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Dynamical Casimir-Polder force on a partially dressed atom near a conducting wall
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We study the time evolution of the Casimir-Polder force acting on a neutral atom in front of a perfectly
conducting plate, when the system starts its unitary evolution from a partially dressed state. We solve the
Heisenberg equations for both atomic and field quantum operators, exploiting a series expansion with respect to
the electric charge and an iterative technique. After discussing the behavior of the time-dependent force on an
initially partially dressed atom, we analyze a possible experimental scheme to prepare the partially dressed state
and the observability of this new dynamical effect.

DOI: 10.1103/PhysRevA.82.062501 PACS number(s): 31.30.jh, 12.20.Ds, 42.50.Ct

I. INTRODUCTION

According to quantum electrodynamics, the electric and
magnetic fields show unavoidable fluctuations around their
average values, even in the ground state of the field [1,2]. This
feature gives rise to many physical phenomena such as the
existence of a force between a couple of electrically neutral
but polarizable objects. The existence of this kind of forces
was first remarked by Casimir in 1948 for two parallel, neutral,
and perfectly conducting plates [3] and by Casimir and Polder
for a neutral atom in front of a plate as well as between two
neutral atoms [4]. The force between an atom and a surface,
which is the main topic of this article, has been measured with
remarkable precision, notwithstanding the smallness of the
force, using different techniques: deflection of atomic beams
sent in proximity of surfaces [5], reflection of cold atoms [6–8].
More recently, Bose-Einstein condensates were exploited to
obtain more precise measurements of the atom-surface force,
using both reflection techniques [9,10] and the observation of
center-of-mass oscillations of the condensate [11–14].

The inclusion of dynamical (time-dependent) aspects in
the system can considerably change the physical nature of
the observed phenomena. When dealing with the dynamical
Casimir-Polder effect, it is worthwhile distinguishing two dif-
ferent possible realizations of the dynamics. A first important
situation to consider is the mechanical movement of the bodies
of the system: In this case the emission of real photons can
take place, having its dissipative counterpart in a friction force
acting on the moving objects. This idea was first brought to
attention in the pioneering works of Moore [15] and Fulling
and Davies [16], and then it paved the way to a remarkable
amount of theoretical work (see Ref. [17] and references
therein).

It does not yet exist any experimental observation of the
emission of radiation by dynamical Casimir effect, due to the
very low rate of photon emission, but a promising experiment
is currently in progress in which the mechanical movement is
replaced by the periodical modulation of the optical properties
of one of the surfaces involved [17–19]. On the other hand, the
expression dynamical Casimir-Polder force is also used in the
discussion of the time dependence of the force if the system
undergoes a unitary evolution starting from a nonequilibrium

quantum state [20,21]. For example, in Ref. [20] the authors
studied the time evolution of the force between two neutral
atoms starting from a partially dressed state of the system.
Such a state is an intermediate configuration between the bare
ground state of the system, which is given by the tensor product
of the atomic ground state and the vacuum field state, and the
physical, completely dressed, ground state of the composite
system. Although the articles [22,23] deal with the physical
configuration we are interested in, that is, a neutral atom in
front of a conducting wall, the evolution studied there starts
from the bare ground state of the system, which is an idealized
configuration hardly achievable in the laboratory.

In this article we consider the evolution in time of the
force between an atom and a perfectly conducting infinite
plate starting from a partially dressed state, which is a much
more realistic physical situation. To this aim, we are going to
exploit, analogously to Ref. [22], the method introduced by
Power and Thirunamachandran [24] for atoms in free space. It
consists in solving the Heisenberg equations of the atomic and
field operators in the Heisenberg picture by performing a series
expansion with respect to the coupling constant (the electric
charge) and then iteratively finding the solution (see Ref. [24]
or Ref. [21] for more details). Then the time-dependent atom-
wall Casimir-Polder energy is obtained for a specific model
of a partially dressed atom, obtained by a rapid change of the
atomic transition frequency due to an external action on the
atom such as an external electric field [20,25]. Finally, we
discuss the experimental realizability of the model considered
and the possibility of observing the dynamical effects predicted
by our results.

