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A full quantum treatment shows that coupled electronic and nuclear fluxes exhibit a strong sensitivity to a
small mass change in a vibrating molecule. This has been exemplified with the existing isotopes of H2

+ as well as
few fictitious ones. We find that the fluxes undergo a significant change as one goes from one isotope of reduced
mass µ to another. Other well-defined observables are likewise affected. It turns out that as a general rule, the
heavier the isotope, the larger the flux, the smaller the dispersion, and the longer the revival period. While we
were able to confirm analytically that the time at the first turning point scales as

√
µ and that the revival period

changes linearly with µ, the mechanism of other observables remains subtle as the result of quantum interference
highlighted by the pronounced difference observed on the dispersion pattern.
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I. INTRODUCTION

Very recent advances in simultaneously tracking quantum
electronic and nuclear fluxes in molecules are of great impor-
tance for the understanding of various physical and chemical
processes [1–3]. Monitoring, for instance, these fluxes through
a given dividing surface for a vibrating molecule or during a
chemical reaction, the number of electrons and nuclei crossing
the surface can be determined with high precision. Moreover,
detailed information about the time scales as well as the
directionality and the synchronicity of both electronic and
nuclear fluxes constitutes another important issue.

Gauss’s divergence theorem and the continuity equation are
the main components of the method [1,2] used here, allowing
expressions of fluxes in terms of the Born-Oppenheimer [4]
electronic and nuclear densities. The excellent agreement
obtained with the non–Born-Oppenheimer method [5] for
the hydrogen molecular ion indicates that this method [1]
should be considered as a promising candidate for large
quantum systems. Similarly, the influence of initial conditions
on quantum fluxes was explored soon after, showing, for
instance, a completely different dispersion pattern depending
on whether the process is initiated in the inner or in the outer
region of the potential energy surface (PES) with respect to
the equilibrium internuclear distance [2].

The isotope effect is one of the most studied phenomenon
in chemical reactions as a small mass change can lead, in
some situations, to a very dramatic response of the system.
In the studies of collision processes, for example, it is shown
that changing the reduced mass is equivalent to changing the
potential, a fact that can be strongly manifested in the scattering
lengths and in the cross sections [6–11]. A clear dependence
on the isotope is also shown in many other issues, e.g., the
solvation of molecules in water [12,13] or the molecular
high harmonic generation [14]. Despite its great potential, the
isotope effect on quantum fluxes has so far not been considered.

In this paper we analyze isotopes of hydrogen molecular ion
H2

+, and our objective is to demonstrate how small changes
in the mass can alter the electronic and nuclear fluxes and
related observables of the system. To allow for a more general

trend, we artificially gradually vary the reduced mass from the
muonium molecule Mu2

+, through H2
+, D2

+, and T2
+, until

we reach a fictitious hydrogen molecular ion, whose mass is
eight times larger than that of H2

+. In this mass range, we have
observed a change of several orders of magnitude on both the
electronic and nuclear flux. Likewise, we show that related
observables are also dramatically affected. The dependence
of the time at the first turning point and the revival period
on the reduced mass can be analytically explained with the
help of the Morse oscillator model. Other observables like the
dispersion happen to be very subtle and dominated by quantum
effects.

The article is organized as follows. In Sec. II, we intro-
duce our model and provide computational details of our
observables. Section III shows the results of our numerical
experiments with analytical evidence based on the Morse
oscillator model. Section IV concludes the paper.

