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Distillation of mixed-state continuous-variable entanglement by photon subtraction
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We present a detailed theoretical analysis for the distillation of one copy of a mixed two-mode continuous-
variable entangled state using beam splitters and coherent photon-detection techniques, including conventional on-
off detectors and photon-number-resolving detectors. The initial Gaussian mixed-entangled states are generated
by transmitting a two-mode squeezed state through a lossy bosonic channel, corresponding to the primary source
of errors in current approaches to optical quantum communication. We provide explicit formulas to calculate
the entanglement in terms of logarithmic negativity before and after distillation, including losses in the channel
and the photon detection, and show that one-copy distillation is still possible even for losses near the typical
fiber channel attenuation length. A lower bound for the transmission coefficient of the photon-subtraction beam
splitter is derived, representing the minimal value that still allows to enhance the entanglement.
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I. INTRODUCTION

Entanglement of composite systems represented by con-
tinuous quantum variables is of conceptual importance for
studying fundamental questions of quantum mechanics [1]
and promises to be useful for potential real-world applications
in the fast-developing field of quantum information process-
ing [2–4]. However, in general, entanglement is a fragile
resource which is easily degraded when it interacts with an
uncontrollable environment, for example, in a communication
channel in form of a lossy and noisy, optical fiber. In order to
overcome this problem of entanglement degradation, typically,
protocols such as entanglement purification or distillation
will be utilized, as originally proposed for qubits [5]. These
schemes detect errors and are usually probabilistic, as opposed
to deterministic approaches such as quantum error correction.
More generally, entanglement distillation can be defined as
any scheme that creates one or more entangled pairs of higher
entanglement from one or more copies of initially imperfectly
entangled pairs by means of local operations and classical
communication.

Although many impressive experiments for the distillation
of pure or mixed discrete-variable entanglement have been
reported [6–9], distilling continuous-variable entanglement
appears to differ rather significantly and, in general, is harder
to achieve. The difficulty arises mainly from the necessity
of a non-Gaussian element for distilling Gaussian entangled
states [10–12]. For instance, in order to distill the quantum
optical two-mode squeezed state (TMSS) whose quadratures
obey Gaussian statistics, one must introduce at least one non-
Gaussian operation, in the form of a non-Gaussian ancilla or a
non-Gaussian measurement. The so-called photon subtraction
(PS) strategy, first introduced by Opatrný et al. [13], is one of
the experimentally most readily available operations beyond
the Gaussian regime. It enables one to modify the Gaussian
statistics of a given TMSS and therefore serves as a possible
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approach to entanglement distillation of such Gaussian states
[14]. The basic principle of the PS technique is very simple
and can be implemented using beam splitters and photon
measurements.

After Opatrný et al.’s pioneering work [13], many efforts
have been made to improve the performance of such an en-
tanglement distillation protocol. Olivares et al. [15] proposed
an inconclusive PS method, which employs a more realistic
on-off photon detector in order to enhance the entanglement.
Kitagawa et al. [16] presented a fairly complete theoretical
analysis of this type of distillation, including a numerical
evaluation of the entanglement before and after distillation.
Moreover, a multimode theory for frequency mode matching
in the photon-subtracting operation was derived [17]. Even an
experiment implementing Opatrný’s method has already been
reported [18]. These efforts, both on the theoretical and the
experimental side, are examples for the more recent attempts to
combine discrete-variable and continuous-variable approaches
to optical quantum information processing [19].

The original scheme by Opatrný et al. as well as its
theoretical refinements and extensions all refer to a single
copy of a pure, Gaussian entangled state which is distilled into
a non-Gaussian entangled state. This kind of distillation is
sometimes referred to as entanglement concentration, distinct
from entanglement purification protocols in which initially
mixed-entangled states are purified and thereby turned into
states with higher entanglement. Even though usually such
entanglement purification is applied to two or more copies
of entangled states [5], one mixed-entangled copy may also
be distilled through local, generalized measurements, similar
to those for concentrating a single pure-state copy into a
maximally entangled state [20–23]. In the mixed-state case,
however, both parties sharing the initial state must perform
local measurements and communicate their results.

In this article, we provide a detailed analysis for the one-
copy distillation of mixed continuous-variable entanglement,
using beam splitters and experimentally feasible photon
detection techniques. In other words, similar to those one-copy
schemes mentioned in the preceding paragraph, we shall
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consider non-Gaussian, generalized measurements locally
performed on the two modes of the initial Gaussian state. Note
that PS ideally corresponds to maps like â|n〉 = √

n|n − 1〉
or â|α〉 = α|α〉, with the photon annihilation operator being
nonunitary and the resulting states being not normalized—a
manifestation of the probabilistic nature of the PS process.
The corresponding generalized measurements are realized
through beam-splitter transformations, locally acting on the
two signal modes and additional ancilla vacuum modes,
and subsequent photon measurements. Note that various
experiments have already demonstrated how versatile PS is
for non-Gaussian state engineering [24–26]. Local filters for
entanglement concentration of one copy of a pure TMSS were
previously considered using Kerr interactions or cavity-QED
[27]. Multicopy distillations of noisy versions of a TMSS have
been proposed as well [28–30].

A further recent one-copy scheme for distilling mixed
continuous variable entanglement was proposed in Ref. [31].
Differing from our analysis, this proposal [31] employs
detections of collective excitations in atomic ensembles for
the non-Gaussian operations. Further, it uses only operational
entanglement measures, namely teleportation fidelities. Here,
we shall calculate both fidelities and, in particular, logarithmic
negativities for the distilled states.

