90 11 2S1/2 → 2P3/2 −12.51 3.647 −8.859 −12.69 3.52 −9.17 −9.26

Cu-like (4s1)
40 29 2S1/2 → 2P1/2 −0.0790 0.0080 −0.0711 −0.0776 0.0075 −0.0701 −0.0736
40 29 2S1/2 → 2P3/2 −0.0732 0.0081 −0.0651 −0.0728 0.0077 −0.0651 −0.0682
50 29 2S1/2 → 2P1/2 −0.266 0.0318 −0.234 −0.255 0.031 −0.224 −0.231
50 29 2S1/2 → 2P3/2 −0.244 0.0327 −0.212 −0.237 0.032 −0.205 −0.210
60 29 2S1/2 → 2P1/2 −0.633 0.0893 −0.543 −0.613 0.086 −0.527 −0.541
60 29 2S1/2 → 2P3/2 −0.583 0.0938 −0.490 −0.571 0.091 −0.480 −0.489
70 29 2S1/2 → 2P1/2 −1.263 0.211 −1.052 −1.24 0.20 −1.04 −1.06
70 29 2S1/2 → 2P3/2 −1.178 0.228 −0.950 −1.17 0.22 −0.95 −0.96
90 29 2S1/2 → 2P1/2 −3.802 0.918 −2.884 −3.76 0.88 −2.88 −2.98
90 29 2S1/2 → 2P3/2 −3.773 1.089 −2.683 −3.79 1.05 −2.74 −2.78

the valence-s states and low scaling for the valence-p states.
Extrapolation to high Z shows that the VP and SE curves
cross at Z = 269 for the group 11 and Z = 659 for the group
1 elements. These are much higher nuclear charges than for
the inner shell estimates given by Soff et al. [50], where for
the 1s electron a nuclear charge of Z = 170 was obtained for
cancellation of the VP and SE contributions.

A comparison of our SE results to the results obtained by
Labzowsky et al. [33] for the groups 1 and 11 valence shell
ionization potentials shows good agreement (Table V). Our
results are also in good agreement with recent first-order QED
corrections for valence electrons of heavy elements obtained
by Goidenko [51]. We note that all three SE terms (10),
(11), and (12) are important for the total SE contribution. For
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example, for the 2S1/2 → 1S0 ionization of gold the magnetic
form factor contribution to the total SE is 20%, the one for the
electric form factor is 58%, and the one from the (long-range)
low-frequency contribution is 21%. Note that for Rg (Z = 111)
and Cn (Z = 112) the relativistic 7s contraction is so large
that ionization occurs out of the 6d5/2 shell instead of the 7s

shell [52–55]. This is in contrast to the lighter groups 1 and 11
elements where ionization occurs out of the valence ns shell.
This explains the changing trend in all QED contributions
down the groups 11 and 12 in the periodic table. Labzowsky
et al. [33] only considered removal of an electron out of the
ns shell. If we consider the 2D5/2(6d97s2) → 3D3(6d97s1) for
Rg, i.e., the removal of a 7s valence electron, we obtain
SE and VP values of −8.088 × 10−2 and 3.298 × 10−2 eV,
respectively, very close to the corresponding values for the
2S1/2(6d107s1) → 1S0(6d10) transition. We also note a recent
article by Indelicato et al. [10] on QED effects in superheavy
elements. Their total SE term within the Welton model [56] at
the DHF level of theory for Rg is 0.084 eV which again is in
reasonable agreement with our value.

The accuracy of our implemented self-energy term can
be assessed by comparison with more accurate treatment
for multielectron systems. Here we compare to Blundell’s
results who also included direct and exchange SE and VP
screening effects within a relativistic many-body perturbation
theory treatment in 2S1/2 → 2P1/2,

2P3/2 transitions for Li-like,
Na-like, and Cu-like ions [57]. The results are presented in
Table VI. The VP and SE contributions are in very good
agreement with Blundell’s results for all ions. Somewhat larger
deviations are only obtained for the SE contributions at low

principal quantum number and high nuclear charges, which is
to be expected. However, even for Li-like ions with Z up to 90
we get for the 2S1/2 → 2P1/2,

2P3/2 transitions deviations in the
SE term of no more than 5.3%. For the correct order in the SE
contributions to the 2P1/2,

2P3/2 splitting one requires a rather
more accurate treatment of the SE term. Further improvements
could be made by choosing the coefficient B(Z) in Eq. (12) to
be n dependent as well similar to the An(Z) coefficients.