II. THE MODEL AND COMPUTATIONAL DETAILS

A. The model

The hydrogen molecular ion consists of one electron bound
to two nuclei. The model that we briefly describe here governs
each of its isotopes and has been extensively presented in
[2]. We consider that the electron is described in cylindrical
coordinates (r cos φ,r sin φ,z) and assume that the nuclei are
localized in the electronic z axis for the time scale we are
interested in, which is shorter than the rotational time scale
of the molecule. The nuclear motion is thus described by
the internuclear distance R, parallel to z. Making use of the
cylindrical symmetry imposed by these considerations, the
electronic angular variable φ is eliminated, thereby leaving
only three degrees of freedom (r ,z,R) for the dynamics.
The time-dependent Schrödinger equation (TDSE) for this
three-body system has the following form (atomic units are
used unless otherwise stated):

i
∂

∂t
�(r,z,R,t) = H�(r,z,R,t), (1)
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FIG. 1. (Color online) Initial nuclear wave packets of Mu2
+ (dark

grey, blue online), H2
+ (medium grey, red online), and T2

+ (light grey,
green online) placed on the electronic ground state 1sσg . These wave
packets are ground states of their respective neutral molecules, Mu2,
H2, and T2, which have been promoted to the corresponding cationic
ground state 1sσg at R = R0 = 4a0.

where �(r,z,R,t) is the total wave function of the electron and
the nuclei and

H = Te + Tn + Vnn + Ven

is the molecular Hamiltonian in which Tn = −1/(2µn)∂2/∂R2

is the kinetic energy of the nuclei with the reduced mass µn,
Vnn = 1/R is the nuclei-nuclei interaction,

Te = − 1

2µe

∂2

∂z2
− 1

2µe

(
∂2

∂r2
+ 1

r

∂

∂r

)
is the electronic kinetic energy with 1/µe = 1 + 1/(4µn), and

Ven = − 1√
r2 + (z − R/2)2

− 1√
r2 + (z + R/2)2

is the electron-nuclei interaction. The initial state of this system
is the Born-Oppenheimer (BO) wave function:

�(r,z,R,t = 0) = �n(R,t = 0)�e(r,z; R). (2)

The nuclear wave function �n(R,0) is the ground state of the
neutral molecule H2 promoted to H2

+ at a given R0. The
electronic wave function �e(r,z; R) is the 1sσg electronic
ground-state wave function of H2

+ parameterized by the
internuclear distance R. Figure 1 shows the potential energy
surface V (R) of the isotopes in the electronic ground state as
well as some initial wave packets, namely, Mu2

+, H2
+, and

T2
+, all centered at the internuclear distance R0 = 4a0. Note

that although all these states possess the same energy, their
widths are different: the smaller the reduced mass is, the larger
the widths are, as one can clearly see from Fig. 1.

B. Computational details

The observables explored here are based upon the solution
of the TDSE (1). The agreement between the exact method
[15,16] and the BO approximation [1,2] was excellent. The
use of the latter is computationally much faster and therefore
also suitable for larger molecules in the future. To allow
for a better understanding of our numerical experiments,

we provide a few analytical expressions. The total wave
function �(r,z,R,t) is approximated by the BO wave function
�BO(r,z,R,t) = �n(R,t)�e(r,z; R), which is the product of
the nuclear wave function �n(R,t) and the electronic one
�e(r,z; R). Solving the following time-independent electronic
Schrödinger equation,

He�e(r,z; R) = V (R)�e(r,z; R), (3)

with He = Te + Vnn + Ven, one obtains both the PES V (R)
and the electronic wave function �e(r,z; R). This equation
is solved using the GAUSSIAN03 package [17] that involves a
correlation-consistent polarized basis set (aug-cc-pV5Z) [18].
The computations are performed within the cylinder of radius
r0 = 18.0a0 and height 2z0 = 36.0a0 (z ∈ [−z0,z0]) with 50
and 110 grids, respectively; the nuclear degree of freedom R ∈
[0.0,16.0a0] is discretized with 256 grid points. We showed
in [2] that with the above settings, a sufficiently high numerical
accuracy is reached.

The PES is subsequently employed for the computation
of the nuclear wave function �n(R,t) by solving the time-
dependent Schrödinger equation

i
∂

∂t
�n(R,t) = [Tn + V (R)] �n(R,t), (4)

using the symmetrized splitting method together with the
fast Fourier transform [19,20]. Moreover, to avoid unphysical
reflections at the boundary, an absorbing mask [21] for R =
16.0a0 has been used.