This article is organized as follows. In Sec. II we introduce
the multipolar coupling scheme for a two-level atom interact-
ing with the radiation field in the electric dipole approximation
and in the presence of a conducting wall. Then we solve the
Heisenberg equations for the photon creation and annihilation
operators up to the first order in the electric charge, using an
iterative technique, in order to obtain the Heisenberg operator
giving the time-dependent atom-wall interaction energy. The
solutions so obtained are valid for any initial state of the
system. In Sec. III we discuss our choice of the initial state of
the system, that is, a partially dressed atomic state, and evaluate
the time-dependent atom-wall interaction energy. Finally, in
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Sec. IV we discuss in more detail our physical model, its
experimental realizability, and the possible observation of the
predicted dynamical Casimir-Polder interaction.

II. THE HAMILTONIAN MODEL

We consider a two-level atom interacting with the elec-
tromagnetic radiation field in the presence of an infinite and
perfectly conducting wall. We let the mirror coincide with the
plane z = 0 and we place the atom on its right side: the atomic
position vector is thus rA ≡ (0,0,d), with d > 0. We work in
the multipolar coupling scheme and within the electric dipole
approximation (see, e.g., Refs. [26,27]). Thus the Hamiltonian
describing our system reads

H = H0 + HI

H0 = h̄ω0Sz +
∑
kj

h̄ωka
†
kj akj (1)

HI = −i

√
2πh̄c

V

∑
kj

√
k[µ · fkj (rA)](akj − a

†
kj )(S+ + S−).

In this expression the radiation field is described by the set
of bosonic annihilation and creation operators akj and a

†
kj ,

associated with a photon of frequency ωk = ck, while the
matrix element of the electric dipole moment operator µ and
the pseudospin operators S+, S−, and Sz are associated to
the atom, which has a transition frequency ω0 [2]. Moreover
fkj (r) are the field mode functions in the presence of the wall,
that in Eq. (1) are evaluated at the atomic position rA. Their
expressions can be obtained from the mode functions of a
perfectly conducting cubical cavity of volume V = L3 with
walls (−L/2 < x,y < L/2, 0 < z < L) [1,28]

(fkj (r))x =
√

8(êkj )x cos

[
kx

(
x + L

2

)]

× sin

[
ky

(
y + L

2

)]
sin(kzz)

(fkj (r))y =
√

8(êkj )y sin

[
kx

(
x + L

2

)]

× cos

[
ky

(
y + L

2

)]
sin(kzz) (2)

(fkj (r))z =
√

8(êkj )z sin

[
kx

(
x + L

2

)]

× sin

[
ky

(
y + L

2

)]
cos(kzz),

where kx = lπ/L, ky = mπ/L, kz = nπ/L (l,m,n =
0,1,2, . . .) and êkj are polarization unit vectors. In order to
switch from the cavity to the wall at z = 0, at the end of the
calculations one has to take the limit L → ∞.

We are going to obtain all the information about the time
evolution of the atom-wall force by solving the Heisenberg
equations of all the atomic and field operators involved in
our system. As anticipated before, since it is not possible to
solve exactly these equations for our model, we shall use an
iterative technique. As a starting point we write the operators

as a power series in the coupling constant, that as an example
for the annihilation operator takes the form

akj (t) = a
(0)
kj (t) + a

(1)
kj (t) + a

(2)
kj (t) + . . . , (3)

where the contribution a
(i)
kj (t) is proportional to the i-th power

of the electric charge. For our purposes we need the expressions
of both field and atomic operators up to the the first order only.
The result is already reported in Ref. [22] and it has the form

a
(0)
kj (t) = e−iωkt akj S

(0)
± (t) = e±iω0t S±

a
(1)
kj (t) = e−iωkt

√
2πck

h̄V
[µ · fkj (rA)][S+F (ωk + ω0,t)

+S−F (ωk − ω0,t)] (4)

S
(1)
± (t) = ∓2Sze

±iω0t
∑
kj

√
2πck

h̄V
[µ · fkj (R)]

× [akjF
∗(ωk ± ω0,t) − a

†
kjF (ωk ∓ ω0,t)].