While in the theoretical analysis of Ref. [16], the initial
states are pure (and become mixed only for the case of on-off
detections), the input states of the recent experiment [18] were
mixed due to experimental imperfections such as the com-
plication to prepare a perfectly pure, minimum-uncertainty
squeezed state. Although even the idealized pure-state versions
of that experiment slightly differ from the TMSSs used in our
analysis (by local squeezing operations), the present article
also provides a more general theoretical foundation of the
experiment described in Ref. [18]. It proves the possibility and
feasibility of realistic PS-based distillation of a TMSS, even
in the presence of high losses. At the same time it illuminates
the applicability of Opatrný’s PS distillation protocol [13] and
provides more details on how to improve entanglement in a
general, realistic mixed-state scenario; for instance, in optical
quantum communication using lossy fibers of nearly one
attenuation length as potentially used in a quantum repeater
[32]. Moreover, some of our results are fully analytical, thus
further extending the theory presented in Ref. [16].

The article is organized as follows. First, in Sec. II,
we will give a description of our scheme for entanglement
distillation, along with the method for generating of our
mixed entangled state. In Sec. III, the definition of logarithmic
negativity is briefly summarized. With such a figure of merit for
entanglement, the amount of entanglement before distillation
is explicitly derived. Section IV is devoted to the entanglement
distillation with conventional on-off detectors. An exact
analytical formula for the entanglement distillation of pure
TMSSs is obtained, which previously was only numerically
investigated by Kitagawa et al. [16]. In Sec. V, we discuss
two different strategies of applying photon-number-resolving
detectors [pure and mixed photon-number-resolving (PNR)].
The success probability of distillation and the corresponding
lower bounds TL are studied, respectively. In Sec. VI, to further
illustrate our results, we calculate an operational measure of
entanglement (the fidelity in quantum teleportation), leading

to yet another way to compare the entangled states before and
after distillation. Finally, we conclude with a discussion and
summary in Sec. VII.

II. LOSSY BOSONIC CHANNEL AND
PHOTON SUBTRACTION

Let us first introduce the amplitude-damped TMSS with
which we are mainly concerned in this article. This kind of
mixed-state entanglement can be obtained by sending each
mode of a pure TMSS through a lossy bosonic channel. In
our theoretical analysis, we shall simulate the lossy channel
through an extra vacuum mode and a beam splitter. This is
the simplest model for mimicking realistic fiber-optical light
propagation, where more and more signal photons are gradu-
ally absorbed on the way during the channel transmission.

The entire scheme for our distillation protocol is shown in
Fig. 1. The initial pure TMSS is given by

|ψ〉AB =
∞∑

n=0

αn|n〉A|n〉B,αn =
√

1 − λ2λn, (1)

with λ = tanh(r) representing the degree of squeezing and
A,B referring to the two transmitted modes. Two beam
splitters with transmission coefficient T0 = η and auxiliary
vacuum modes E,F are put into the ideal channels in order
to simulate two lossy channels with transmission efficiency η.
The PS-based distillation is implemented using two more beam
splitters (each with transmission T ) and photon detectors. Due
to the finite reflectance of these beam splitters, the photon
subtraction process heralded by the photon detectors is a
probabilistic process and successful distillation may occur
whenever both detectors register nonzero counts.

To give a systematical analysis, in this article, we shall
consider entanglement distillation with two different types
of detectors, namely conventional on-off detectors (e.g.,
avalanche photodiodes, APD) and PNR detectors, both of
which are widely used in quantum optical experiments.

FIG. 1. (Color online) Scheme of continuous-variable entangle-
ment distillation. The initial state |ψ〉AB is a pure two-mode squeezed
vacuum state, both beams of which are transmitted through beam
splitters with transmittance T0 = η in order to simulate a lossy bosonic
channel of transmission η. The beam splitters with transmittance
T including the photon detectors are used to achieve the photon
subtractions for entanglement distillation. The input states of the
C,D,E,F modes are pure vacuum states. An event of successful
distillation is heralded when both detectors register nonzero counts.
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III. LOGARITHMIC NEGATIVITY AND ENTANGLEMENT
BEFORE DISTILLATION

Following the definitions of Ref. [16], we will use the
logarithmic negativity as a figure of merit to quantify entangle-
ment. The logarithmic negativity [33–35] is a relatively easily
computable measure of entanglement; more precisely, it is
an entanglement monotone, both under local operations and
classical communication and under positive partial transpose
preserving operations.

The logarithmic negativity of a bipartite state ρ
AB

= ρ is
defined by

EN (ρ) = log2[1 + 2N (ρ)], (2)

in which N (ρ) is defined as the negativity given by the absolute
value of the sum of negative eigenvalues of the partially
transposed density operator ρ�A . Here and throughout, without
loss of generality, we will perform the partial transpose
operation with respect to the A mode.

We shall now quantify the amount of entanglement of
the amplitude-damped TMSS. Note that this state including
the damping effect remains a Gaussian state, and hence its
logarithmic negativity could be directly computed from its
second-moment covariance matrix through the corresponding
symplectic eigenvalues of the partially transposed state [2–4].
However, for our purposes, since the PS process will lead to
non-Gaussian states, it is more useful to achieve a more general
entanglement quantification expressed in the photon number
basis. This is similar to the approach of Ref. [16], but with the
important distinction that our states are mixed states from the
beginning, both before and after the distillation.

First, let us denote the beam-splitter coupling between
modes k and l as [16],

Vkl(θ0) = exp[θ0(a†
kal − aka

†
l )], (3)

with θ0 = arctan(
√

(1 − η)/η) and ak(l) being the photon
annihilation operator of the k(l) mode. The unitary state
evolution before entanglement distillation can be formulated
as follows,

|�〉
ABEF

= V
AE

(θ0) ⊗ V
BF

(θ0)|ψ〉
AB

|0〉
E
|0〉

F
, (4)

where |0〉
E
,|0〉

F
are the initial vacuum states of the loss modes.