From the total wave function �(r,z,R,t) ≈ �BO(r,z,R,t)
the full density ρtot(r,z,R,t) = |�(r,z,R,t)|2 is determined.
The continuity equation reads

ρ̇tot(r,z,R,t) = −∇ · j(r,z,R,t), (5)

where j = (Im(�∗∇e�)/µe,Im(�∗∇n�)/µn) is the total
current density containing the electronic ∇e and nuclear
∇n gradients. Integrating Eq. (5) over the nuclear degree
of freedom, one obtains the reduced electronic continuity
equation

ρ̇e(r,z,t) = −∇e · je(r,z,t), (6)

and integrating over the electronic degrees of freedom, one
obtains the reduced nuclear continuity equation

ρ̇n(R,t) = −∇n · jn(R,t), (7)

where ρe is the electronic density, ρn is the nuclear density, je
is the electronic current density, and jn is the nuclear current
density.

The electronic and nuclear fluxes we are interested in are
monitored through the observer surface Aobs, which is the
boundary of the observer volume Vobs. The electronic flux
Fe and the nuclear flux Fn defined as surface integrals are
transformed in terms of the volume integrals by virtue of
Gauss’s divergence theorem as

Fe(t ; Aobs) = −
∫

Aobs

dA · je = d

dt

∫
Vobs

dVρe, (8)

Fn(t ; Aobs) = −
∫

Aobs

dA · jn = d

dt

∫
Vobs

dVρn. (9)
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FIG. 2. (Color online) Visualization of the initial electronic and
nuclear densities of Mu2

+ (black, blue online) and that of T2
+ (grey,

red online). The electronic densities surround the nuclear ones. One
clearly sees the difference between both densities, which is much
more pronounced for nuclei. The two rectangular planes (grey, yellow
online) are located at zobs = ±Robs/2, where Robs is the distance
separating the two planes. This visualization has been created using
the academic system ZIBAMIRA, a superset of its commercial version
AMIRA [22].

Integrating Eqs. (8) and (9) over the time interval [0,t], one
obtains the corresponding electronic yield Ye and the nuclear
yield Yn, given by

Ye(t ; Aobs) =
∫ t

0
dτFe(τ ; Aobs), (10)

Yn(t ; Aobs) =
∫ t

0
dτFn(τ ; Aobs). (11)

More specifically, the observer surface Aobs in our model is
defined by two planes parallel to the plane z = 0 located at
the internuclear separation distance Robs for which the cor-
responding electronic observer coordinate is zobs = ±Robs/2;
see Fig. 2. This figure displays the visualization of the initial
electronic and nuclear densities of Mu2

+ (black, blue online)
together with that of T2

+ (grey, red online). The difference
between the densities of the two entities is clearly noticeable
and is very much pronounced for the nuclei. Exploring
throughout our mass range, we confirmed the intuition as to
which localization of the density is much stronger for larger
masses.

III. RESULTS AND DISCUSSION

In this section we present and discuss our results as a
function of time for each of the isotopes and as a function of the
isotope mass. The isotopes of the hydrogen molecular ion H2

+
that we consider range from the muonium molecular ion Mu2

+
to the fictitious molecular ion X2

+ with eight times the reduced
mass of H2

+. In addition to the coupled electronic and nuclear
fluxes and yields, we have computed the electronic and nuclear
dispersions, the observables related to the synchronicity and
directionality of the fluxes, the mean bond length, and the
autocorrelation functions.
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FIG. 3. (Color online) (a and c) Nuclear (grey, red online)
and electronic (black) fluxes with (b and d) associated yields
corresponding to Mu2

+ and T2
+, respectively. Here tS is the time

for which the nuclei start crossing the observer surface (region A),
and �τ is the time delay that the nuclei take to follow the electron
when it first changes direction (region B).