We also list SE and VP contributions for the groups
13 and 18 elements of the periodic table for comparison.
A self-consistent treatment of the QED effects to account
for second-order effects originating from SE and VP core
relaxation of the s electrons at the nucleus, which leads
to shielding/deshielding of the nuclear charge, shows only
minor deviations from the perturbative results. For a de-
tailed discussion see Flambaum and Ginges [34] as well as
Derevianko et al. [58]. Nevertheless, the results clearly show
that even for the superheavy elements SE and VP contributions
for the p shell rarely exceed 0.01 eV, and we expect even
smaller effects for d and f shells. As the error in the electron
correlation procedure in future high-precision atomic or
molecular calculations in many-electron systems (as opposed
to few electron systems) is expected to be much larger, QED
effects coming from the l > 0 valence shells can perhaps be
neglected or included only at the Dirac-Hartree-Fock level in
lowest order.

Table III shows that, as expected, the frequency independent
(instantaneous) Gaunt term is the dominant contribution to the
total Breit interaction for all elements considered, as this was
discussed earlier in great detail by Lindroth et al. [59]. We

TABLE VII. Dirac-Coulomb-Hartree-Fock (DHF) orbital energies and self-consistent (SC) as well as perturbative (PT)
Breit (BI) contributions (eV) in the low-frequency limit to the corresponding orbital energies of the neutral mercury atom in
comparison with Lindroth et al. [59]. In the usual angular-momentum notation ∗ denotes j = l − 1/2, otherwise j = l + 1/2
is chosen.

Hg DHF PT-BI PT-BI [59] SC-BI SC-BI [59]

1s −83654.153 312.191 315.103 298.661 298.233
2s −14973.120 41.981 41.714 33.486 33.470
3s −3622.197 9.926 9.635 6.198 6.193
4s −833.983 2.761 2.496 1.272 1.270
5s −138.861 0.568 0.493 0.192 0.191
6s −8.926 0.038 0.042 0.012 0.012
2p∗ −14336.449 66.549 65.470 56.259 56.245
3p∗ −3337.174 15.397 14.337 10.704 10.702
4p∗ −710.872 4.153 3.491 2.269 2.269
5p∗ −96.271 0.778 0.593 0.330 0.330
2p −12385.444 45.457 43.918 35.505 35.510
3p −2899.240 11.147 9.736 6.386 6.386
4p −603.781 3.203 2.322 1.186 1.186
5p −77.333 0.628 0.373 0.131 0.131
3d∗ −2433.699 9.369 8.304 4.648 4.648
4d∗ −402.639 2.405 1.349 0.625 0.625
5d∗ −17.689 0.273 0.119 0.007 0.007
3d −2340.726 7.619 8.304 2.989 2.988
4d −382.390 1.972 1.349 0.260 0.260
5d −15.637 0.219 0.119 −0.030 −0.030
4f ∗ −121.714 1.218 0.759 −0.158 −0.158
4f −117.328 1.032 0.597 −0.313 −0.313
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also confirm that the frequency-dependent contribution to the
BI is negligible for the lighter elements but can become rather
large for high nuclear charges. For high Z such contributions
cannot be neglected anymore in the valence space in lowest
order. Moreover, the gauge term (difference between the Breit
term in the Coulomb gauge and the Gaunt term) leads to quite
sizable contributions (difference between SC-GI and SC-BI in
Table III) for the ionization potentials of the lighter and heavier
elements.

There has been intensive discussion in the past if the
two-electron Breit term should be used perturbatively or
variationally [60–62]. Grant pointed out that a variational
procedure is clearly preferred in a subsequent treatment of
electron correlation [63,64]. Moreover, it has been argued
that a variational treatment of the Breit interaction is most
important for valence properties in many-electron systems
[59]. In order to analyze this in more detail, we compare the
difference of a self-consistent with a perturbative treatment
for the Breit interaction for a series of elements in the periodic
table (for the self-consistent treatment we used the program of
Indelicato [65]). From the results shown in Table III we see that
the self-consistent total energy contribution to the ionization
potential does not differ significantly from the perturbative
treatment even for high Z atoms, except perhaps for the group
18 elements, where the Breit contribution for the ionization
out of the p3/2 shell is small anyway. This is in agreement
with the results of Ishikawa et al., who found similar small
changes [66].