Through direct calculation, we have

|�〉
ABEF

=
∞∑

n=0

n∑
k,l=0

αnξnkξnl|n − k〉
A
|n − l〉

B
|k〉

E
|l〉

F
,

(5)

ξnm = (−1)m
√(

n

m

)
(
√

η)n−m(
√

1 − η)m,

where m = 0,1, . . . ,n and ( n

m
) = n!

m!(n−m)! is the binomial
coefficient.

The mixed state ρ
AB

before entanglement distillation is
obtained by tracing over the loss modes E and F ,

ρmix ≡ ρ
AB

= Tr
EF

[|�〉
ABEF

〈�|]

=
∞∑

m,n=0

n∑
i=0

m∑
j=0

fnmij |n − i〉
A
〈m − i|

⊗ |n − j 〉
B
〈m − j |, (6)

with fnmij being a real positive coefficient, fnmij =
αnαmξniξmiξnj ξmj .

Similarly to the case of a pure TMSS [16,36], the partial
transpose of the density matrix (6) is still block diagonal in the
photon number (Fock) basis. We have

ρ�A

AB
=

∞∑
m,n=0

n∑
i=0

m∑
j=0

fnmij |m − i,n − j 〉
AB

〈n − i,m − j |

=
∞⊕

K=0

K∑
i,j=0

C
(K)
i,j |i,K − i〉

AB
〈j,K − j |, (7)

with

C
(K)
i,j = (1 − λ2)

(
η

1 − η

)K ∞∑
n=n0

√(
K

i

)(
K

j

)
× (λ − λη)(i+j+2n) (n + i)!(n + j )!

K!n!(n + i + j − K)!
,

(8)

n0 = max{0,K − i − j}.
Thus, the negativity of ρmix can be equivalently obtained

by solving the eigenvalue problem of a series of (K + 1) ×
(K + 1) submatrices

CK = [
C

(K)
i,j

]
i=0,...,K;j=0,...,K

, (9)

for K = 0,1, . . . ,∞. Such a block submatrix method is quite
efficient in numerical evaluations [16]. Indeed, the matrix
CK has a very useful symmetry property which will finally
simplify the whole problem.

Theorem 1. CK is a double symmetric, i.e., both symmetric
and centrosymmetric, matrix.

Proof. Symmetric property follows directly from the i,j

exchange invariance in the definition Eq. (8). Therefore we
only need to prove C

(K)
i,j = C

(K)
K−i,K−j for arbitrary i,j . Now

consider any i,j such that for i + j � K , we always have
(K − i) + (K − j ) � K . Using Eq. (8), it directly follows
n0(i,j ) = K − i − j � 0 and n0(K − i,K − j ) = 0. By re-
placing the index n = n′ + n0(i,j ) in the summation of C

(K)
i,j

and noticing (K

i
) = ( K

K−i
), the relation C

(K)
i,j = C

(K)
K−i,K−j can

be straightforwardly obtained. �
Theorem 2. The negativity of ρmix can be uniquely deter-

mined by the skew diagonal entries of matrix CK:

N (ρmix) = 1

2

( ∞∑
K=0

Tr[JKCK] − 1

)
, (10)

with JK being the anti-identity matrix,

JK = [δi+j,K ]i,j=0,...,K =

⎛⎜⎜⎜⎜⎜⎝
0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠ . (11)

Proof. According to Ref. [37], for a (K + 1) × (K + 1)
dimensional matrix CK, there always exists an orthogonal
matrix U , such that for K odd,

UCKUT =
(

A − JM 0
0 A + JM

)
, (12)
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and for K even,

UCKUT =

⎛⎜⎝A − JM 0 0

0 q
√

2xT

0
√

2x A + JM

⎞⎟⎠ , (13)

where A, M , and J are each �K+1
2 	 × �K+1

2 	 matrices with
elements

Ai,j = C
(K)
i,j , Mi,j = C

(K)
i+
 K−1

2 �,j , Ji,j = δi+j,� K−1
2 	,

for i,j = 0,1, . . . ,�(K − 1)/2	, and �· · ·	 and 
· · ·� are the
floor and ceiling functions, respectively.

This shows that the eigenvalues of CK are the same as the
eigenvalues of A − JM and A + JM in the case of K odd

and the same as A − JM and (
q

√
2xT

√
2x A + JM

) in the case of

K even.
Moreover, it can be always checked that the sub-block

A − JM contains all the negative eigenvalues of matrix CK.
In fact, for the matrix CK as defined in Eq. (8), A − JM

is always negative-definite, whereas the sub-block A + JM

and (
q

√
2xT

√
2x A + JM

) are positive-definite. Thus, the absolute

value of the sum of the negative eigenvalues of CK is
given by |Tr[A − JM]| = Tr[JM − A] = 1

2 Tr[JKCK − CK].
The negativity of the whole matrix ρmix follows as

N (ρmix) = 1

2

∞∑
K=0

Tr[JKCK − CK]

= 1

2

( ∞∑
K=0

Tr[JKCK] − 1

)
, (14)

where in the second line, we have imposed the normalization
condition

∞∑
K=0

Tr[CK] = Tr
(
ρ�A

AB

) = Tr(ρ
AB

) = 1. (15)

�
Thus, following the definition in Eq. (2), the logarithmic

negativity of the state in Eq. (6) can now be easily calcu-
lated as

EN (ρmix) = log2

( ∞∑
K=0

Tr[JKCK]

)

= log2
1 + λ

1 − λ(2η − 1)
. (16)

By setting η = exp(−γ t), our result agrees with that presented
in Ref. [36]; however, our derivation leads to a simple, closed
expression as a function of the input squeezing and channel
loss. For this still Gaussian state before distillation, we can also
confirm our result by calculating the symplectic eigenvalues
of the partially transposed state.