A. The nuclear and electronic fluxes

Using Eqs. (8)–(11), we have computed nuclear and elec-
tronic fluxes as well as corresponding nuclear and electronic
yields. Depicted in Fig. 3 are representative muonium Mu2

+
and tritium T2

+ cases. The curves in black are the electronic
fluxes and yields, and those in grey (red online) are the nuclear
ones. The oscillation frequency is far larger for Mu2

+ than T2
+,

thus scaling with 1/
√

µ, as we will show later in this section.
The magnitudes of both nuclear and electronic fluxes decrease
as the reduced mass becomes larger; see Figs. 3(a) and 3(c).
The heavier nuclei are likely to pass almost completely
through the observer surface from the initial location to the
opposite turning point and back, as can be seen from Figs. 3(b)
and 3(d). Though more electronic yield passes through the
observer surface for heavier isotopes, their maximum remains
less than half of the electron that one would expect traveling
with a nucleus that completely crosses the observer surface.

B. The starting nuclear flux time tS and the time delay �τ

Analyzing in detail the question of synchronicity and direc-
tionality of nuclear and electronic fluxes, we have identified
within the first oscillation period two regions, denoted by A and
B, as shown in Figs. 3(a) and 3(c). The electron immediately
flows through the observer surface as soon as the dynamics
starts, in contrast to the nuclei that are delayed by the time
tS , which we call starting nuclear flux time tS , recorded when
the nuclear flux reaches 0.001 fs−1 (region A). This is because
the electron density is much broader than the nuclei one and the
dividing surface is not close to the initial location of the nuclear
wave packet. Another quantity of interest is the time delay �τ

(region B) that nuclei take to follow the electron as it first
changes direction at the observer surface. One can clearly see
that the electron counterintuitively follows the nuclei (region
B). These features highlighted by tS and �τ are caused by
kinematic effects and strongly depend on the placement of the
dividing surface. Figures 4 and 5 depict tS and �τ (squares)
as a function of µ (the isotope reduced mass per reduced mass
of H2

+), respectively. These quantities follow the power-law
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FIG. 4. Starting nuclear flux time tS (squares), region A of Fig. 3,
as a function of µ, the isotope reduced mass per reduced mass of
H2

+. Its corresponding fit (solid line) is tS = 2.18µ0.7 − 0.66.

fit (solid line) with tS = 2.18µ0.7 − 0.66 and �τ = 0.70µ0.84.
This strictly nonlinear behavior may be attributed not only
to the difference in the dispersion pattern observed in the
subsequent section but also to the location of the diving surface.

C. The nuclear and electronic dispersions

We have shown in [2] that the dispersion depends strongly
on the initial location of the nuclear wave packet and that the
nuclear dispersion, which, in general, is small as compared
to the electronic one, may become increasingly high and
eventually equal the electronic one if the dynamics starts at the
inner region with respect to the equilibrium. Here the location
of our initial wave packets is in the outer region, as shown
in Fig. 1. We want to analyze the influence of the mass on
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+. Its corresponding fit (solid line) is �τ =
0.70µ0.84.
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FIG. 6. (Color online) (a) Mean bond length, (b) nuclear disper-
sion �R, (c) electronic dispersion �r , and (d) �z for Mu2

+ (solid
black line), H2

+ (solid grey line, red online), D2
+ (dashed grey line,

red online), and T2
+ (dashed black line), as a function of time.

these dispersions. In Fig. 6(a) we have plotted the mean bond
length 〈R〉,

〈R〉 = 〈�(r,z,R,t)|R|�(r,z,R,t)〉; (12)

we have also plotted the nuclear dispersion �R(t) [Fig. 6(b)],
the electronic dispersion �r(t) [Fig. 6(c)], and �z(t)
[Fig. 6(d)],