where we have introduced the auxiliary function

F (ω,t) =
∫ t

0
eiωt ′dt ′ = eiωt − 1

iω
. (5)

All operators appearing in the right-hand side of Eq. (4)
without explicit time dependence are evaluated at t = 0 and
thus coincide with their counterpart in the Schrödinger picture.
While the zeroth-order terms correspond to the absence of
interaction and then to the free evolution given by H0, the
first-order terms couple the atomic and field operators. We wish
to stress here the main advantage of solving the Heisenberg
equations for the operators involved in the system: since
in the Heisenberg picture only the operators evolve in time
whilst the quantum state of the system remains constant, when
calculating the time evolution of any average value the choice
of the initial state can be performed just as a final step.

III. CHOICE OF THE INITIAL STATE AND
INTERACTION ENERGY

Our aim is to calculate the time-dependent atom-wall
interaction energy, in particular for a partially dressed initial
state. Using the same method as in Ref. [22], valid in a
quasi-static approach at the second order, we shall calculate
this quantity by taking half of the average value on the initial
state of the interaction Hamiltonian H

(2)
I (t) in the Heisenberg

representation. Then we have

�E(2)(t) = 1
2 〈ψ(0)|H (2)

I (t)|ψ(0)〉, (6)

where |ψ(0)〉 is the initial state of the atom-field system. The
explicit expression of HI (t) up to the second order is easily
deduced from (1) and (4) (only atomic and field operators up
to the first order are necessary), and it is given by

H
(2)
I (t)

= −2πic

V

∑
kj

k[µ · fkj (r)]2[S+eiω0t + H.c.]

×{S+[e−iωktF (ω0 + ωk,t) − eiωktF ∗(ωk − ω0,t)] − H.c.}
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+ 4πic

V
Sz

∑
kk′jj ′

√
kk′[µ · fkj (r)][µ · fk′j ′ (r)] (7)

×{ak′j ′[eiω0tF ∗(ω0 + ωk′ ,t) − e−iω0t

×F ∗(ωk′ − ω0,t)] + H.c.}[akj e
−iωkt − H.c.].

Now we must choose a specific initial quantum state to be
used in (6). In Ref. [22] the bare ground state was considered as
initial state. This state is the eigenstate of H0 having minimum
energy: it accounts to a switching off of the interaction between
atom and field and thus, although being a useful idealization, it
is difficult to imagine an experimental scheme for generating
such a state (but it can give important hints on the behavior
of more realistic systems). On the contrary, the completely
dressed ground state of H can be obtained by using stationary
perturbation theory, and its expression up to the first order is
given by

|0d〉 = |0〉 + |1〉
(8)

|1〉 = −i

√
2π

h̄V

∑
kj

√
k[µ · fkj (r)]

k + k0
|1kj , ↑〉,

written as a sum of the bare ground state |0〉 and a sum
of one-photon states gathered in |1〉. Up to the first order
in the coupling constant, the state (8) does not undergo any
time evolution. This expression clearly depends on the atomic
transition frequency ck0. This consideration is the basis of
our proposal for the preparation of a partially dressed state:
We assume our atom initially to have a transition frequency
ω′

0 and to be in its completely dressed ground state [given
by (8) with k′

0 in place of k0] and then to produce at t = 0
an abrupt change of its transition frequency from ω′

0 to a
new frequency ω0. In the next section we shall discuss in
more detail how this rapid change of the atom’s transition
frequency could be obtained. From the physical point of view,
our hypothesis is that this change is so rapid that the quantum
state immediately after t = 0 remains the same as before. Thus
this state will be taken as initial state of the unitary evolution
for t > 0, given by the Hamiltonian (1) with ω0 as the value
of the atom’s transition frequency; this state is subjected to
a time evolution because it is not an eigenstate of the new
Hamiltonian at t > 0, which is that for an atom with the new
transition frequency ω0. A partially dressed state is so obtained
[20,25].