Following our formalism above, we merely need to calcu-
late the skew diagonal entries {C(K)

i,K−i}i=0,...,K in order to obtain
the logarithmic negativity for the two-mode mixed entangled
state. It is important to note that Theorem 1 and Theorem 2
can also be applied to calculate the logarithmic negativity
after entanglement distillation. In fact, PS on both transmitted

modes does not change the symmetry and centrosymmetry

of the partially transposed density matrix ρ
�

A
AB , provided that

both detectors obtain the same measurement results. The only
difference is that the state after PS is not normalized. One
should then specify the normalization factor (i.e., the trace of
ρdist

AB
= ∑

K Tr[CK]) for the different types of detectors and
the different detection strategies. This enables us to extend
the analytical formulas for continuous-variable entanglement
from pure states to mixed states, including the Gaussian state
ρmix before distillation as well as the non-Gaussian states after
distillation using on-off detectors or PNR detectors (in pure
and mixed strategies, see below).

IV. DISTILLATION USING ON-OFF DETECTION

For convenience, let us first give a general description
of photon detectors. Suppose the detector can respond with
M different measurement outcomes. According to the the-
ory of generalized quantum measurements [38,39], such a
measurement device can be completely characterized through
a set of positive-definite operators {�̂k|k = 1,2, . . . ,M},
corresponding to a positive operator-valued measure (POVM).
The quantum measurement is probabilistic: for a given input
state , the probability that the detector gives outcome k

is Pk = Tr[�̂k]. The condition that the total probability is
normalized corresponds to

∑M
k=1 �̂k = 1, with 1 representing

the identity operator.
The photon detectors usually employed in quantum optical

experiments, such as APD operating in the Geiger mode, cor-
respond to a measurement device with only two measurement
outcomes: off (no photons detected) and on (one or more
photons detected). Expressed in the Fock basis, the positive
operator description of an ideal on-off photon detector is then
given by {�̂(off),�̂(on)}, with

�̂(off) = |0〉〈0|,
(17)

�̂(on) = 1 − �̂(off) =
∞∑

k=1

|k〉〈k|.

Based on the formalism and the notations above, we can
now proceed with the entanglement distillation protocol in
Fig. 1. Assuming that the two beam splitters for PS have the
same transmittance T (reflectance coefficient R = 1 − T ), the
state evolution of the whole PS process can be described by

ρ
ABCD

= V [ρmix ⊗ |0〉
C
〈0| ⊗ |0〉

D
〈0|]V †,

(18)

ρ̃(on,on) = TrCD

[
ρABCD1AB ⊗ �̂(on)

C
⊗ �̂(on)

D

]
P(on,on)

,

where V = V
AC

(θ ) ⊗ V
BD

(θ ), θ = arctan(
√

R/T ), and
ρ̃(on,on) is the normalized output state; P (on,on) is the
probability of detecting nonzero photons in both detectors,

P (on,on) = Tr
[
ρABCD1AB ⊗ �̂

(on)
C ⊗ �̂

(on)
D

]
, (19)

where this time the trace is over all four modes ABCD.
Using the same method as in Sec. III, analytic formulas for
the entanglement and the success probability can now be
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derived. The unnormalized, partial transpose ρ
�A

AB is again
block diagonal with respect to the K subspaces. We have

C
(K)
i,j (on,on) = (1 − λ2)

(
ηT

1 − η

)K ∞∑
γ=1

∞∑
δ=1

×
∞∑

n=n0

(
ηR

1 − η

)γ+δ

(λ − λη)i+j+2n+2γ

× (i + n + γ )!(j + n + γ )!

K!n!γ !δ!(n + i + j + γ − K − δ)!

×
√(

K

i

)(
K

j

)
,

n0 = max{0,K + δ − i − j − γ }. (20)

The probability of success can be evaluated as

P (on,on) =
∞∑

K=0

K∑
i=0

C
(K)
i,i (on,on)

= λ2(1 − T̃ )2(1 + λ2T̃ )

(1 − λ2T̃ )(1 − λ2T̃ 2)
, (21)

where we define T̃ = 1 − ηR and R̃ = 1 − ηT .
After state normalization, the logarithmic negativity can be

also analytically obtained:

EN (ρ̃(on,on)) = log2

[
(1 − λ2)ηR

(1 − ληT )2 − λ2(1 − η)R̃

]
+ log2

[
R̃

(1 − λ)(1 − λ(2ηT − 1))

− 1 − η

(1 − ληT )2 − λ2(1 − η)2

]

+ log2

[
(1 − λ2T̃ )(1 − λ2T̃ 2)

(1 − T̃ )2(1 + λ2T̃ )

]
. (22)

In the following discussions, to be more specific, we shall
choose two typical values for the channel transmission η in
order to study the entanglement properties after distillation.

A. Pure TMSS: η = 1

In the literature, PS-based distillation of a pure TMSS has
already been numerically treated in Ref. [16]. In that work,
due to the extremely intensive numerical computation for
diagonalizing a large square matrix, only the low-squeezing
regime λ < 0.9 was investigated and high photon number
terms were neglected. However, based on our analytical result
in Eq. (22), the performance of entanglement distillation in the
large-squeezing (high photon number) regime 0.9 < λ < 1.0
can also be examined.

In fact, by simply setting η = 1, we obtain

EN (ρ̃)η=1 = log2

[
(1 + λ)(1 − λ2T )(1 + λT )

(1 − λT )(1 + λ2T )(1 − λT + λR)

]
,

(23)

P (on,on)η=1 = λ2(1 − T )2(1 + λ2T )

(1 − λ2T )(1 − λ2T 2)
. (24)

Surprisingly, for a given beam splitter with finite transmis-
sion coefficient 0 < T < 1, the output entanglement exhibits
nonmonotonic dependence of the initial squeezing parame-
ter λ. The finite transmission coefficient of the beam splitter has
a degrading effect on the output entanglement. When λ → 1, a
pure TMSS has infinite entanglement. However, when one uses
the beam splitter together with on-off detectors to implement
the distillation, one will always get finite entanglement. In
fact, the optimal squeezing parameter λ (referred to as λopt)
which maximizes EN (ρ̃) is strictly smaller than 1. This result
is certainly of experimental significance in order to optimize
the distilled entanglement: it may not be necessary to prepare
as much initial squeezing as possible to maximize the final
entanglement; some finite-squeezing value will be optimal.