�R(t) =
(∫

dR ρn(R,t) (R − 〈R〉)2

)1/2

, (13)

�r(t) =
(∫

rdr dz ρe(r,z,t) (r − 〈r〉)2

)1/2

, (14)

�z(t) =
(∫

rdr dz ρe(r,z,t) (z − 〈z〉)2

)1/2

, (15)

as a function of time for some representative isotopes, namely,
Mu2

+, H2
+, D2

+, and T2
+. The behavior of the mean bond is

consistent with that observed in Sec. III A (Fig. 3). Clearly, its
oscillation frequency decreases as the reduced mass increases.
Moreover, the heaviest isotope is likely to come very close to
the steepest wall at the inner turning point, as demonstrated in
Fig. 7 with the minimum mean bond length 〈R〉min (diamonds),
whose nonlinear fit scales as µ−0.25 (solid line). It turns out that
for any given isotope, the electronic dispersion is, in general,
higher than the nuclear one. These results generalize what
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(�R)max (circles), fit with 0.82/µ0.2 (dashed line), as a function of
the mass µ of different isotopes per reduced mass of H2

+. These data
are recorded within each isotope oscillation period (see Fig. 6).

was already demonstrated for the deuterium molecular ion
D2

+ [2]. However, when restricted to the nuclear dispersions
only, one remarkably notices that Mu2

+ stands out, with
its dispersion significantly higher than others. This nuclear
dispersion increases as the isotope mass becomes smaller,
thereby becoming larger than the electronic dispersion in
r and eventually catching the electronic dispersion in z.
As shown in Fig. 7, within the first oscillation periods the
maximum nuclear dispersion (�R)max (circles) consequently
decreases as the isotope mass increases, with a power-law
behavior fit of 0.82/µ0.2 (dashed line). The strong dispersion
observed in Fig. 7 is consistent with the most probable quantum
effect, namely, the underlined quantum interference, which is
enhanced for light isotopes. This effect manifests itself as the
mixing of fragments of the nuclear wave packet traveling back
and forth.

D. The first turning point time tR and the maximum nuclear
dispersion time tM

Here we pay attention to a few important time scales that are
characteristic of the dynamics within the first oscillation period
of each isotope and as a function of their reduced mass. We
first investigate the arrival time of the wave packet at the first
turning point tR; this time corresponds to the time at which the
bond length is minimum. One can clearly see from Fig. 8 that
tR scales as

√
µ. This can be understood by modeling the PES

of Fig. 1 with the Morse potential V (R) = −De + De{1 −
exp[−β(R − Re)]}2, where De is the dissociation energy,
Re is the equilibrium internuclear distance, and β is the length
scale [23]. With the harmonic approximation of this system,
which reads

V (R) ≈ −De + β2DeX
2 = −De + 1

2µω2X2, (16)
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FIG. 8. Time at the first turning point tR (squares), fit with
10.75

√
µ, and time tM (circles) within the first oscillation period

where the nuclear dispersion is maximum, fit with 8.0
√

µ, as a
function of the reduced mass µ of different isotopes per the reduced
mass of H2

+, µH2
+ .

where X = R − Re, it turns out that the harmonic frequency
is given by

ω = β

√
2De

µ
. (17)

This implies that the oscillation period T = 2π/ω scales as√
µ, which is in accordance with our numerical result.
Then the time tM at which the nuclear dispersion becomes

maximal is another time scale of interest. We found that this
maximum nuclear dispersion is reached around Re, i.e., within
the first oscillation period at tM ≈ 1.3tR , thus leading to

√
µ

scale, as depicted in Fig. 8. This result can be understood as
a consequence of quantum interference since it is precisely
the time at which the mixing of fragments of the wave packet
traveling back and forth reaches its maximum. Note that in
our system, which is nonlinear (Morse oscillator), the number
of eigenstates is finite and our wave packet contains a limited
number of such eigenstates. In a harmonic oscillator (HO)
case, however, the situation may be different under certain
conditions. Indeed, it has been shown that in the HO case
with infinite number of eigenstates, the wave packet keeps
its shape throughout the propagation [24] and the nuclear
dispersion is time independent. In all nonlinear systems the
nuclear dispersion is time dependent even if the wave packet
contains all eigenstates.