We can now calculate three different average values of
the interaction energy. The first is obtained starting from
the completely dressed state of the system, given by (8):
this state is a stationary state, and then we simply recover
the well-known result for the static atom-wall force. If,
on the contrary, we consider the evolution from the bare
ground state |0↓〉, we indeed observe a time evolution of
the atom-wall force, as obtained in Ref. [22]. Finally, we
can choose as initial state |ψ(0)〉 the dressed state (8) with
a different transition frequency ω′

0, and also in this case a time
evolution is expected. In all the three cases, the evolution
is based on the Hamiltonian (1), according to which the
atom has, for t > 0, a transition frequency ω0 (while the
transition frequency is ω′

0 for t < 0). The results obtained in

all three different cases can be cast in the following compact
form

�E
(2)
d (d) = lim

m→1
Dm

[∫ +∞

0
dx

sin(mx)

x + x0

]

�E
(2)
b (d,t) = lim

m→1
Dm

[∫ +∞

0
dx

sin(mx)

x + x0

× (1 − cos[a(x + x0)])

]
(9)

�E(2)
p (d,t) = lim

m→1
Dm

[∫ +∞

0
dx

sin(mx)

x + x0

× (1 − cos[a(x + x0)])

+
∫ +∞

0

sin(mx)

x + x ′
0

cos[a(x + x0)]

]
,

where a = ct/(2d), x0 = 2k0d, x ′
0 = 2k′

0d, x = 2kd, and Dm

is the differential operator

Dm = − µ2

12πd3

[
2 − 2

∂

∂m
+ ∂2

∂m2

]
. (10)

The three interaction energies �E
(2)
d (d), �E

(2)
b (d,t), and

�E(2)
p (d,t) in (9) are, respectively, for the fully dressed state,

the bare state, and the partially dressed state cases. The second
and third interaction energies reduce, as expected, to the first
one for large values of a (that is of t). Moreover, the third one
coincides with the static expression for k′

0 = k0, since in this
case the initial state is the dressed ground state and then we do
not expect any time evolution.

The integrals appearing in Eq. (9) can be calculated
analytically and expressed in terms of the sine and cosine
integral functions Si(x) and Ci(x) [29]. The first and the third
integrals yield respectively∫ +∞

0
dx

sin(mx)

x + x0

= Ci(mx0) sin(mx0) + 1

2
cos(mx0)(π − 2Si(mx0))

∫ +∞

0
dx

sin(mx)

x + x ′
0

cos[a(x + x0)]

= 1

4
[−2Ci[(a + m)x ′

0] sin[a(x0 − x ′
0) − mx ′

0] (11)

+ 2Ci[l(a − m)x ′
0] sin[a(x0 − x ′

0) + mx ′
0]

+ cos[a(x0 − x ′
0) + mx ′

0](−lπ + 2Si[(a − m)x ′
0])

+ cos[a(x0 − x ′
0) − mx ′

0](π − 2Si[(a + m)x ′
0])],

where l = −1 for a < 1 (t < 2d/c) and l = 1 for a > 1
(t > 2d/c). The integral in the second line of Eq. (9) can
be obtained by just taking k′

0 = k0 in the second integral of
Eq. (11). Applying the differential operator (10) and finally
taking m = 1, we get the analytic expression of the interaction
energy, from which the atom-wall Casimir-Polder force can be
obtained as the opposite of the derivative with respect to the
distance d. These expressions are lengthy and not particularly
enlightening from a physical point of view and thus will be
not reported here explicitly.
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2 4 6 8 10 12 14
t

F t

FIG. 1. (Color online) Time evolution of the atom-wall force for
t < 2d (c = 1). We have chosen k0 = 1, k′

0 = 2, and d = 10, so the
back-reaction time is t = 20. The red (solid) line corresponds to
the case of an initial partially dressed state, while the blue (dashed)
line is for the case of an initially bare ground state. Time is in units
of d/c. The force is in arbitrary units.