In Fig. 2(a), we show the logarithmic negativity of the dis-
tilled TMSS (η = 1) for different beam-splitter transmissions
(T = 0.1,0.5, . . . ,0.99). In Fig. 2(b), we give a plot of the
probability of successful distillation, P (on,on). Figure 2(c)
shows the optimal λopt as a function of T , while Fig. 2(d)
presents the maximal EN (ρ̃) at λ = λopt. Even with infinite
squeezing and a nonlossy channel, η = 1, we cannot approach
infinite entanglement after distillation. In fact, when λ → 1,

in Eq. (23), the logarithmic negativity scales as EN (ρ̃) =
log2

1
1−T

.
In the above distillation protocol, there exists a nontrivial

lower bound TL for the transmission coefficient T below which
the PS scheme based on beam splitters and on-off detectors
ceases to improve the entanglement. In Fig. 2(a), it is shown
that the distillation protocol effectively no longer works for
T = 0.10,0.50. The entanglement after distillation is then
even smaller than that before distillation. Indeed, requiring
EN (ρ̃) > EN (ρmix), the transmission coefficient T satisfies
TL < T � 1, with

TL = 1

3λ3

[
λ(λ2 + λ − 1) + 2

√
ξ sin

(
π

6
− θ̃

3

)]
,

ξ = λ2(λ4 + 2λ3 − 4λ2 + 4λ + 1),
(25)

ζ = λ(λ3 + 8λ2 − 3λ + 2),

θ̃ = arccos

(
3λ3ζ − 2λ(λ2 + λ − 1)ξ

2ξ
√

ξ

)
.

The quantity TL in Eq. (25) is a monotonically increasing
function of the squeezing parameter λ. When λ → 0, we
have TL = 1/2. In the other extreme case, when λ approaches
1, it follows that TL → 1. This, on the other hand, proves
the degrading effect of the transmission coefficient T : In
the high photon number regime (especially, for λ → 1), any
finite transmission 0 < T < 1 is smaller than TL = 1 and the
entanglement of the state after distillation, as illustrated in
Fig. 1, is finite and hence smaller than the infinite entanglement
before distillation. We give a detailed description of the
behavior of TL in Fig. 4.

B. 3-dB amplitude-damped TMSS: η = 0.5

In Fig. 3, we show the success probability and the
logarithmic negativity of the amplitude-damped TMSS. Here,
the amplitude-damping process is simulated by a 3-dB beam
splitter: η = 1/2. Similarly to the distillation of a pure TMSS,
the entanglement of the distilled state including amplitude

062316-5



SHENGLI ZHANG AND PETER VAN LOOCK PHYSICAL REVIEW A 82, 062316 (2010)

T 0.99

T 0.90

T 0.70
T 0.50

T 0.10

0.0 0.2 0.4 0.6 0.8 1.0
0
1
2
3
4
5
6
7

λ

E
N

ρ

0.99

0.90

0.70

0.50

T 0.10

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

r arctanh λ

P
on

,o
n

0.0 0.2 0.4 0.6 0.8 1.0

0.70
0.75
0.80
0.85
0.90
0.95
1.00

T

λ o
p

t

0.0 0.2 0.4 0.6 0.8 1.0
0
1
2
3
4
5
6

T

E
N

ρ
λ o

pt
λ

(a)

(c)
(d)

(b)

FIG. 2. (Color online) Performance of distilling a pure TMSS (η = 1) with beam splitters and on-off detectors. (a) Logarithmic negativity
of the output state for T = 0.10,0.50,0.70,0.90,0.99, respectively. The dashed line corresponds to the logarithmic negativity of the TMSS
before distillation [Eq. (16) with η = 1]. The red squares in each curve indicate the maximum values of EN (ρ̃). (b) Success probability, i.e.,
the probability that both detectors record the “on” results [Eq. (24)]. (c) λopt as a function of T (see text for more information). (d) Maximal
value of EN (ρ̃) at λ = λopt.

damping is again degraded by the finite transmission coeffi-
cient. There also exists a finite λopt with 0 < λopt < 1 which
maximizes the output entanglement. At the same time, the
lower bound TL for the transmission coefficient still increases
monotonically from TL = 1/2 to TL = 1, when λ varies from
0 to 1.

In Fig. 4, we show a plot to describe the relation between
TL and λ, for η varying from 0.01 to 1. It is shown that
for larger channel losses (smaller η), more transmissive beam
splitters (larger T ) are needed in order to achieve distillation.
Furthermore, for all 0 < η � 1, the values TL vary from 1/2
to 1, which means a beam-splitter transmission T > 1/2 is a
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FIG. 3. (Color online) Performance of distilling a 3-dB amplitude-damped TMSS (η = 1/2) with beam splitters and on-off detectors.
(a) Logarithmic negativity of the output state for T = 0.10,0.50,0.70,0.90,0.99, respectively. The dashed line corresponds to the logarithmic
negativity of the amplitude-damped TMSS before distillation [Eq. (16)]. The red squares indicate the maximum values of EN (ρ̃). (b) Success
probability of distillation for various T [Eq. (24)]. (c) λopt as a function of T . (d) Maximal value of EN (ρ̃) at λ = λopt.
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FIG. 4. (Color online) Lower bound TL for distilling an
amplitude-damped TMSS using beam splitters and on-off detectors.
The channel transmissions η shown, from top to bottom, are
0.01,0.1,0.5,1. TL increases monotonically with squeezing λ.

general, necessary condition for distilling amplitude-damped
TMSSs using on-off detectors. However, in Sec. V, we will
find that such a necessary condition can be circumvented
by employing a more sophisticated detection strategy, for
instance, using photon-number-resolving detectors.