E. The autocorrelation

The wave packet dynamics in our systems lead us to explore
not only their spreading and collapsing but also their revivals.
We use the autocorrelation function C(t), which contains the
information about the revivals. C(t) is defined as the overlap
between the initial wave function with the time-evolved wave
packet:

C(t) = 〈�(r,z,R; 0)|�(r,z,R; t)〉. (18)

Figure 9 shows the autocorrelation function C(t) for four
selected isotopes. The oscillations observed throughout

062502-5



A. KENFACK, I. BARTH, F. MARQUARDT, AND B. PAULUS PHYSICAL REVIEW A 82, 062502 (2010)

FIG. 9. Absolute value of the autocorrelation function |C(t)| of
different isotopes as a function of time. The revival time trev rapidly
increases with the reduced mass µ and is approximated with trev =
300µ/µH2

+ , where µH2
+ is the reduced mass of H2

+.

demonstrate the wave packet spreading, collapsing, and
reviving. This numerical experiment shows that the revival
time trev linearly increases with the reduced mass µ and is
specifically given by trev = 300µ/µH2

+ , where µH2
+ is the

reduced mass of H2
+. As demonstrated below, this revival

time can be predicted, assuming that our wave packet is
an eigenstate of the Morse potential with the eigenenergy
En = h̄(n + 1/2) − [h̄2ω2/(4De)](n + 1/2)2, where n is the
principal quantum number. In this case trev is given by [25]

trev = 2πh̄

1
2

∣∣ ∂2En

∂n2

∣∣ = 4π

h̄β2
µ ∝ µ (19)

since the length scale β = ω
√

µ/(2De) is constant. Compared
with all other considered observables, the revival time has
the strongest dependence on the reduced mass. Therefore, the
isotope effect is strongly pronounced for the revival time.

IV. CONCLUSION

We have demonstrated that a small change in a vibrating
molecular mass can significantly alter the coupled electronic

and nuclear fluxes monitored through an observer surface. As
our test bed, we have considered the isotopes of the hydrogen
molecular ions H2

+ as well as some fictitious ones to allow for
a large range of the mass variation from Mu2

+ through H2
+,

D2
+, T2

+, until an isotope eight times heavier than H2
+ was

reached. In this mass range, both electronic and nuclear fluxes
undergo large variations. To get better insights into the detailed
physical phenomena in this system, several observables as
well as time scales have been analyzed. These include the
starting nuclear flux time tS , the time delay �τ that the nuclei
takes to follow the electron when the electron first changes its
direction (counterintuitive directionality issue), the electronic
dispersions (�r , �z) and the nuclear dispersion �R, the mean
bond length 〈R〉, the maximum nuclear dispersion (�R)max,
the minimum nuclear bond 〈R〉min, and the revival time trev.
It turns out that each of the above-mentioned observables or
time scales behaves monotonically with the reduced mass of
the isotope. Scaling laws with respect to the reduced mass
have been determined. Based on the Morse oscillator model,
we have been able to confirm that the time at the first turning
point tR is proportional to

√
µ and that the revival period

of each isotope scales linearly with µ, as clearly observed
in our numerical experiments. It is also worth noticing that
the overall dispersion is larger for light isotopes than heavy
ones. This phenomenon is due to the quantun interference,
predominantly developed by the nuclear wavepacket.

In view of the high sensitivity of the coupled electronic
and nuclear flux and related observables with respect to a
small molecular mass change, one can anticipate that these
results will undoubtedly be of great importance not only for
larger-scale molecules but also for experimental purposes.
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