One main point of this article is the comparison between
the time evolution of the force for the cases of an initial
partially dressed state and an initial bare ground state, the
latter already obtained in Ref. [22]. In Figs. 1 and 2 we give
the plots of the time evolution of the force for a bare ground
state from Ref. [22] (dashed blue lines) and for a partially
dressed state as obtained from �E(2)

p (d,t) in the third line of
(9) (solid red lines). In both plots we take units such that c = 1
and k0 = 1 and k′

0 = 2; the atom is placed at a position such
that k0d = 10. The difference between the values used for k0

and k′
0 is quite large, and it has be chosen in such a way just

for the convenience of making more evident the qualitative
different features obtained in the two cases considered.
Figure 1 refers to the region a < 1, that is before a light signal
leaving the atom at t = 0 reaches to the wall and comes back,
while Fig. 2 is for a > 1. On the light cone instead (a = 1)
the force diverges: the physical meaning of this divergence,
related to the well-known divergences of source fields and to
the dipole approximation, has been discussed in Ref. [22].

A first difference between the two cases (i.e., bare initial
state and partially dressed initial state) is that the initial (t = 0)
value of the interaction energy for a partially dressed state
is not zero. This happens because, when the system is in a
partially dressed state at t = 0, atom and field already see each
other. It is interesting to analyze the time evolution toward the
asymptotic regime (i.e., for a > 1). We see, as expected, that
the choice of a partially dressed initial state leads faster to
the asymptotic value of the force, exhibiting nevertheless a
similar oscillatory behavior around the asymptotic value. It is

30 35 40 45 50 55 60
t

F t

FIG. 2. (Color online) Time evolution of the atom-wall force for
t > 2d , with the same values and units of Fig. 1.
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t

F
d

,
t

F
d

FIG. 3. Time evolution of the relative difference between the
force for an initially partially dressed state and the stationary value for
t → +∞. We have chosen k0 = 1, k′

0 = 2, and d = 10 (and c = 1).
Time is in units of d/c.

worth stressing that the asymptotic value of the force, when
the atom becomes fully dressed, is the same in the two cases.
This supports the hypothesis that in many aspects the dynamics
toward the fully dressed state is indeed an irreversible process,
with an equilibrium state independent of the initial state [30].
The fact that different initial states, in general having different
energies, lead for large times to the same atom-wall potential
energy is not in contradiction with the energy-conserving
unitary evolution of our system. The reason is that during
the dynamical self-dressing of the atom, a spike of radiation
propagates on the light cone from the atom and asymptotically
in time it carries away part of the energy of the system to an
infinite distance from the atom (see Refs. [20,31] for more
details). This energy differs for the cases considered (initially
bare and partially dressed states), but it does not affect the
large-time atom-wall interaction energy which is related to the
field fluctuations at the atomic position; the latter at large times
occurs to be the same in the cases considered.

An important point is that, similarly to what was found in
Ref. [22] in the idealized case of an initial bare state, in the
more realistic case of an initial partially dressed atom, the force
also shows oscillations in time with negative (attractive) and
positive (repulsive) values. This oscillation of the dynamical
Casimir-Polder between an attractive and a repulsive character,
in the case of the partially dressed atom, can in principle be
observed in the laboratory.

It is also significant to consider the evolution in time
of the relative difference between the dynamical force we
computed and its static value for t → +∞. We are thus going
to consider the quantity

�F (d,t)

F (d)
= Fp(d,t) − Fd (d)

Fd (d)
(12)

with the same notations of Eq. (9). Figure 3 represents a plot of
�F (d,t)/F (d) with the same parameters as in Figs. 1 and 2.

As expected, this relative force difference oscillates in time
and approaches zero for t → +∞. In the next section we shall
discuss the orders of magnitude of the physical parameters
involved in the problem, as well as observability of this new
effect, that is, the time-dependent atom-wall Casimir-Polder
force and its oscillatory behavior from an attractive to a
repulsive character.

IV. DISCUSSION ON THE RESULTS

An essential point of our proposal outlined in the previous
section for generating an atomic partially dressed state is to
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produce an abrupt change of the atom’s transition frequency
from ω′

0 to ω0. In the present section we shall propose a
possible method to realize this change and discuss the order
of magnitude of the relevant parameters involved. A possible
technique to produce a change of the atomic frequency is to
place the atom at t = 0 in a uniform electric field of amplitude
E0, as first suggested in Refs. [20,25]. In this case, assuming
that the old (t < 0) free Hamiltonian of the system is

H ′
0 = h̄ω′

0Sz +
∑
kj

h̄ωka
†
kj akj , (13)

the new (t > 0) Hamiltonian is

H0 = h̄ω0Sz +
∑
kj

h̄ωka
†
kj akj , (14)

where the difference between the new and the old frequency
is related to the amplitude E0 of the electric field.