V. DISTILLATION USING PHOTON NUMBER
RESOLVING DETECTION

In quantum communication and computation, using
photon-number-resolving detectors may lead to various im-
portant applications, such as linear-optics quantum computing

[40], quantum repeaters [41], quantum state discrimination
[42], and quantum super-resolution [43]. Recently, a photon-
number resolution of up to 10 photons was demonstrated [44].
In the following, we shall continue investigating PS-based
entanglement distillation protocols, but we will replace the
on-off detectors by PNR detectors. In our analysis, we will
refer to two strategies: (i) pure PNR detection strategy and
(ii) mixed PNR detection strategy.

A. Strategy 1: pure PNR detection

For simplicity, let us consider a perfect PNR detector which
has a unique response for every input photon number state. The
corresponding POVM operator for detecting � photons is

�̂� = |�〉〈�|,
∞∑
�

�̂� = 1. (26)

This kind of measurement is pure in the sense that the operators
�̂� (� = 0, . . . ,∞) are extremal in the convex set of all
POVMs. Now suppose both PNR detectors in Fig. 1 give the
same photon number �, then, according to Eq. (18), the output
state can be written as

ρ̃(�,�) = Tr
CD

[
ρ

ABCD
1

AB
⊗ �̂�C

⊗ �̂�D

]
P (�,�)

. (27)

After direct calculation, we obtain the matrix elements of
the partially transposed matrix ρ

�
A

AB (unnormalized) in the
K subspace,

C
(K)
i,j (�,�) = (1 − λ2)

(
ηT

1 − η

)K ∞∑
n=n0

(ληR)2�(λ − λη)i+j+2n

√(
i + n + �

n

)(
j + n + �

n

)(
i + n + �

i + j + n − k

)(
j + n + �

i + j + n − K

)

×
√(

j + �

�

)(
i + �

�

)(
K − i + �

�

)(
K − j + �

�

)
, (28)

n0 = max{0,K − i − j},

as well as the success probability,

P (�,�) = 1 − λ2

1 − λ2T̃ 2

[
ληR

1 − λ2T̃ 2

]2� �∑
k=0

(
�

k

)2

(λT̃ )2k. (29)

The logarithmic negativity of the output state then becomes

EN (ρ̃(�,�)) = (2� + 1) log2

[
1 + λT̃

1 − λ(ηT + η − 1)

]

+ log2

[
�∑

k=0

(
�

k

)2

(λ − λη)2k(1 − ληT )2�−2k

]

− log2

[
�∑

k=0

(
�

k

)2

(λT̃ )2k

]
. (30)

In Fig. 5, we show the logarithmic negativity and the
success probability for distilling a 3-dB amplitude-damped
(η = 1/2) TMSS. The counted photon numbers are � =
1,2,3,4. Compared with the distillation using on-off detectors,
the PNR-based distillation has the following characteristics:

(i) For � � 2, the PNR detectors outperform the on-off
detectors by a significant amount for small squeezing λ. The
more photons are detected, the higher the entanglement will
be. However, this improvement becomes negligible for large
squeezing λ, for which the lower-bound TL will be much
greater than T = 0.95 (the value used in our calculation).

(ii) The success probability of the pure PNR distillation
strategy decreases exponentially with the number of photons
detected in each PNR detector, as can be seen in Eq. (29).
As a consequence, the probability P (�,�) is much smaller
than the success probability P (on,on) for on-off detectors.
To be more specific, we show a plot of P (�,�) as a function
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FIG. 5. (Color online) Comparison of the performance of
entanglement distillation between PNR detectors (strategy 1) and
on-off detectors. The green dashed lines correspond to the case
of on-off detectors. The blue thick dashed lines in (a) represent
the entanglement before distillation. Logarithmic negativity and
success probability are shown for PNR detectors with counted photon
numbers � = 1,2,3,4. The other parameters are set to η = 1/2,T =
0.95. The red arrow in (b) indicates the regime 0.9950 � λ � 0.9999
(3 � r � 5).

of r = arctanh(λ) in Fig. 5(b). In the high-squeezing regime
(0.9950 � λ � 0.9999)(3 � r � 5), we observe a peak of
P (�,�). This is because larger squeezing results in more
photons in each transmitted mode (A and B) and therefore
leads to more photons to be detected by the PNR detectors.
However, too large squeezing will shift the number of detected
photons to a much higher level  4, eventually decreasing
the detection probability for the � = 1,2,3,4 photon number
cases.

(iii) The lower-bound TL for the transmittance of the beam
splitter is shifted by the PNR detection results. In Fig. 6, we
show TL as a function of the number of photons detected,
� = 1,2,3,4, and the channel efficiency, η = 0.01,0.1,0.5,1.
For � = 1, the bound TL covers the full range between 1/2
and 1, similarly to TL for the on-off detection protocol
(Fig. 4). For larger �, e.g., � = 2,3,4, the minimum of TL

(at λ = 0) is independent of η and is shifted to 1/(� + 1), thus
circumventing the necessary condition T > 1/2 for the on-off
detection protocols.

B. Strategy 2: mixed PNR detection

To improve the probability of successful distillation, we
introduce another distillation measurement strategy. This

time we shall still use photon number discrimination with
PNR detectors, however, in a mixed PNR strategy. Such a
strategy is experimentally more feasible than general pure
PNR detections and similar experiments have already been
reported in the context of binary coherent-state discrimination
[42].