We also performed a detailed study of the Breit contri-
butions to the orbital energies for the neutral mercury atom
similar to the work by Lindroth et al. [59] (Table VII).
For the self-consistent treatment we nicely reproduce the
results of Lindroth and coworkers [59]. Also the perturbative
treatment gives qualitatively the same values for the orbital
energy contributions. Here we used the orbitals from a
Dirac-Hartree-Fock calculation (without Breit or any other
QED contributions) to calculate the change in orbital energies
due to the frequency-independent Breit term (our procedure
here differs slightly from Lindgren’s perturbative treatment
as the Fock matrix including Breit was diagonalized in the
Dirac-Fock-Coulomb basis to obtain first-order Breit corrected
orbital energies). It is evident that the largest contributions
come from the inner shells. However, the difference in
both treatments becomes rather large in the valence shell as
observed earlier by Lindroth et al. [59].

Naturally, one relates orbital energies to ionization poten-
tials through Koopmans theorem [67]. The data in Table VIII
prove that Koopmans’ theorem is still valid for the two-electron
Breit contributions, as both changes in orbital energies and
direct calculations of energy differences between the neutral
and charged atoms give very similar results for all ionizations
out of specific nlj levels in the mercury atom. A full variational
treatment includes changes in Coulomb and exchange contri-
butions of the Breit interaction due to orbital relaxation, which
obviously cannot be neglected anymore for orbital energies.
Moreover, the DHF orbitals are not eigenfunctions to the Fock
operator including the Breit term. One should therefore not
conclude from the original perturbative analysis for orbital
energies [59] that the Breit interaction for valence energies
cannot be treated perturbatively anymore for the valence shell.

TABLE VIII. Comparison of the Breit contribution (eV) to the
ionization energy �E of mercury atom compared to the Breit
contribution to the orbital energy �ε obtained from a variational
treatment of the Breit interaction in the low-frequency limit for the
neutral mercury atom. Here the removal of an electron is calculated for
each shell with quantum number nlj . In the usual angular-momentum
notation ∗ denotes j = l − 1/2, otherwise j = l + 1/2 is chosen.

nl �E �ε

1s 302.439 298.661
2s 33.693 33.486
3s 6.186 6.198
4s 1.250 1.272
5s 0.184 0.192
6s 0.012 0.012
2p∗ 56.452 56.259
3p∗ 10.661 10.704
4p∗ 2.232 2.269
5p∗ 0.316 0.330
2p 35.741 35.505
3p 6.374 6.386
4p 1.165 1.186
5p 0.125 0.131
3d∗ 4.651 4.648
4d∗ 0.608 0.625
5d∗ 0.004 0.007
3d 3.010 2.989
4d 0.251 0.260
5d −0.029 −0.030
4f ∗ −0.161 −0.158
4f −0.308 −0.313

On the contrary, the results clearly demonstrate that, if high
precision is not required, a perturbative treatment of the Breit
interaction for the valence space is sufficient. However, to
incorporate changes in atomic (or molecular) properties due
to the Breit term (see for example Refs. [68,69] for recent
molecular work), a variational treatment is preferred.

Finally we mention recent accurate Fock-space coupled-
cluster calculations for the gold atom the Eliav et al. [70].
The calculated ionization potential of 9.197-eV changes to
9.176 eV when VP and SE is included, which now is in less
good agreement with the experimental value of 9.225 eV [71].
Hence the total correlation error is estimated to be 0.049 eV in
Eliav’s calculation; that is, 96.9% of the total electron correla-
tion contribution to the ionization potential (�Ecor = �Eexp −
�EDC−HF − �EBreit − �EQED = 1.565 eV) has been ac-
counted for. This clearly demonstrates that the bottleneck in
such calculations still remains within the electron correlation
treatment. Our further development will be in the construction
of effective Hamiltonians with one-particle semilocal SE and
VP operators which, in a similar fashion to valence electron
pseudopotentials [72], could be fitted to precise atomic QED
contributions to inner- and outer-shell ionization potentials
of neutral and charged atoms. Such effective (lower bound)
Hamiltonians can then be used variationally in accurate all-
electron molecular Dirac-Coulomb-Breit calculations treating
QED and electron correlation on the same footing. Work in
this direction is currently in progress.
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