We now address the problem of the time scale of the
switching on of the electric field, and in particular if it is
compatible with our hypothesis that the quantum state of the
system remains unchanged immediately after this process.
A reliable estimate of a typical atomic evolution time is its
inverse transition frequency τ = ω−1

0 . Thus our nonadiabatic
hypothesis becomes reasonable if the time necessary to switch
on the electric field is small compared to ω−1

0 . Nevertheless,
taking, for example, the case of a hydrogen atom in its ground
state, we have τ = ω−1

0 � 10−15s which seems to be a quite
short time to drive the electric field from zero to a value
of E0 sufficiently high to make appreciable our dynamical
effects. This difficulty in the experimental realization of the
model discussed in this article, and the consequent observation
of the dynamical Casimir-Polder force, could be overcome
by considering a Rydberg atom, which can typically have a
transition frequency of some GHz. In this case, switching on

an electric field in times shorter than τ ∼ 10−9 s should not
be an impossible task (see Ref. [32]) and our assumptions
should be valid. Our assumption of a stable atomic ground
state should be also valid with a very good approximation
in this case because Rydberg states can be long-lived atomic
states. An alternative method to generate a partially dressed
atomic state could be a rapid change of some other physical
parameter of the atom significantly affecting its interaction
with the radiation field, for example, its refractive index. This
could be obtained by an optical control such that obtained in
Ref. [33].

V. CONCLUSIONS

We have considered the dynamical atom-wall Casimir-
Polder force in a quasistatic approach for an initially partially
dressed atom and compared in detail the results obtained with
the case of an initially bare state. A model for realizing the
partially dressed atom, as well its limits, has been discussed.
The time evolution of the atom-wall force has been calculated,
and we have shown that it exhibits oscillations in time yielding
to a oscillatory change of the Casimir-Polder force from an
attractive to a repulsive character and that asymptotically in
time it settles to the value obtained in the stationary case. The
possibility of experimental verification of our results has been
also discussed.
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tifica e Tecnologica and by Comitato Regionale di Ricerche
Nucleari e di Struttura della Materia.

[1] P. W. Milonni, The Quantum Vacuum: An Introduction
to Quantum Electrodynamics (Academic Press, San Diego,
1994).

[2] G. Compagno, R. Passante, and F. Persico, Atom-Field In-
teractions and Dressed Atoms (Cambridge University Press,
Cambridge, 1995).

[3] H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793
(1948).

[4] H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).
[5] C. I. Sukenik, M. G. Boshier, D. Cho, V. Sandoghdar, and E. A.

Hinds, Phys. Rev. Lett. 70, 560 (1993).
[6] A. Landragin, J. Y. Courtois, G. Labeyrie, N. Vansteenkiste,

C. I. Westbrook, and A. Aspect, Phys. Rev. Lett. 77, 1464
(1996).

[7] F. Shimizu, Phys. Rev. Lett. 86, 987 (2001).
[8] V. Druzhinina and M. DeKieviet, Phys. Rev. Lett. 91, 193202

(2003).
[9] T. A. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D. E.

Pritchard, and W. Ketterle, Phys. Rev. Lett. 93, 223201 (2004).
[10] T. A. Pasquini, M. Saba, G. Jo, Y. Shin, W. Ketterle, D. E.

Pritchard, T. A. Savas, and N. Mulders, Phys. Rev. Lett. 97,
093201 (2006).

[11] M. Antezza, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A 70,
053619 (2004).

[12] D. M. Harber, J. M. Obrecht, J. M. McGuirk, and E. A. Cornell,
Phys. Rev. A 72, 033610 (2005).

[13] M. Antezza, L. P. Pitaevskii, S. Stringari, and V. B. Svetovoy,
Phys. Rev. Lett. 97, 223203 (2006).