To achieve entanglement distillation, we make a postse-
lection of the PNR detection results and define the POVM
operators

�̂(m)
on =

∞∑
��m

|�〉〈�|, �̂
(m)
off =

m−1∑
�=0

|�〉〈�|. (31)

Again, successful distillation is heralded when both PNR
detectors record the “on” result. By taking into account the
contribution of all multiphoton components � � m, the success
probability approaches 1 in the case of infinite squeezing
(λ → 1). For any m, we have

P (m)
succ = Tr

[
ρ

ABCD
1

AB
⊗ �̂(m)

on
C

⊗ �̂(m)
on

D

]
= (1 − λ2)

∞∑
n=m

λ2n

[
1 −

m−1∑
k=0

(
n

k

)
(ηR)kT̃ (n−k)

]2

. (32)

When m = 1, such a strategy is straightforwardly reduced to
the conventional on-off detection method in Sec. IV. However,
for large m, the analytic formulas for success probability P (m)

succ
and logarithmic negativity EN (ρ̃) become rather complicated
and we shall only present a numerical comparison for different
m values in Fig. 7. We still consider the typical example
of 3-dB transmission η = 1/2 and highly transparent beam
splitters, T = 0.95. As can been seen from Fig. 7(a), for
smaller squeezing λ < 0.5 (r < 0.5493), a significant increase
of entanglement is obtained. For larger squeezing λ > 0.5,
the mixed PNR detection strategy does not improve the
entanglement very much. The corresponding probability P (m)

succ
is shown in Fig. 7(b).

Finally, in order to find out for which conditions this
mixed-PNR protocol can improve entanglement, we also
systematically vary the T values of the beam splitters and
calculate the lower bound TL [Fig. 7(c)]. Interestingly, the
TL bounds are similar to the pure-PNR case. For λ → 0,
a transmission of T = 1/(m + 1) is sufficient to enhance
the entanglement. However, as λ increases, our simulations
suggest that a monotonically increasing T is required for
successful distillation.

VI. OPERATIONAL MEASURE OF ENTANGLEMENT

In this section, we shall consider quantum teleportation
of coherent states in order to assess the quality of the
photon-subtracted entangled states. Quantum teleportation is
a protocol in which an arbitrary, unknown quantum state
can be reliably transferred from a sender to a receiver. The
crucial resource for quantum teleportation to outperform
classical teleportation is an entangled state shared by the two
participants. Intuitively, the more entanglement they share,
the higher the teleportation fidelity they can achieve. In other
words, the teleportation fidelity may serve as an operational
measure of entanglement [13,15].
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FIG. 6. (Color online) Lower-bound TL for PNR-based distillation (strategy 1) of an amplitude-damped TMSS with the numbers of counted
photons � = 1,2,3,4. In each plot [(a)–(d)], the channel transmittance η is chosen to be 0.01,0.1,0.5,1, from top to bottom, and TL ranges from
1/(� + 1) to 1.

In the following, we consider a teleportation experiment in
which the entangled state after PS-based distillation is utilized.
We assume that the state to be teleported is a coherent state,
σin = |α〉〈α|. Standard continuous-variable teleportation [45]
consists of three steps: (i) Alice combines one mode of the
entangled state, say the A mode, with the input mode in
state σin at a 50:50 beam splitter; then she measures the
quadratures variables x− = (xin − xA)/

√
2 and p+ = (pin +

pA)/
√

2. (ii) When she obtains the classical measurement
results for x̄− and p̄+, she then communicates them to Bob
via a classical communication channel. (iii) Using Alice’s
measurement results, Bob applies the corrsponding displace-
ment operation D(−β) = exp(−βa†

B
+ β∗a

B
),β = x̄− + ip̄+

on the other entangled mode B. The fidelity between σin and
the final state of mode B is related with the quality of the shared
entanglement. Unit fidelity requires perfect entanglement.

Mathematically, the joint quadrature measurement on the
input mode σin and mode A is equivalent to a heterodyne
measurement (acting on mode A), expressible as [15]

�̂
A
(β) = 1

π
D(β)σT

in D†(β), (33)

where here T denotes the transposition operation. For the
normalized entangled state ρ̃

AB
, the probability for out-

come β is

P (β) = Tr[ρ̃
AB

�̂
A
(β) ⊗ 1

B
]. (34)

After the displacement operation by Bob, the final state in
mode B becomes

ρ
B

= 1

P (β)
D(−β)Tr

A
[ρ̃

AB
�̂

A
(β) ⊗ 1

B
]D†(−β), (35)

with a fidelity given by

Fβ = 〈α|ρ
B
|α〉

= 1

P (β)
〈α + β|Tr

A
[ρ̃

AB
�̂

A
(β) ⊗ 1

B
]|α + β〉. (36)

By averaging over all the possible measurement results β,
we obtain the average fidelity

F =
∫

d2βP (β)Fβ

= 1

π

∫
d2βTr[ρ̃

AB
D(β)σT

in D†(β) ⊗ D(β)|α〉〈α|D†(β)]

= Tr[ρ̃
AB

OF], (37)

where we define the bipartite operator OF = 1
π

∫
d2βD(β) ⊗

D(β)(σT
in ⊗ |α〉〈α|)D†(β) ⊗ D†(β). Using the invariance

d2β = d2(β + α), ∀α, and similar methods to those in
Ref. [46], we find that

OF =
∞∑

K=0

K∑
i,j=0

1

2K+1

√(
K

i

)(
K

j

)
|i,j 〉〈K − j,K − i|.

(38)

Moreover, by noticing that the partially transposed O�
F is block

diagonal, we can simplify the fidelity (37) as follows,

F = Tr
[
ρ�A

AB
O�

F

]
Tr

(
ρ�A

AB

) =
∑∞

K=0 Tr
[
CKO�

F (K)
]∑∞

K=0 Tr[CK]
, (39)

where O�
F (K) is the K sub-block matrix 〈i|O�

F (K)|j 〉 =
〈i,K − i|O�

F |j,K − j 〉.
Thus, using CK as defined above, the teleportation fidelity

can be easily evaluated. For example, for the state before
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FIG. 7. (Color online) Logarithmic negativity (a) and success
probability (b) for the mixed PNR method (strategy 2) with m = 1,

m = 2,m = 3. The lower bound TL (c) varies from 1/(m + 1) to 1;
the other parameters are chosen as η = 1/2,T = 0.95.

entanglement distillation, the matrix CK is given by Eq. (8),
and the fidelity becomes

Fmix =
∞∑

K=0

K∑
i,j=0

C
(K)
i,j 〈i|O�

F |j 〉

= (1 + λ)(2 − λ3η3 + λ2η2(λ + 3) − λη(λ + 4))
2(2 − 2λη − λ2η + λ2η2)(1 − λη)(1 + λ − λη)

.

(40)

Similarly, from the definitions in Eqs. (20) and (28), the
teleportation fidelity for the PS-distilled states can be obtained,
respectively. For example, in comparison with the logarithmic
negativities calculated in Sec. V, we present a numerical
evaluation of the teleportation fidelity for pure PNR-distilled
entangled states in Fig. 8. For � = 1,2,3, the teleportation fi-
delity is obviously improved in the low-squeezing regime (λ <∼
0.75), in a similar way to what we obtained for the logarithmic-
negativity measured entanglement in Fig. 5. However, note
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FIG. 8. (Color online) Fidelity of teleporting an unknown coher-
ent state σin = |α〉〈α| using a pure-PNR-distilled amplitude-damped
TMSS. The parameters are η = 1/2,T = 0.95 as in Fig. 5.

that the logarithmic negativity is known to have an operational
meaning (quantified by the quality of quantum correlations
used in quantum teleportation) only for symmetric Gaussian
states. Indeed, our amplitude-damped TMSSs do belong to
the class of symmetric Gaussian states. However, for the
photon-subtracted, non-Gaussian states after distillation, the
correspondence between logarithmic negativity and coherent-
state teleportation fidelity is not obvious; even though it is
possible to relate the second-moment correlations of photon-
subtracted states with their logarithmic negativities [47].

VII. CONCLUSIONS

In conclusion, we have studied a photon-subtraction-based
entanglement distillation scheme on a single copy of a
Gaussian mixed state in form of an amplitude-damped TMSS
using beam splitters and various photon detection strategies.
The photon measurements included on-off and photon number
resolving detectors, as well as mixed photon number resolving
detections where the on-off threshold can be varied compared
to the conventional on-off measurement with zero or nonzero
photons detected. Exploiting the symmetry and centrosymme-
try properties of the partially transposed density matrix written
in the Fock basis, we were able to derive explicit formulas
for the entanglement of the non-Gaussian mixed states after
distillation in terms of the logarithmic negativity.

We showed that in order to improve the entanglement after
the imperfect channel transmission of the TMSS subject to
photon losses, a constraint represented by a lower bound
for the beam splitters (used for photon subtraction) must
be satisfied. Our results extend earlier work on continuous-
variable distillation from pure entangled states to the more
general case of mixed entangled states, as one usually
encounters in most realistic situations such as experimental
demonstrations [18] and optical-fiber-based communications.
Most importantly, even for channel attenuations as large as
3 dB, the photon-subtraction-based entanglement distillation
scheme still works fairly well, provided the input squeezing is
chosen sufficiently small.

The applicability of our protocol to actual long-distance
quantum communication, for instance, by building up a
quantum repeater [32], depends on various parameters. First,
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note that the success probabilities in the present scheme
are rather low; i.e., as low as or even lower than those
of the known discrete-variable repeater proposals based on
single-photon detections. Moreover, our results show that
for any (sufficiently small) initial squeezing λ for which the
distilled entanglement exceeds the input entanglement, there
is always a different, effective squeezing value λeff > λ for
which the same or even higher entanglement can be distributed
through the lossy channels without subsequent distillations.
This suggests that our distillation still mainly functions as an
entanglement concentration, similar to what can be obtained
for photon-subtraction-based distillation of pure states. It is
important to see that distillation still works for mixed states;
however, in a potential application, it may still be better to use
large squeezing from the beginning without distillation. In this
case, the question arises how large this input squeezing must
be to beat the distillation-based protocol.

More specifically, using our formulas, one can find that
the logarithmic negativities before and after distillation are
related by limλ→1 Ebefore

N (η,λ) > Eafter
N (η,λ0,T ), for all initial

squeezings λ0, all channel transmissions η, and all photon-
subtraction transmittances T < 1. Nonetheless, for exam-
ple, with 3-dB losses in the channel (corresponding to an

elementary distance in a quantum repeater of almost one
attenuation length), the same entanglement as for transmitting
an almost 10-dB-squeezed TMSS without distillation can
be obtained through photon-subtraction-based distillation of
a roughly 6-dB-squeezed TMSS after transmission. How-
ever, the former approach would be deterministic, whereas
the latter is highly probabilistic, leading to further com-
plications in a full quantum repeater such as the need
for sufficient quantum memories. Further extensions of our
scheme, including more general measurements and local
operations on a single Gaussian mixed state or multicopy
distillations may prove superior to the protocol presented
here.

ACKNOWLEDGMENTS

Support from the Emmy Noether Program of the Deutsche
Forschungsgemeinschaft is gratefully acknowledged. S.Z.
acknowledges the support by Max-Planck-Gesellschaft, the
Chinese Academy of Sciences Joint Doctoral Promotion
Programme (MPG-CAS-DPP), and the Key Lab of Quantum
Information (CAS). The authors thank Jason Hoelscher-
Obermaier for discussions.

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

[2] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513
(2005).

[3] J. Eisert and M. Plenio, Int. J. Quantum. Inf. 1, 479 (2003).
[4] G. Adesso and F. Illuminati, J. Phys. A: Math. Theor. 40, 7821

(2007).
[5] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher,

Phys. Rev. A 53, 2046 (1996).
[6] P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, Nature

(London) 409, 1014 (2001).
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