[14] J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii,
S. Stringari, and E. A. Cornell, Phys. Rev. Lett. 98, 063201
(2007).

[15] G. T. Moore, J. Math. Phys. 11, 2679 (1976).
[16] S. A. Fulling and P. C. W. Davies, Proc. R. Soc. London A 348,

393 (1976).
[17] V. V. Dodonov, Phys. Scr. 82, 038105 (2010).
[18] C. Braggio, G. Bressi, G. Carugno, A. Lombardi, A. Palmieri,

and G. Ruoso, Rev. Sci. Instrum. 75, 4967 (2004).
[19] C. Braggio, G. Bressi, G. Carugno, C. D. Noce, G. Galeazzi,

A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, Europhys.
Lett. 70, 754 (2005).

[20] R. Passante and F. Persico, Phys. Lett. A 312, 319 (2003).
[21] L. Rizzuto, R. Passante, and F. Persico, Phys. Rev. A 70, 012107

(2004).
[22] R. Vasile and R. Passante, Phys. Rev. A 78, 032108 (2008).

062501-5

http://dx.doi.org/10.1103/PhysRev.73.360
http://dx.doi.org/10.1103/PhysRevLett.70.560
http://dx.doi.org/10.1103/PhysRevLett.77.1464
http://dx.doi.org/10.1103/PhysRevLett.77.1464
http://dx.doi.org/10.1103/PhysRevLett.86.987
http://dx.doi.org/10.1103/PhysRevLett.91.193202
http://dx.doi.org/10.1103/PhysRevLett.91.193202
http://dx.doi.org/10.1103/PhysRevLett.93.223201
http://dx.doi.org/10.1103/PhysRevLett.97.093201
http://dx.doi.org/10.1103/PhysRevLett.97.093201
http://dx.doi.org/10.1103/PhysRevA.70.053619
http://dx.doi.org/10.1103/PhysRevA.70.053619
http://dx.doi.org/10.1103/PhysRevA.72.033610
http://dx.doi.org/10.1103/PhysRevLett.97.223203
http://dx.doi.org/10.1103/PhysRevLett.98.063201
http://dx.doi.org/10.1103/PhysRevLett.98.063201
http://dx.doi.org/10.1063/1.1665432
http://dx.doi.org/10.1098/rspa.1976.0045
http://dx.doi.org/10.1098/rspa.1976.0045
http://dx.doi.org/10.1088/0031-8949/82/03/038105
http://dx.doi.org/10.1063/1.1808892
http://dx.doi.org/10.1209/epl/i2005-10048-8
http://dx.doi.org/10.1209/epl/i2005-10048-8
http://dx.doi.org/10.1016/S0375-9601(03)00678-9
http://dx.doi.org/10.1103/PhysRevA.70.012107
http://dx.doi.org/10.1103/PhysRevA.70.012107
http://dx.doi.org/10.1103/PhysRevA.78.032108


MESSINA, VASILE, AND PASSANTE PHYSICAL REVIEW A 82, 062501 (2010)

[23] S. Shresta, B. L. Hu, and N. G. Phillips, Phys. Rev. A 68, 062101
(2003).

[24] E. A. Power and T. Thirunamachandran, Phys. Rev. A 28, 2663
(1983).

[25] R. Passante and N. Vinci, Phys. Lett. A 213, 119
(1996).

[26] E. A. Power and S. Zineau, Phil. Trans. Roy. Soc. A 251, 427
(1959).

[27] E. A. Power and T. Thirunamachandran, Phys. Rev. A 28, 2649
(1983).

[28] E. A. Power and T. Thirunamachandran, Phys. Rev. A 25, 2473
(1982).

[29] Handbook of Mathematical Functions, edited by
M. Abramowitz and I. A. Stegun (Dover, New York,
1972).

[30] R. Passante, T. Petrosky, and I. Prigogine, Opt. Commun. 99, 55
(1993).

[31] G. Compagno, R. Passante, and F. Persico, Phys. Rev. A 38, 600
(1988).

[32] N. T. Pelekanos, B. Deveaud, J. M. Gérard, H. Haas, U. Strauss,
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